首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Esophageal epithelial cells contain an apical cation channel that actively absorbs sodium ions (Na(+)). Since these channels are exposed in vivo to acid reflux, we sought the impact of high acidity on Na(+) channel function in Ussing-chambered rabbit epithelium. Serosal nystatin abolished short-circuit current (I(sc)) and luminal pH titrated from pH 7.0 to pH > or = 2.0 had no effect on I(sc). Circuit analysis at pH 2.0 showed small, but significant, increases in apical and shunt resistances. At pH < 2.0, I(sc) increased whereas resistance (R(T)) decreased along with an increase in fluorescein flux. The change in I(sc), but not R(T), was reversible at pH 7.4. Reducing pH from 7.0 to 1.1 with H(2)SO(4) gave a similar pattern but higher I(sc) values, suggesting shunt permselectivity. A 10:1 Na(+) gradient after nystatin increased I(sc) by approximately 4 muAmps/cm(2) and this declined at pH < or = 3.5 until it reached approximately 0.0 at pH 2.0. Impedance analysis on acid-exposed (non-nystatin treated) tissues showed compensatory changes in apical (increase) and basolateral (decrease) resistance at modest luminal acidity that were poorly reversible at pH 2.0 and associated with declines in capacitance, a reflection of lower apical membrane area. In esophageal epithelium apical cation channels transport Na(+) at gradients as low as 10:1 but do not transport H(+) at gradients of 100,000:1 (luminal pH 2.0). Luminal acid also inhibits Na(+) transport via the channels and abolishes it at pH 2.0. These effects on the channel may serve as a protective function for esophageal epithelium exposed to acid reflux.  相似文献   

2.
Elevation of intracellular cAMP levels in Necturus gallbladder epithelium (NGB) induces an apical membrane Cl- conductance (GaCl). Its characteristics (i.e., magnitude, anion selectivity, and block) were studied with intracellular microelectrode techniques. Under control conditions, the apical membrane conductance (Ga) was 0.17 mS.cm-2, primarily ascribable to GaK. With elevation of cell cAMP to maximum levels, Ga increased to 6.7 mS.cm-2 and became anion selective, with the permeability sequence SCN- > NO3- > I- > Br- > Cl- >> SO4(2-) approximately gluconate approximately cyclamate. GaCl was not affected by the putative Cl- channel blockers Cu2+, DIDS, DNDS, DPC, furosemide, IAA-94, MK-196, NPPB, SITS, verapamil, and glibenclamide. To characterize the cAMP-activated Cl- channels, patch-clamp studies were conducted on the apical membrane of enzyme-treated gallbladders or on dissociated cells from tissues exposed to both theophylline and forskolin. Two kinds of Cl- channels were found. With approximately 100 mM Cl- in both bath and pipette, the most frequent channel had a linear current-voltage relationship with a slope conductance of approximately 10 pS. The less frequent channel was outward rectifying with slope conductances of approximately 10 and 20 pS at -40 and 40 mV, respectively. The Cl- channels colocalized with apical maxi-K+ channels in 70% of the patches. The open probability (Po) of both kinds of Cl- channels was variable from patch to patch (0.3 on average) and insensitive to [Ca2+], membrane voltage, and pH. The channel density (approximately 0.3/patch) was one to two orders of magnitude less than that required to account for GaCl. However, addition of 250 U/ml protein kinase A plus 1 mM ATP to the cytosolic side of excised patches increased the density of the linear 10-pS Cl- channels more than 10- fold to four per patch and the mean Po to 0.5, close to expectations from GaCl. The permeability sequence and blocker insensitivity of the PKA-activated channels were identical to those of the apical membrane. These data strongly suggest that 10-pS Cl- channels are responsible for the cAMP-induced increase in apical membrane conductance of NGB epithelium.  相似文献   

3.
4.
Organic cation uptake by a cultured renal epithelium   总被引:2,自引:0,他引:2  
Several organic cations are actively transported by proximal renal tubules by mediated processes across both the apical and basolateral cell membranes. In order to evaluate this transport system in a cultured renal epithelium, uptake of 3H-tetraethylammonium (TEA) across the apical membrane was measured in LLCPK1 cells, a cell line with several characteristics of proximal tubules. 3H-TEA progressively entered these cells and reached a near-steady state by 30 min. Three-minute uptake was saturable with an apparent Vmax of 1,669 +/- 129 fmoles/micrograms DNA and apparent Km of 34.0 +/- 3.4 microM. 3H-TEA uptake was inhibited by an excess of nonradioactive TEA, other organic cations, sodium azide, and hypothermia. An alkaline external pH was associated with greater 3H-TEA uptake than an acid pH. However, efflux of 3H-TEA from cells was not appreciably affected by changes in external pH. Preincubation of cells in acid or alkaline media did not affect uptake. Alteration of cell pH by ammonium chloride addition or removal had little effect on 3H-TEA uptake. Finally, uptake of 3H-TEA was not accelerated by preloading cells with an excess of nonradioactive TEA. These results indicate that intact LLCPK1 cells possess a mechanism(s) in their apical membranes for the mediated transport of a prototypic organic cation. The mechanism(s) involved in this transport is uncertain. However, neither organic cation/proton nor organic cation/organic cation exchange appears to be the predominant process.  相似文献   

