首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Glycogen was quantified in rat adipocytes by isolation using conventional KOH digestion and ethanol precipitation, followed by hydrolysis and spectrophotometric assay of the glucose product. A concentration of 0.193+/-0.020 micromol glucosyl units/10(6)cells was recorded. When this procedure was modified by including a 4h incubation with glucose oxidase prior to glycogen hydrolysis, the glycogen concentration was found to be 0.055+/-0.008 micromol glucosyl units/10(6) cells. Therefore in adipocytes, conventional glycogen assays give substantial overestimates due to incomplete removal of glucose during glycogen isolation. Contaminant glucose can be scavenged in a simple manner by incubation with glucose oxidase prior to glycogen hydrolysis.  相似文献   

2.
Glycogen synthase (GS) catalyzes the transfer of glucose residues from UDP-glucose to a glycogen polymer chain, a critical step for glucose storage. Patients with type 2 diabetes normally exhibit low glycogen levels and decreased muscle glucose uptake is the major defect in whole body glucose disposal. Therefore, activating GS may provide a potential approach for the treatment of type 2 diabetes. In order to identify non-carboxylic acids GS activators, we designed and synthesized a series of 2-N-alkyl- and 2-N-aryl-indazolone derivatives and studied their activity in activating human GS.  相似文献   

3.
Increasing plasma free fatty acids decreased the degree of glycogen depletion, and increased the citrate concentration, in slow-red (soleus) and fast-red (deep portion of vastus lateralis) muscle during exercise (approx. 50% depletion of glycogen, as against 75% in control animals). There was no effect in fast-white muscle (superficial portion of vastus lateralis). Glycogen concentration in the liver decreased by 83% in controls, but only by 23% in animals with increased free fatty acids during exercise. The decreased glycogen depletion may be partly explained by the findings that (a) plasma-insulin concentration was two- to three-fold higher in animals with increased plasma free fatty acids and (b) the exercise-induced increase in plasma glucagon was lessened by increased free fatty acids. Blood glucose was higher in the animals with increased free fatty acids after the exercise. The rats with increased plasma free fatty acids utilized approx. 50% as much carbohydrate as did the controls during the exercise.  相似文献   

4.
The amounts of glycogen and trehalose have been measured in cells of a prototrophic diploid yeast strain subjected to a variety of nutrient limitations. Both glycogen and trehalose were accumulated in cells deprived specifically of nirogen, sulfur, or phosphorus, suggesting that reserve carbohydrate accumulation is a general response to nutrient limitation. The patterns of accumulation and utilization of glycogen and trehalose were not identical under these conditions, suggesting that the two carbohydrates may play distinct physiological roles. Glycogen and trehalose were also accumulated by cells undergoing carbon and energy limitation, both during diauxic growth in a relatively poor medium and during the approach to stationary phase in a rich medium. Growth in the rich medium was shown to be carbon or energy limited or both, although the interaction between carbon source limitation and oxygen limitation was complex. In both media, the pattern of glycogen accumulation and utilization was compatible with its serving as a source of energy both during respiratory adaptation and during a subsequent starvation. In contrast, the pattern of trehalose accumulation and utilization seemed compatible only with the latter role. In cultures that were depleting their supplies of exogenous glucose, the accumulation of glycogen began at glucose concentrations well above those sufficient to suppress glycogen accumulation in cultures growing with a constant concentration of exogenous glucose. The mechanism of this effect is not clear, but may involve a response to the rapid rate of change in the glucose concentration.  相似文献   

5.
The effects of anoxic exposure and the post-anoxia aerobic recovery period on carbohydrate metabolism in the central nervous system (CNS) of the land snail Megalobulimus oblongus, an anoxia-tolerant land gastropod, were studied. The snails were exposed to anoxia for periods of 1.5, 3, 6, 12, 18, or 24 hr. In order to study the post-anoxia recovery phase, snails exposed to a 3-hr period of anoxia were returned to aerobic conditions for 1.5, 3, 6, or 15 hr. Glycogen and glucose concentrations in the CNS, hemolymph glucose concentration, and glycogen phosphorylase (active form, GPa) activity in the CNS were analyzed. Anoxia does not significantly affect the concentration of CNS glucose but induces hyperglycemia and a reduction of CNS GPa activity. The glycogen concentration was decreased at 12 hr of anoxia; however, by 18 and 24 hr in anoxia, the glycogen content was not significantly different from basal control values. During the post-anoxia period, the reduction in GPa activity and the increased hemolymph glucose concentration induced by anoxia returned to control values. These results suggest that the CNS of M. oblongus may use hemolymph glucose to fulfill the metabolic demands during anoxia. However, the hypothesis of tissue metabolic arrest cannot be excluded.  相似文献   

