首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uptake of glutamine by the scutellum of germinating barley grain   总被引:1,自引:1,他引:0  
Scutella separated from germinating grains of barley (Hordeum vulgare L. cv Himalaya) took up [14C]glutamine at an initial rate of about 10 micromoles·gram−1·hour−1 in the standard assay conditions (pH 5, 30°C, 1 millimolar glutamine). Inhibition by unlabeled glutamine and by dinitrophenol indicated that about 95% of the uptake was due to carrier-mediated active transport. The pH optimum of the uptake was 5, and after correction for a nonmediated component the uptake appeared to conform to Michaelis-Menten kinetics with an apparent Km of about 2 millimolar and a Vmax of about 25 micromoles·gram−1·hour−1.

The uptake of glutamine was inhibited by all of the 18 amino acids tested; the mode of inhibition was studied only with proline and was competitive. Eight of the ten amino acids tested at high concentrations appeared to be able to inhibit the mediated uptake of glutamine virtually completely. However, when the inhibitory effect of asparagine was extrapolated to an infinitely high concentration of asparagine, about 24% of the mediated uptake of glutamine remained uninhibited. These results suggest that glutamine is taken up by two (or more) rather unspecific amino acid uptake systems, the minor one having no affinity for asparagine.

Glutamine and alanine could completely inhibit the mediated uptake of 1 millimolar leucine, but about 12% of the mediated uptake appeared to be uninhibitable by asparagine. Furthermore, the ratio of the mediated uptake of glutamine to that of leucine changed from 0.9 to 1.7 between days 1 and 3 of germination. These results give further support for the presence of two unspecific amino acid uptake systems in barley scutella.

  相似文献   

2.
Sulphate uptake by Amphidinium carterae, Amphidinium klebsii and Gymnodinium microadriaticum grown on artificial seawater medium with sulphate, cysteine, methionine or taurine as sulphur source occurred via an active transport system which conformed to Michaelis-Menten type saturation kinetics. Values for K m ranged from 0.18–2.13 mM and V max ranged from 0.2–24.2 nmol · 105 cells–1 · h–1. K m for symbiotic G. microadriaticum was 0.48 mM and V max was 0.2 nmol · 105 cells–1 · h–1. Sulphate uptake was slightly inhibited by chromate and selenate, but not by tungstate, molybdate, sulphite or thiosulphate. Cysteine and methionine (0.1 mM), but not taurine, inhibited sulphate uptake by symbiotic G. microadriaticum, but not by the two species of Amphidinium. Uptake was inhibited 45–97% under both light and dark conditions by carbonylcyanide 3-chlorophenylhydrazone (CCCP); under dark conditions sulphate uptake was 40–60% of that observed under light conditions and was little affected by 3-(3,4-dichlorophenyl) 1,1-dimethylurea (DCMU).The uptake of taurine, cysteine and methionine by A. carterae, A. klebsii, cultured and symbiotic G. microadriaticum conformed to Michaelis-Menten type saturation kinetics. K m values of taurine uptake ranged from 1.9–10 mM; for cysteine uptake from 0.6–3.2 mM and methionine from 0.001–0.021 mM. Cysteine induced a taurine uptake system with a K m of 0.3–0.7 mM. Cysteine and methionine uptake by all organisms was largely unaffected by darkness or by DCMU in light or darkness. CCCP significantly inhibited uptake of these amino acids. Thus energy for cysteine and methionine uptake was supplied mainly by respiration. Taurine uptake by A. carterae was independent of light but was inhibited by CCCP, whereas uptake by A. klebsii and symbiotic G. microadriaticum was partially dependent on photosynthetic energy. Taurine uptake by cultured G. microadriaticum was more dependent on photosynthetic energy and was more sensitive to CCCP. Cysteine inhibited uptake of methionine and taurine by cultured and symbiotic G. microadriaticum to a greater extent than in the Amphidinium species. Methionine did not greatly affect taurine uptake, but did inhibit cysteine uptake. Taurine did not affect the uptake of cysteine or methionine.  相似文献   