5.
6.
Using the patch-clamp technique, we have identified large-conductance (maxi) K+ channels in the apical membrane of Necturus gallbladder epithelium, and in dissociated gallbladder epithelial cells. These channels are more than tenfold selective for K+ over Na+, and exhibit unitary conductance of approximately 200 pS in symmetric 100 mM KCl. They are activated by elevation of internal Ca2+ levels and membrane depolarization. The properties of these channels could account for the previously observed voltage and Ca2+ sensitivities of the macroscopic apical membrane conductance (Ga). Ga was determined as a function of apical membrane voltage, using intracellular microelectrode techniques. Its value was 180 microS/cm2 at the control membrane voltage of -68 mV, and increased steeply with membrane depolarization, reaching 650 microS/cm2 at -25 mV. We have related maxi K+ channel properties and Ga quantitatively, relying on the premise that at any apical membrane voltage Ga comprises a leakage conductance and a conductance due to maxi K+ channels. Comparison between Ga and maxi K+ channels reveals that the latter are present at a surface density of 0.09/microns 2, are open approximately 15% of the time under control conditions, and account for 17% of control Ga. Depolarizing the apical membrane voltage leads to a steep increase in channel steady-state open probability. When correlated with patch-clamp studies examining the Ca2+ and voltage dependencies of single maxi K+ channels, results from intracellular microelectrode experiments indicate that maxi K+ channel activity in situ is higher than predicted from the measured apical membrane voltage and estimated bulk cytosolic Ca2+ activity. Mechanisms that could account for this finding are proposed.  相似文献   

7.
Amiloride has been shown to impair cell volume regulatory decrease in amphiuma red cells. The present study has been performed to test for the influence of amiloride on volume regulatory decrease and electrical properties in isolated perfused mouse straight proximal tubules. Replacement of 40 mmol/l NaCl with 80 mmol/l mannitol in bath perfusate does not appreciably affect the cell volume or the potential difference across the basolateral cell membrane. Reduction of osmolarity by omission of mannitol leads to cell swelling by 16.7 +/- 0.7% (n = 7), followed by volume regulatory decrease to 107.2 +/- 1.2% (n = 7) of original cell volume within 2 min. 1 mmol/l amiloride (but not 0.1 mmol/l amiloride) in the bath depolarizes the basolateral cell membrane from -63 +/- 1 mV (n = 24) by +16 +/- 1 mV (n = 16), decreases the apparent potassium transference number from 0.69 +/- 0.02 (n = 5) to 0.36 +/- 0.05 (n = 5), and significantly impairs volume regulatory decrease without appreciably modifying cell volume in isotonic solutions. 1 mmol/l amiloride in the luminal perfusate leads to a slight hyperpolarization of the basolateral cell membrane but does not interfere with volume regulatory decrease. Reduction of bath osmolarity depolarizes the basolateral cell membrane within 30 s by +7.8 +/- 0.8 mV (n = 18) in the absence and by +18 +/- 2 mV (n = 8) in the presence of amiloride. In the presence of reduced bath osmolarity and amiloride the potassium transference number amounts to 0.36 +/- 0.04 (n = 8). The hyperpolarization following luminal application of amiloride is most likely due to inhibition of luminal sodium channels, whereas bath amiloride depolarizes the basolateral cell membrane by reduction of basolateral potassium selectivity. As in amphiuma red cells amiloride impairs volume regulatory decrease in proximal straight renal tubules.  相似文献   

8.
A frog skin, mechanically held on the mucosal side separates two Ringer solutions. It is submitted to an hydrostatic pressure difference delta P varying between 2 and 120 mb. Water permeability P (delta P) delta pi = 0 is determined with a piezo-impulse method. The rapid variation of permeability within the 2-25 mb range indicates a reversible closing of the junctions. The limiting value Pisol for high delta P is the isoosmotic permeability of the apical membrane.  相似文献   