6.
Changes in the concentration of several metabolites and enzymes related to carbohydrate metabolism were measured during the growth of Saccharomyces cerevisiae on a mineral medium containing glucose as the limiting nutrient. When about 50% of the original glucose was used the exponential phase ended and the culture entered a 'transition' phase before the complete exhaustion of glucose. In this transition phase several metabolic changes occurred. cAMP, that decreased along growth, reached a constant value of about 0.7 nmol/g dry weight. A pronounced drop in fructose-6-phosphate-2-kinase activity and in the concentration of fructose 2,6-bisphosphate and fructose 1,6-bisphosphate was observed accompanied by a less marked decrease in hexose monophosphates. Trehalase activity also dropped and reached a minimal value at the onset of the stationary phase when synthesis of trehalose began. Glycogen concentration and glycogen synthase activity increased sharply during the transition phase. Plasma membrane ATPase began to increase at the middle of the exponential phase and then, coincident with the glucose exhaustion, a 90% decrease in the measurable activity was observed.  相似文献   

7.
Newborn rats were injected immediately after delivery with glucose or glucose plus mannoheptulose, and the time-courses of liver glycogen, plasma glucose, insulin and glucagon concentration were studied. The administration of glucose prevented both liver glycogenolysis and the increase in plasma glucagon concentration which normally occurs immediately after delivery. In addition, the administration of glucose prevented the decrease of plasma glucose and insulin concentration which normally occurs during the first hour of extrauterine life. Supplementation of glucose with mannoheptulose prevented the increase of plasma insulin concentrations caused by the administration of glucose; liver glycogenolysis, however, was not stimulated in these circumstances. The increase in the rate of glycogenolysis caused by the administration of glucagon was prevented in newborn rats previously treated with glucose. These results suggest that glucose exerts an inhibitory effect on the stimulation of neonatal liver glycogenolysis by glucagon.  相似文献   

8.
Glycogen is a branched polymer of glucose that serves as an energy store. Phosphate, a trace constituent of glycogen, has profound effects on glycogen structure, and phosphate hyperaccumulation is linked to Lafora disease, a fatal progressive myoclonus epilepsy that can be caused by mutations of laforin, a glycogen phosphatase. However, little is known about the metabolism of glycogen phosphate. We demonstrate here that the biosynthetic enzyme glycogen synthase, which normally adds glucose residues to glycogen, is capable of incorporating the β-phosphate of its substrate UDP-glucose at a rate of one phosphate per approximately 10,000 glucoses, in what may be considered a catalytic error. We show that the phosphate in glycogen is present as C2 and C3 phosphomonoesters. Since hyperphosphorylation of glycogen causes Lafora disease, phosphate removal by laforin may thus be considered a repair or damage control mechanism.  相似文献   

9.
Hormonal regulation of glycogen metabolism in neonatal rat liver   总被引:5,自引:3,他引:2  
1. The development of active and inactive phosphorylase was determined in rat liver during the perinatal period. No inactive form could be found in tissues from animals less than 19 days gestation or older than the fifth postnatal day. 2. The regulation of phosphorylase in organ cultures of foetal rat liver was examined. None of the agents examined [glucagon, insulin or dibutyryl cyclic AMP (6-N,2'-O-dibutyryladenosine 3':5'-cyclic monophosphate)] changed the amount of phosphorylase activity. 3. Glycogen concentration in these explants were nevertheless decreased more than twofold by 4h of incubation with glucagon or dibutyryl cyclic AMP. Incubation with insulin for 4h increased the glycogen content twofold. 4. Glycogen synthetase activity was examined in these explants. I-form activity (without glucose 6-phosphate) was found to decrease by a factor of two after 4h of incubation with dibutyryl cyclic AMP, whereas I+D activity (with glucose 6-phosphate) remained nearly constant. Incubation for 4h with insulin increased I-form activity threefold, with only a slight increase in I+D activity. 5. When explants were incubated with insulin followed by addition of dibutyryl cyclic AMP, the effects of insulin on glycogen concentration and glycogen synthetase activity were reversed. 6. These results indicate that the regulation of glycogen synthesis may be the major factor in the hormonal control of glycogen metabolism in neonatal rat liver.  相似文献   