3.
Uptake and incorporation of L-leucine-C14 and L-cystine-S35 was studied in the mycelial [MP] and yeastlike [YP] phases of the dimorphic fungal pathogen,Blastomyces dermatitidis. Both amino acids entered the cells of the two morphological forms ofB. dermatitidis by a permease-like system at low external concentrations of substrate. At high substrate levels, the amino acids entered the cells by a simple diffusion-like process in addition to the permease-like system. Michaelis-Menten constants [Km] for L-leucine was found to be 1.1×10–5 M and 4.4×10–5 M for the MP and YP phases, respectively. The Km for L-cystine was found to be 1.0×10–5 M for the MP and 0.5×10–5 M for the YP. A requirement for energy supplied by metabolic activity was demonstrated by the inhibition of uptake and incorporation of the amino acids by cells incubated with either 2,4-dinitrophenol or sodium azide. Amino acid uptake was broadly tolerant of hydrogen ion concentration, but definite optima were demonstrated at pH 7.0 to 7.5.  相似文献   

4.
Ammonium and nitrite oxidizers were counted with the most probable number (MPN) method and potential ammonium- and nitrite-oxidation rates were determined with a chlorate inhibition technique in an arable soil over a 3-year period. Samples were taken from the topsoil once a month for 2 years and a few times during a third year in four cropping systems: unfertilized lucerne ley and barley, and nitrate fertilized grass ley and barley. The distribution of nitrifiers was determined and their activities measured at various soil depths and between and within plant rows of fertilized barley.The numbers and activities of ammonium oxidizers were highest in the spring and autumn samples. Numbers of ammonium oxidizers ranged from 0.2 to 19×104 and nitrite oxidizers from 3 to 870×104 cells g–1 dry soil. Potential ammonium-oxidizer activities ranged from 120 to 1,060 and nitrite-oxidizer activities ranged from 280 to 680 ng N g–1 dry soil hour–1. Lucerne and grass leys generally showed the highest, whereas unfertilized barley had the lowest, abundances and activities.Abundance estimates and activities were 10–20 times higher in the plow layer than in underlying sand and clay layers. A strong correlation was found between organic matter content vs numbers and activities of both ammonium and nitrite oxidizers. Only nitrite oxidizer counts were significantly higher within plant rows compared to between plant rows.  相似文献   

5.
Simple compounds in soil such as organic acids, amino acids and monosaccharides are believed to be important in regulating many aspects of terrestrial ecosystem functioning (e.g. C cycling, nutrient acquisition). Understanding the fate and dynamics of these low molecular weight (MW) compounds is therefore essential for predicting ecosystem responses to disturbance. Our aim was to quantify the amounts of these compounds in two podzolic forest soil profiles (O, E, Bs and C horizons) and to quantify their contribution to total soil respiration. The total concentration of organic acids, amino acids and monosaccharides in soil solution comprised on average 15?±?10% of the total dissolved organic C (DOC), with declining concentrations in the deeper soil layers. Dissolved organic N (DON) was the dominant form of N in soil solution and free amino acids contributed to 34% of this pool. The mineralization behaviour of glucose and galactose was described by parabolic (Michaelis–Menten) type kinetics with V max and K M values in the range of <1–250 μmol kg?1 h?1 and 15–1,100 μM, respectively. Assuming that (1) microbially mediated substrate turnover follows Michaelis–Menten kinetics, and (2) steady state soil solution concentrations, we calculated the rate of CO2 efflux attributable to the mineralisation of the three classes of low MW compounds. Our results indicated that in the O horizon, the turnover of these substrates could comprise ~100% of the basal, heterotrophic, soil respiration. In contrast, in the deeper mineral soil <20% of total soil respiration could be attributable to the mineralization of these compounds. Our compound-specific approach has identified the main substrates contributing to soil respiration in forest topsoils. However, our results also suggest that soil respiration in subsoils may be attributable to compounds other than organic acids, amino acids and monosaccharides.  相似文献   

6.
Sulfate transport processes and its regulation were studied in roots of poplar trees (Populus tremula x P. alba). From the exponential increase in sulfate uptake with temperature an activation energy (Ea) of 9.0±0.8 kJ mol–1 was calculated. In the concentration range 0.005–10 mM sulfate uptake showed biphasic Michaelis-Menten kinetics with a Km of 3.2±3.4 M and a Vmax of 49±11 nmol SO42– g–1 FW h–1 for the high-affinity uptake system (phase 1) and a Km of 1.33±0.41 mM and a Vmax of 255±25 nmol SO42– g–1 FW h–1 for the low-affinity system (phase 2). Xylem loading decreased linearly with temperature and remained unchanged within the sulfate concentration range studied. Regulation of sulfate uptake and xylem loading by O-acetyl serine (OAS), Cys, reduced glutathione (GSH), Met and S-methylmethionine (SMM) were tested by perfusion into the xylem sap with the pressure probe and by addition to the incubation medium. When added directly to the transport medium, Cys and GSH repressed, and OAS stimulated sulfate uptake; xylem loading was stimulated by Cys, repressed by GSH and only slightly affected by OAS. When perfused into the xylem, none of the compounds tested affected sulfate uptake of excised roots, but xylem loading was stimulated by SMM and OAS and repressed by Met. Apparently, the site of application strongly determined the effect of regulatory compounds of sulfate transport processes.  相似文献   