9.
Non-voltage-gated ion channels play an essential role in cellular signalling and ionic homeostasis in nonexcitable cells. The patch clamp method in cell-attached configuration was used to search for the effects of amiloride and gadolinium (Gd3+) exerted on two types of voltage-insensitive cationic channels in plasma membrane of human leukemia K562 cells: Na-selective channels activated by actin disassembly, and mechanosensitive channels. Here we demonstrate that amiloride in high concentrations (1 mM) caused a full inhibition of mechanosensitive channels in K562 cells similarly to Gd3+ effect in micromolecular concentration range. Na-selective channels controlled by actin dynamics were shown to be unaffected by Gd3+ similarly as by amiloride. We also found that application of amiloride to the extracellular surface of membrane patch resulted in a significant increase in the activity of sodium channels. This unexpected stimulatory effect of amiloride may represent an unknown mechanism of activation of non-voltage-gated sodium channels. The data show an essential difference of the activation and blockage of these types of cation-selective channels.  相似文献   

10.
Zhang WH  Ryan PR  Tyerman SD 《Plant physiology》2001,125(3):1459-1472
Aluminum (Al(3+))-dependent efflux of malate from root apices is a mechanism for Al(3+) tolerance in wheat (Triticum aestivum). The malate anions protect the sensitive root tips by chelating the toxic Al(3+) cations in the rhizosphere to form non-toxic complexes. Activation of malate-permeable channels in the plasma membrane could be critical in regulating this malate efflux. We examined this by investigating Al(3+)-activated channels in protoplasts from root apices of near-isogenic wheat differing in Al(3+) tolerance at a single locus. Using whole-cell patch clamp we found that Al(3+) stimulated an electrical current carried by anion efflux across the plasma membrane in the Al(3+)-tolerant (ET8) and Al(3+)-sensitive (ES8) genotypes. This current occurred more frequently, had a greater current density, and remained active for longer in ET8 protoplasts than for ES8 protoplasts. The Al(3+)-activated current exhibited higher permeability to malate(2-) than to Cl(-) (P(mal)/P(Cl) > or = 2.6) and was inhibited by anion channel antagonists, niflumate and diphenylamine-2-carboxylic acid. In ET8, but not ES8, protoplasts an outward-rectifying K(+) current was activated in the presence of Al(3+) when cAMP was included in the pipette solution. These findings provide evidence that the difference in Al(3+)-induced malate efflux between Al(3+)-tolerant and Al(3+)-sensitive genotypes lies in the differing capacity for Al(3+) to activate malate permeable channels and cation channels for sustained malate release.  相似文献   

11.
12.
13.
14.
Dicoumarol, a widely used anticoagulant, may cause anemia, which may result from enhanced erythrocyte loss due to bleeding or due to accelerated erythrocyte death. Erythrocytes may undergo suicidal death or eryptosis, characterized by cell shrinkage and phospholipid scrambling of the cell membrane. Eryptosis may be triggered by increase of cytosolic Ca(2+)-activity ([Ca(2+)](i)). The present study explored, whether dicoumarol induces eryptosis. [Ca(2+)](i) was estimated from Fluo3-fluorescence, cation channel activity utilizing whole cell patch clamp, cell volume from forward scatter, phospholipid scrambling from annexin-V-binding, and hemolysis from haemoglobin release. Exposure of erythrocytes for 48 hours to dicoumarol (=10 μM) significantly increased [Ca(2+)](i), enhanced cation channel activity, decreased forward scatter, triggered annexin-V-binding and elicited hemolysis. Following exposure to 30 μM dicoumarol, annexin-V-binding affected approximately 15%, and hemolysis 2% of treated erythrocytes. The stimulation of annexin-V-binding by dicoumarol was abrogated in the nominal absence of Ca(2+). In conclusion, dicoumarol stimulates suicidal death of erythrocytes by stimulating Ca(2+) entry and subsequent triggering of Ca(2+) dependent cell membrane scrambling.  相似文献   

15.
A GTP-binding protein activates chloride channels in a renal epithelium   总被引:7,自引:0,他引:7  
Although G proteins have been shown to regulate cation channels, regulation of Cl- channels by G proteins has not been demonstrated directly. Accordingly, the objective of this study was to examine whether a G protein regulates Cl- channels in the apical membrane of rabbit kidney CCD cells grown in culture. Previous studies showed that this channel is activated by adenosine and protein kinase C and has a single channel conductance of 305 picosiemens. The PCl-:PNa+ is 9:1 and the PCl-:PHCO3- is 2:1 (Schwiebert, E.M., Light, D.B., Dietl, P., Fejes-Toth, G., Naray-Fejes-Toth, A., and Stanton, B. (1990) Kidney Int. 37,216). In the present study, Cl- channels in the apical membrane of CCD cells were studied by the patch clamp technique. GTP and guanosine 5'-O(3-thiophosphate) (GTP gamma S), a nonhydrolyzable analog of GTP, increased the single channel open probability (Po). In contrast, guanosine 5'-O-(2-thiophosphate), a nonhydrolyzable analog of GDP, and pertussis toxin (PTX) decreased the Po. GTP gamma S, but not GTP, reversed PTX inhibition of the channel. The alpha i-3-subunit of Gi increased the Po in both untreated and PTX-treated membrane patches. Because GTP gamma S activated the Cl- channel in the presence of H8, a protein kinase inhibitor, we conclude that the G protein does not activate the channel by stimulating a protein kinase. Thus, a PTX-sensitive G protein activates a Cl- channel in the apical membrane of renal CCD cells.  相似文献   