10.
Glycogen synthesis was examined in primary cultures of adult rat hepatocytes that had been isolated from rats following a 24-h fast. Glycogen synthesis was dependent on the concentration of glucose in the culture medium and also required the presence of insulin. The addition of dexamethasone to the culture medium also increased the amount of glycogen synthesis. When the culture medium was supplemented with [U-14C,3-3H]glucose, it was found that approximately 60% of the glucose incorporated into glycogen was not derived from the pool of labeled glucose. In addition, the relative ratio of 3H/14C in the newly synthesized glycogen was approximately 50% of the ratio of the two isotopes in glucose in the culture medium, indicating that the glucose had undergone metabolism prior to its incorporation into glycogen. However, when hepatocytes were isolated from rats that had been fed ad libitum and the synthesis of glycogen from [U-14C,3-3H]glucose was followed, the relative ratio of the two isotopes in glycogen was similar to that measured for glucose in the culture medium, indicating that the glucose was directly incorporated into glycogen without any apparent metabolism. These results indicate that the synthesis of glycogen from glucose may, at least in part, follow an indirect pathway whereby glucose is metabolized prior to incorporation of the carbon into glycogen, but that the pathway followed for the synthesis of glycogen is dependent on the prior metabolic state of the animal.  相似文献   

11.
In the fed state, hyperthyroidism increased glucose utilization indices (GUIs) of skeletal muscles containing a lower proportion of oxidative fibres. Glycogen concentrations were unchanged, but active pyruvate dehydrogenase (PDHa) activities were decreased. Hyperthyroidism attenuated the effects of 48 h of starvation to decrease muscle GUI. Glycogen concentrations and PDHa activities after 48 h of starvation were low and similar in euthyroid and hyperthyroid rats. The increase in glucose uptake and phosphorylation relative to oxidation and storage in skeletal muscle induced by hyperthyroidism may contribute to increased glucose re-cycling in the fed hyperthyroid state and to glucose turnover in the starved hyperthyroid state.  相似文献   

12.
  • 1.1. Administration of a carbohydrate-rich diet increased haemolymph glucose levels and glycogen concentration in hepatopancreas, mantle and muscle.
  • 2.2. Glycogen concentration in tissues decreases after 2 weeks of starvation and haemolymph glucose levels did not change significantly.
  • 3.3. However, starvation did not induce a decrease in the intrinsic synthetic capacity in tissues.
  • 4.4. Glycogen synthesis in tissues from animals fed with lettuce or a carbohydrate-rich diet, increases with increasing glucose concentration in the media.
  • 5.5. However, in mantle slices from snails adapted on a carbohydrate-rich diet, the glycogen synthetic capacity was lower than in slices from snails fed with lettuce.
  相似文献   

13.
1. The work investigated hepatic glycogen synthesis and glucose output after the intragastric administration of glucose or glycerol or the provision of chow ad libitum to 48 h-starved euthyroid or hyperthyroid rats. 2. After glucose administration, glycogen synthesis via the indirect pathway [Newgard, Hirsch, Foster & McGarry (1983) J. Biol. Chem. 258, 8046-8052] occurred concomitantly with reversal of glucose flux across the liver and re-activation of pyruvate kinase in the euthyroid controls. Glycogen synthesis was decreased and net glucose output continued in the hyperthyroid rats, but normal re-activation of pyruvate kinase was observed. 3. Use of 3-mercaptopicolinate indicated that the glucose released from liver of hyperthyroid rats was synthesized from substrates metabolized via the gluconeogenic pathway. 4. Hepatic glycogen synthesis was also impaired in hyperthyroid rats after administration of glycerol or chow. Measurement of portal-minus-hepatovenous concentration differences and arterial glucose concentrations after the administration of glycerol in combination with 3-mercaptopicolinate indicated that flux from triose phosphate to glucose 6-phosphate was not decreased. 5. Inhibited glycogen synthesis after chow re-feeding was associated with accelerated re-activation of hepatic pyruvate dehydrogenase complex in the hyperthyroid rats. 6. The results indicate three distinct and independent actions of hyperthyroidism after re-feeding: (i) it inhibits the reversal of glucose flux across the liver normally observed in response to carbohydrate; (ii) it affects glycogen deposition at a site distal to glucose 6-phosphate; (iii) it allows more rapid re-activation of liver pyruvate dehydrogenase complex in response to a mixed diet.  相似文献   