7.
The uptake of ammonium, nitrate and phosphate by laboratory-grown young sporophytes of Laminaria abyssalis was measured in a perturbed system (batch mode) at 18 °C and 35 ± 5 µE m–2 s–1 photon flux density. Uptake of all appeared to follow saturation-type nutrient uptake kinetics. The NO inf3 sup– (K s = 14.0 µM, V max = 5.0 µmol h–1 g–1 dry wt) and NH inf4 sup+ (K s = 4.6 µM, V max= 2.0 µmol h–1 g–1 dry wt) were taken up simultaneously, although NH inf4 sup+ was taken up more rapidly. Values of K 3 and V max for phosphate were, respectively, 2.21 µM and 0.83 µmol h–1 g–1 dry wt. Nitrate and phosphate were both consumed in similar rates (V max /Ks 0.37) at low concentrations. NH inf4 sup+ , thus, might be a more efficient form of N fertilizer if artificial enrichment of seawater is used.  相似文献   

8.
The scutella separated from germinating barley grains (Hordeum vulgare L. cv. Himalaya) took up the dipeptide [14C]glycylglycine (Gly-Gly) rapidly from incubation media. The pH optimum of the process was about 4.5, and the rate of uptake conformed to Michaelis-Menten kinetics with an apparent Km of 2.3 mm and Vmax of 41 μmole gram−1 hour−1. The uptake was strongly inhibited by dinitrophenol and cyanide and by lack of O2.  相似文献   

9.
Forest soil biology in Scots pine forests of the Empetrum-Vaccinium type was studied around the industrialized city of Oulu, northern Finland since 1987. The forest sites lie along a sulphur and nitrogen concentration gradient in the mor humus ranging from 1.6 to 3.9 mg S g–1 organic matter (OM) and from 14 to 23 mg N g–1 OM. A number of biological parameters have earlier been found to vary along this gradient, thus indicating that the ecosystems are subjected to a pollution stress. Total microbial biomass and various activity parameters were studied in 1991. The different methods are discussed and the results interpreted within the light of Odum's theory of the energetic stabilization of ecosystems. Microbial biomass C determined by the fumigation-extraction (FE) technique varied from 5 to 10 mg gOM, N from 0.5 to 1.0 mg g–1OM, and basal respiration rate from 0.040 to 0.097 mg CO2 h–1 g–1OM. All decreased along the pollution gradient. Substrate induced respiration values (SIR) varied from 0.025 to 0.085 mg CO2-C h–1 g–1dw. SIR correlated well with the biomass values determined by the FE technique. The lag time of the microbial community after glucose addition (varying from 13 to 22 h) was shortened and the specific respiration increment of the microbial community in response to glucose addition increased along the gradient. The metabolic quotient (respiration/biomass) of the microflora strongly depended on the technique and equation used in calculating the microbial biomass. The results show a reduced biomass, but a more intensive regeneration and intensified activity per biomass unit of microorganisms in polluted forest soil. This in turn denotes an alteration in the microbial community in favor of a higher proportion of r-strategists under the disturbed conditions. In contrast, K-strategists may be more dominant under less polluted conditions. This interpretation is presented with some reservations concerning methodology. There is a need for the calibration of each method for determining microbial biomass in different types of soil.  相似文献   

10.
Nitrate reduction in a non-polluted, coastal marine sediment was measured with an open flow-through system. The recorded rates depended upon nitrate concentration but were largely independent of the weight of sediment (14–35 g) and the dilution rate (0.7–5 h–1). Rate of nitrate uptake followed classical Michaelis-Menten kinetics, and km and Vmax values were equal to 78M and 0.168m mol g–1 hour–1, respectively. These values are in good agreement with those found by the other authors for the same biotope but by different methods. This technique of the open flow-through system is fast, simple, and inexpensive and involves small quantities of sediment (10 g).  相似文献   