16.
Summary A Ca and potential-dependent K channel of large unit conductance was detected in the apical membrane of JTC-12.P3 cells, a continuous epithelial cell line of renal origin. The open probability of the channel is dependent on membrane potential and cytoplasmic-free Ca concentration. At cell-free configuration of the membrane patch, the open probability shows a bell-shaped behavior as function of membrane potential, which decreases at larger depolarization. With increasing Ca concentration, the width of the bell-shaped curve increases and the maximum shifts into the hyperpolarizing direction. For the first time the kinetics of this channel was analyzed under cell-attached conditions. In this case the kinetics could sufficiently be described by a simple open-closed behavior. The channel has an extremely small open probability at resting potential, which increases exponentially with depolarization. The low probability induces an uncertainty about the actual number of channels in the membrane patch. The number of channels is estimated by kinetic analysis. It is discussed that this K channel is essential for the repolarization of the membrane potential during electrogenic sodium-solute cotransport across the apical membrane.  相似文献   

17.
18.
Summary The effects of the addition of graded concentrations of amiloride, (A) m , to the mucosal bathing solution on the permeability of the apical membrane of rabbit descending colon to Na (P Na m ) were determined when the Na activity in the mucosal bathing solution, (Na) m , was 18, 32 or 100mm.P Na m was obtained from current-voltage relations determined on tissues bathed with a high-K serosal solution before and after the addition of a maximally inhibitory concentration of amiloride to the mucosal solution as described by Turnheim et al. (Turnheim, K., Thompson, S.M., Schultz. S.G. 1983.J. Membrane Biol. 76:299–309).The results indicate that: (1) As demonstrated previously (Turnheim et al., 1983),P Na m decreases with increasing (Na) m . (2)P Na m also decreases hyperbolically with increasing (A) m . Kinetic analyses of the effect of amiloride onP Na m are consistent with the conclusions that: (i) the stoichiometry between the interaction of amiloride with apical membrane receptors that results in a decrease inP Na m is one-for-one; (ii) there is no evidence for cooperativity between amiloride and these binding sites; (iii) the value of (A) m needed to halveP Na m at a fixed (Na) m is 0.6–1.0 m; and, (iv) this value is independent of (Na) m over the fivefold range studied.These findings are consistent with the notion that the sites with which amiloride interacts to bring about closure of the channels through which Na crosses the apical membrane arekinetically distinct from the sites with which (Na) m interacts to bring about closure (i.e., self-inhibition). In short, the effects of (Na) m and (A) m onP Na m in this tissue appear to be independent and additive.  相似文献   

19.
Regulation of the cAMP-activated apical membrane Cl- conductance (GaCl) in Necturus gallbladder (NGB) epithelial cells was investigated with intracellular-microelectrode techniques. GaCl was increased by exposure to 8-Br-cAMP, theophylline or forskolin. Neither 8-Br-cGMP nor elevation of intracellular [Ca2+] using ionomycin had effects on GaCl or interfered with activation of GaCl by forskolin. N-(2- [methylamino]ethyl)-5-isoquinolinesulfonamide (H8), an inhibitor of cAMP-dependent protein kinase (PKA), slowed but did not prevent the GaCl response to 8-Br-cAMP. Phorbol 12-myristate 13-acetate (PMA), which activates protein kinase C (PKC), stimulated GaCl but had no effects on intracellular [cAMP]. GaCl was unaffected by 4 alpha- phorbol, a PMA analog which does not activate PKC. Okadaic acid (OA), an inhibitor of protein phosphatases (PP) types 1 and 2A, slowed the activation of GaCl by 8-Br-cAMP, hastened the return of GaCl to basal values following removal of 8-Br-cAMP, and significantly reduced the elevation in intracellular [cAMP] produced by forskolin. OA had no effects on the GaCl changes elicited by theophylline. We conclude that: (a) NGB GaCl can be activated by PKA-mediated phosphorylation of apical membrane Cl- channels or a regulatory protein, (b) GaCl can also be activated via PKC, by a cAMP-independent mechanism, (c) OA-sensitive PP are not required for inactivation of GaCl; OA appears to stimulate phosphodiesterase, which lowers intracellular [cAMP] and affects GaCl activation, and (d) the apical membrane of NGB epithelium lacks a Ca(2+)-activated Cl- conductance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号