14.
Glycogen synthase was purified to apparent homogeneity from bovine heart muscle by a procedure involving precipitation of the enzyme in the presence of added glycogen by polyethylene glycol, chromatography on DEAE-Sephacel, and high-speed centrifugation through a sucrose-containing buffer. The enzyme was maintained in the presence of glycogen during the isolation procedure. Glycogen synthase I and D preparations were obtained having specific activities of 21-25 and 30-35 units/mg protein at pH 7.8 and 30 degrees C and having activity ratios of 0.5-0.6 and 0.05-0.10, respectively, when assayed in the absence and in the presence of glucose 6-P.  相似文献   

15.
Extraction, purification and turnover of rat brain glycogen   总被引:2,自引:2,他引:0  
Abstract— Glycogen was prepared from rapidly frozen rat brain by the usual techniques and found to contain considerable amounts of non-glycogen carbohydrate. The crude glycogen was partially purified by extraction with hot or cold water and reprecipitation. Enzymic estimation showed that the carbohydrate extracted into hot water contained only 50 per cent of glucose after hydrolysis; of the hot water insoluble material, namely some 30 per cent of the total carbohydrate present in the crude glycogen, less than half of the carbohydrate was released by hydrolysis in 1 M-HC1. The glycogen soluble in hot water incorporated 14C from [14C]glucose at considerably higher rates than the residual material and also decreased more rapidly during post-mortem autolysis. Glycogen extracted into cold water was of higher purity than that extracted by hot water; although the material behaved as glycogen during precipitation and re-extraction it contained only 75 per cent of its carbohydrate as glucose. Contaminants included fucose, galactose and hexuronic acid. The rates of metabolism of the partially purified glycogen are compared with published rates; it is suggested that the observed rates are inaccurate due to the impurities present in brain glycogen prepared by classical techniques.  相似文献   

16.
Glycogen is degraded during brain activation but its role and contribution to functional energetics in normal activated brain have not been established. In the present study, glycogen utilization in brain of normal conscious rats during sensory stimulation was assessed by three approaches, change in concentration, release of (14)C from pre-labeled glycogen and compensatory increase in utilization of blood glucose (CMR(glc)) evoked by treatment with a glycogen phosphorylase inhibitor. Glycogen level fell in cortex, (14)C release increased in three structures and inhibitor treatment caused regionally selective compensatory increases in CMR(glc) over and above the activation-induced rise in vehicle-treated rats. The compensatory rise in CMR(glc) was highest in sensory-parietal cortex where it corresponded to about half of the stimulus-induced rise in CMR(glcf) in vehicle-treated rats; this response did not correlate with metabolic rate, stimulus-induced rise in CMR(glc) or sequential station in sensory pathway. Thus, glycogen is an active fuel for specific structures in normal activated brain, not simply an emergency fuel depot and flux-generated pyruvate greatly exceeded net accumulation of lactate or net consumption of glycogen during activation. The metabolic fate of glycogen is unknown, but adding glycogen to the fuel consumed during activation would contribute to a fall in CMR(O2)/CMR(glc) ratio.  相似文献   