11.
The kinetic parameters of in vivo ethylene metabolism by seedlings of Pisum sativum L. cv. Alaska have been determined. The oxidation of ethylene to CO2, (Ox) and the incorporation of ethylene into the tissue (TI) were both shown to display Michaelis-Menten kinetics (Km Ox = 0.9 × 10–6 M liquid phase, Vmax Ox = 2.4 × 10–10 moles g dry mass h–1 Km TI = 1.6 × 10–6 M liquid phase, Vmax TI = 4.5 × 10–10 moles g–1 dry mass h–1). Propylene competitively inhibited both Ox (Ki = 7.0 × 10–6 M) and TI (Ki = 3.7 × 10–7 M). A system comparable to Ox was absent from imbibed cotyledons of Vicia faba L. cv. Aquadulce even at saturating concentrations of ethylene similar to those used in kinetic analysis on Pisum. Silver ions were shown to inhibit TI but promoted Ox, while carbon dioxide inhibited Ox but promoted TI. Kinetic data on both these effects are presented. Data on the effect of a range of concentrations of CO2 on TI and Ox are also presented.To whom editorial correspondence should be sent  相似文献   

12.
The kinetics and characteristics of malate degradation were studied in four acid soils ranging in both pH (4.30 to 5.00) and vegetation type. The breakdown of malate was rapid in all soils with a half life of approximately 1.7 h, Km of 1.7 mM and Vmax of 70 nmol g–1 soil h–1. No relationship was observed between malate decomposition rate and pH. Co-metabolism studies with other C and N substrates (glucose, glycine, glutamate, citrate and succinate) indicated that the microorganisms were not N limited and competitive inhibition of malate breakdown was only observed in the presence of succinate. Studies with isolated mixed bacterial cultures indicated that the bacterial malate uptake was mediated by an energy dependent, dicarboxylate transporter which can be inhibited by succinate and is independent of pH between pH 5.0 and 7.0. The Km and Vmax parameters ranged from 279–955 M and 0.1–17 mol mg–1 protein h–1 for the mixed bacterial cultures depending on the bacteria's previous C source. The results indicate that in acid topsoils where microbial populations are high, the microbes may provide a considerable sink for organic acids. If organic acids are being released by roots in response to an environmental stress (e.g. Al toxicity, P deficiency) it can be expected that the efficiency of these root mediated metal resistance mechanisms will be markedly reduced by rapid microbial degradation.  相似文献   

13.
Soil CO2 efflux and pCO2 in the soil atmosphere were measured during one year at three montane sites of Mediterranean sclerophyllous forests in NE Spain. Two sites were located in the upper and lower slopes of a small catchment in the Prades mountains (mean precipitation 550 mm year–1), and a third site was located on a lower slope in the Montseny mountains (mean precipitation 900 mm year–1). The three sites were similar in bedrock and vegetation, but differed in soil characteristics and water availability. Seasonal variation of CO2 efflux and soil pCO2 were affected by soil temperature and, to a lesser extent, by soil moisture. Annual mean soil CO2 efflux (considered as soil respiration) was similar at Montseny and at the comparably located site at Prades (83 ± 18 S.E. vs. 75 ± 9 mg CO2 m–2 hour–1 , respectively), and was highest at the Prades upper slope site (122 ± 22 mg C02 m–2 hour–1 ). Despite those relatively similar CO2 effluxes, mean soil pCO2 was much higher at both Prades sites than at Montseny. Soil pCO2 always increased with depth at Prades while maxima pCO2 at Montseny were often at 20–30 cm depth. A model based on gas diffusion theory was able to explain why soil pCO2 was much higher at Prades than at Montseny, and to reproduce the shape of the vertical profile of pCO2 at the Prades soils. Nevertheless, the model failed to simulate the soil pCO2 maximum found at 20–30 cm depth at the Montseny site. Model simulations using a time-variable CO2 production rate suggested that pCO2 maxima at intermediate depth could be the result of a transient situation instead of an equilibrium one.  相似文献   

14.
Summary Impulses in single afferent fibres from amino acid receptors were recorded extracellularly. Doseresponse relations were determined for different superfused amino acids; the relations all had a slope of 1, a common saturation level, and the action of different amino acids was characterized by a specific half saturation concentration,K M. The most effective amino acids were always L-serine, L-alanine and L-histidine, having aK M of 10–5, 2·10–5 and 1.5·10–4 mol/l, respectively. The sequence of effective amino acids was the same for all units tested. Structural requirements for optimal stimulatory action of the amino acid molecules were concluded.Abbreviation vH van Harreveld solution This work was supported by the Deutsche ForschungsgemeinschaftWe gratefully acknowledge assistance in electronics from Mr. W. Zeitz, and in mechanics from Mr. D. Beyer and Mr. L. Müller. Technical help was provided by Mrs. E. Köster, secretarial help by Mrs. L. Bauer.  相似文献   

15.
Past research strongly indicates the importance of amino acids in the N economy of the Arctic tundra, but little is known about the seasonal dynamics of amino acids in tundra soils. We repeatedly sampled soils from tussock, shrub, and wet sedge tundra communities in the summers of 2000 and 2001 and extracted them with water (H2O) and potassium sulfate (K2SO4) to determine the seasonal dynamics of soil amino acids, ammonium (NH4+), nitrate (NO3), dissolved organic nitrogen (DON), dissolved organic carbon (DOC), and phosphate (PO42–). In the H2O extractions mean concentrations of total free amino acids (TFAA) were higher than NH4+ in all soils but shrub. TFAA and NH4+ were highest in wet sedge and tussock soils and lowest in shrub soil. The most predominant amino acids were alanine, arginine, glycine, serine, and threonine. None of the highest amino acids were significantly different than NH4+ in any soil but shrub, in which NH4+ was significantly higher than all of the highest individual amino acids. Mean NO3 concentrations were not significantly different from mean TFAA and NH4+ concentrations in any soil but tussock, where NO3 was significantly higher than NH4+. In all soils amino acid and NH4+ concentrations dropped to barely detectable levels in the middle of July, suggesting intense competition for N at the height of the growing season. In all soils but tussock, amino acid and NH4+ concentrations rebounded in August as the end of the Arctic growing season approached and plant N demand decreased. This pattern suggests that low N concentrations in tundra soils at the height of the growing season are likely the result of an increase in soil N uptake associated with the peak in plant growth, either directly by roots or indirectly by microbes fueled by increased root C inputs in mid-July. As N availability decreased in July, PO42– concentrations in the K2SO4 extractions increased dramatically in all soils but shrub, where there was a comparable increase in PO42– later in the growing season. Previous research suggests that these increases in PO42– concentrations are due to the mineralization of organic phosphorus by phosphatase enzymes associated with soil microbes and plant roots, and that they may have been caused by an increase in organic P availability.  相似文献   

16.
Kinetics of nitrate uptake by freshwater algae   总被引:2,自引:2,他引:0  
The kinetics of nitrate (NO3 ) uptake, the maximum uptake velocity (Vm) and the half-saturation constant (Ks), were determined for 18 species of batch-cultured freshwater algae grown without nitrogen limitation. Values of Ks ranged from 0.25 to 6.94 µM l–1 Chlorella pyrenoidosa Chick, and Navicula pelliculosa (Breb.) Hilse, respectively. Values of Vm ranged from 0.51 to 5.07 µM l–1 h–1 for Anabaena A7214 and Nitzschia W-32 O'Kelley, respectively. The mean positive values of Ks for Chlorophyta, Cyanophyta and Chrysophyta were 1.89, 3.67 and 4.07 µM l–1, respectively. The mean values of Vm for the same phyla were 1.61, 1.02 and 2.97 µM l–1 h–1 105 cells–1, respectively. The ranges of these kinetic parameters encompass values of kinetic parameters for marine and freshwater species in batch culture, for freshwater algae grown in N-limited chemostats and for natural populations of freshwater phytoplankton. Thus, in spite of variability between species, uptake parameters for both marine and freshwater algae are identical.  相似文献   