17.
Glycogen Formation by the Ruminal Bacterium Prevotella ruminicola   总被引:1,自引:1,他引:0       下载免费PDF全文
Prevotella ruminicola is an important ruminal bacteria. In maltose-grown cells, nearly 60% of cell dry weight consisted of high-molecular-weight (>2 x 10(sup6)) glycogen. The ratio of glycogen to protein (grams per gram) was relatively low (1.3) during exponential growth, but when cell growth slowed during the transition to the stationary phase, the ratio increased to 1.8. As much as 40% of the maltose was converted to glycogen during cell growth. Glycogen accumulation in glucose-grown cells was threefold lower than that in maltose-grown cells. In continuous cultures provided with maltose, much less glycogen was synthesized at high (>0.2 per h) than at low dilution rates, where maltose was limiting (28 versus 60% of dry weight, respectively). These results indicated that glycogen synthesis was stimulated at low growth rates and was also influenced by the growth substrate. In permeabilized cells, glycogen was synthesized from [(sup14)C]glucose-1-phosphate but not radiolabelled glucose, indicating that glucose-1-phosphate is the initial precursor of glycogen formation. Glycogen accumulation may provide a survival mechanism for P. ruminicola during periods of carbon starvation and may have a role in controlling starch fermentation in the rumen.  相似文献   

18.
1. The glycogen present in the liver of rat foetuses was labelled by injecting a trace amount of [6-(3)H]glucose into the mother at 19.5 days of gestation. The radioactivity incorporated in the glycogen 4h after the administration of the label was still present 38h later. A large proportion of this radioactivity was on the outer chains of the polysaccharide. These results indicate that there is normally almost no glycogen degradation in the foetal liver. In contrast, glycogen breakdown occurs very rapidly in the livers of foetuses whose mother is anaesthetized. 2. Glycogen synthetase is present in the liver at day 16 of gestation at a concentration as high as 30% of that in the adult, but essentially as an inactive (b) enzyme. The appearance of synthetase phosphatase between days 18 and 19 corresponds to that of synthetase a and to the beginning of glycogen synthesis. From day 19 to 21.5 the amount of synthetase a present in the foetal liver is just sufficient to account for the actual rate of glycogen deposition. 3. The content of total phosphorylase in the foetal liver increases continuously from day 16 to birth. However, a precise measurement of the a and b forms of the enzyme in the liver of non-anaesthetized foetuses is not possible. Taking the rate of glycogenolysis as an appropriate index of phosphorylase activity, we conclude that this enzyme is almost entirely in the inactive form in the foetal liver under normal conditions. 4. The accumulation of glycogen in the liver during late pregnancy may therefore be explained by a relatively slow rate of synthesis and a nearly total absence of degradation.  相似文献   

19.
Glycogen particle synthase phosphatase activity is stimulated by glucose with an A0.5 of approximately 27 mM. The A0.5 is higher than the usual concentrations present in the liver. However, in vitro, certain methylxanthines such as caffeine or theophylline reduce the glucose A0.5 to approximately 10 mM, a concentration well within the normal range of liver glucose concentrations. Methylxanthines do not affect the maximum stimulation by glucose (2.3-fold greater than control rate). The phosphatase reaction also is inhibited by ATP-Mg (I0.5 = 0.1 mM). In the present studies, we have determined the interaction of these effectors. The presence of ATP-Mg at a concentration of 3 mM only slightly reduced the maximal stimulation by glucose. The A0.5 for glucose was unaffected (24 mM). The synergistic effect of caffeine with glucose also was not changed by the presence of ATP-Mg. The A0.5 for glucose was reduced to 11 mM, similar to that in the absence of ATP-Mg. In addition, maximum stimulation by glucose was unchanged. Similar results were obtained when theophylline replaced caffeine. We conclude that the ATP-Mg binding site on either the phosphatase or its substrate, synthase D, does not influence the glucose and methylxanthine binding sites. Effectively, ATP-Mg increased the range over which glucose stimulates the phosphatase activity. In the presence of ATP-Mg, the maximum stimulation by glucose is approximately 7-fold; whereas, in the absence of ATP-Mg it is approximately 2.3-fold. Thus, ATP-Mg may serve to increase the sensitivity of the synthase phosphatase reaction to glucose regulation under in vivo conditions.  相似文献   

20.
Juvenile bullfrogs from natural populations doubled their glycogen stores during their predormancy period, while their blood glucose and lipid stores declined. Glycogen stores were replenished in natural populations as food consumption decreased. Some liver glycogen was stored during fasting if the bullfrogs were collected in the storage phase of their energy reserve cycle, but the amount of glycogen stored was increased by feeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号