17.
The effect of exposure to different concentrations of food and suspended silt on filtration, respiration and condition were studied in the freshwater mussel Hyridella menziesi. Using a milk solids-based food and kaolin to simulate silt, mussels were maintained at different combinations of food and silt concentrations for 3 weeks. Between treatments mean filtration rates ranged from 0.97–1.66 l g–1 h–1, and respiration from 0.50–1.35 mg O2 g–1 h–1. Silt (non-volatile suspended solids up to 35 mg l–1) failed to have a significant effect on filtration rate or condition, but with increasing food levels (volatile suspended solids up to 35 mg l–1) filtration rate was reduced, and condition was reduced at the lowest food concentration (<5 mg l–1). Respiration showed a food × silt interaction between treatment blocks. When food was low respiration increased with increasing silt concentrations, and when silt was low (<5 mg l–1) respiration increased with increasing food concentrations. The observed effects of food and silt on filtration, respiration and condition are discussed in terms of their potential for affecting contaminant bioaccumulation. In low-food situations (i.e., <5 mg l–1), if mussels are pumping large volumes of water, contaminant uptake rates could be enhanced, whereas abundant food would result in lower pumping rates and lower uptake rates. Changes in metabolism with food concentration have implications for contaminant elimination, and changes in biochemical composition associated with changing condition could affect the tissue distribution and retention of contaminants.  相似文献   

18.
Field studies to examine the in situ assimilation and production of ammonium (NH4 +) by bacterial assemblages were conducted in the northern Gerlache Strait region of the Antarctic Peninsula. Short term incubations of surface waters containing 15N-NH4 + as a tracer showed the bacterial population taking up 0.041–0.128 g-atoms Nl–1d–1, which was 8–25% of total NH4 + uptake rates. The large bacterial uptake of NH4 + occurred even at low bacterial abundance during a rich phytoplankton bloom. Estimates of bacterial production using 3H-leucine and -adenine were l.0gCl–1 d–1 before the bloom and 16.2 g Cl–1 d–1 at the bloom peak. After converting bacterial carbon production to an estimate of nitrogen demand, NH4 + was found to supply 35–60% of bacterial nitrogen requirements. Bacterial nitrogen demand was also supported by dissolved organic nitrogen, generally in the form of amino acids. It was estimated, however, that 20–50% of the total amino acids taken up were mineralized to NH4 +. Bacterial production of NH4 + was occurring simultaneously to its uptake and contributed 27–55% of total regenerated NH4 + in surface waters. Using a variety of 15N-labelled amino acids it was found that the bacteria metabolized each amino acid differently. With their large mineralization of amino acids and their relatively low sinking rates, bacteria appear to be responsible for a large portion of organic matter recycling in the upper surface waters of the coastal Antarctic ecosystem.  相似文献   

19.
Deficiency of potassium but not phosphorus enhances root respiration   总被引:2,自引:0,他引:2  
Root respiration of kohlrabi (Brassica oleraceavar. gongylodes) was measured non-destructivelyin vivo by infrared gas analysis of completeroot systems, using potted plants in sand culture andnutrient solutions, for six weeks under (a) nutrientsufficiency, (b) deficiency of all mineral nutrients,(c) potassium deficiency or (d) phosphorus deficiency.This was to study the adaptation to nutrient stress interms of changes in root growth, root respiration,assimilate allocation and energy requirement fornutrient uptake. Both deficiencies of phosphorus andpotassium increased the root:shoot-ratio. This wasattributed to the plants transferring a largerrelative proportion of assimilates to the roots thanto the shoots relative to nutrient-sufficient plants.Roots of nutrient-sufficient kohlrabi respired 1.7 or7.7 mg CO2 h–1 per g fresh or dry matter, respectively. However, potassiumdeficiency enhanced root respiration to 2.4 mgCO2 h–1 or 12.2 mg CO2 h–1 on a per g fresh or dry weight basis respectively. This originated from an additional2.6 mg glucose g–1 dry matter h–1 allocated to the roots and provided 50 Joule additional energy(150 versus 100 Joule g–1 dry matter h–1)which may become available for the proposedK+:H+ symporter for potassium uptake.  相似文献   

20.
The ecophysiological characteristics of fine roots of mature forest plants are poorly understood because of difficulties of measurement. We explored a root in-growth approach to measure respiration and nitrate uptake of woody plant roots in situ. Roots of seven species were grown into sand-filled chambers. Root-associated respiration was measured as CO 2 emission on four dates and nitrate uptake was quantified using 15N. All the roots were younger than 3 months at the time of measurement. Fine root respiration measured over the temperature range of 14.5–15.5 °C averaged 18.9–36.5 nmol gDM –1 s –1 across species. Nitrate uptake rates by these fine roots (1.3–6.8 nmol gDM –1 s –1) were comparable to other studies of forest trees. The root respiration rates were several times higher than measurements on detached roots of mature trees, concurring with literature observations that young roots respire much more rapidly than older roots. The root in-growth approach appears promising for providing information on the metabolic activity of fine roots of mature forest trees growing in soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号