首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 508 毫秒
1.
Microbial degradation of synthetic chelating agents, such as EDTA and nitrilotriacetate (NTA), may help immobilizing radionuclides and heavy metals in the environment. The EDTA- and NTA-degrading bacterium BNC1 uses EDTA monooxygenase to oxidize NTA to iminodiacetate (IDA) and EDTA to ethylenediaminediacetate (EDDA). IDA- and EDDA-degrading enzymes have not been purified and characterized to date. In this report, an IDA oxidase was purified to apparent homogeneity from strain BNC1 by using a combination of eight purification steps. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single protein band of 40 kDa, and by using size exclusion chromatography, we estimated the native enzyme to be a homodimer. Flavin adenine dinucleotide was determined as its prosthetic group. The purified enzyme oxidized IDA to glycine and glyoxylate with the consumption of O2. The temperature and pH optima for IDA oxidation were 35 degrees C and 8, respectively. The apparent Km for IDA was 4.0 mM with a kcat of 5.3 s(-1). When the N-terminal amino acid sequence was determined, it matched exactly with that encoded by a previously sequenced hypothetical oxidase gene of BNC1. The gene was expressed in Escherichia coli, and the gene product as a C-terminal fusion with a His tag was purified by a one-step nickel affinity chromatography. The purified fusion protein had essentially the same enzymatic activity and properties as the native IDA oxidase. IDA oxidase also oxidized EDDA to ethylenediamine and glyoxylate. Thus, IDA oxidase is likely the second enzyme in both NTA and EDTA degradation pathways in strain BNC1.  相似文献   

2.
EDTA is a chelating agent, widely used in many industries. Because of its ability to mobilize heavy metals and radionuclides, it can be an environmental pollutant. The EDTA monooxygenases that initiate EDTA degradation have been purified and characterized in bacterial strains BNC1 and DSM 9103. However, the genes encoding the enzymes have not been reported. The EDTA monooxygenase gene was cloned by probing a genomic library of strain BNC1 with a probe generated from the N-terminal amino acid sequence of the monooxygenase. Sequencing of the cloned DNA fragment revealed a gene cluster containing eight genes. Two of the genes, emoA and emoB, were expressed in Escherichia coli, and the gene products, EmoA and EmoB, were purified and characterized. Both experimental data and sequence analysis showed that EmoA is a reduced flavin mononucleotide-utilizing monooxygenase and that EmoB is an NADH:flavin mononucleotide oxidoreductase. The two-enzyme system oxidized EDTA to ethylenediaminediacetate (EDDA) and nitrilotriacetate (NTA) to iminodiacetate (IDA) with the production of glyoxylate. The emoA and emoB genes were cotranscribed when BNC1 cells were grown on EDTA. Other genes in the cluster encoded a hypothetical transport system, a putative regulatory protein, and IDA oxidase that oxidizes IDA and EDDA. We concluded that this gene cluster is responsible for the initial steps of EDTA and NTA degradation.  相似文献   

3.
EDTA is a chelating agent, widely used in many industries. Because of its ability to mobilize heavy metals and radionuclides, it can be an environmental pollutant. The EDTA monooxygenases that initiate EDTA degradation have been purified and characterized in bacterial strains BNC1 and DSM 9103. However, the genes encoding the enzymes have not been reported. The EDTA monooxygenase gene was cloned by probing a genomic library of strain BNC1 with a probe generated from the N-terminal amino acid sequence of the monooxygenase. Sequencing of the cloned DNA fragment revealed a gene cluster containing eight genes. Two of the genes, emoA and emoB, were expressed in Escherichia coli, and the gene products, EmoA and EmoB, were purified and characterized. Both experimental data and sequence analysis showed that EmoA is a reduced flavin mononucleotide-utilizing monooxygenase and that EmoB is an NADH:flavin mononucleotide oxidoreductase. The two-enzyme system oxidized EDTA to ethylenediaminediacetate (EDDA) and nitrilotriacetate (NTA) to iminodiacetate (IDA) with the production of glyoxylate. The emoA and emoB genes were cotranscribed when BNC1 cells were grown on EDTA. Other genes in the cluster encoded a hypothetical transport system, a putative regulatory protein, and IDA oxidase that oxidizes IDA and EDDA. We concluded that this gene cluster is responsible for the initial steps of EDTA and NTA degradation.  相似文献   

4.
The synthetic chelating agent EDTA can mobilize radionuclides and heavy metals in the environment. Biodegradation of EDTA should reduce this mobilization. Although several bacteria have been reported to mineralize EDTA, little is known about the biochemistry of EDTA degradation. Understanding the biochemistry will facilitate the removal of EDTA from the environment. EDTA-degrading activities were detected in cell extracts of bacterium BNC1 when flavin mononucleotide (FMN), NADH, and O2 were present. The degradative enzyme system was separated into two different enzymes, EDTA monooxygenase and an FMN reductase. EDTA monooxygenase oxidized EDTA to glyoxylate and ethylenediaminetriacetate (ED3A), with the coconsumption of FMNH2 and O2. The FMN reductase provided EDTA monooxygenase with FMNH2 by reducing FMN with NADH. The FMN reductase was successfully substituted in the assay mixture by other FMN reductases. EDTA monooxygenase was purified to greater than 95% homogeneity and had a single polypeptide with a molecular weight of 45,000. The enzyme oxidized both EDTA complexed with various metal ions and uncomplexed EDTA. The optimal conditions for activity were pH 7.8 and 35°C. Kms were 34.1 μM for uncomplexed EDTA and 8.5 μM for MgEDTA2−; this difference in Km indicates that the enzyme has greater affinity for MgEDTA2−. The enzyme also catalyzed the release of glyoxylate from nitrilotriacetate and diethylenetriaminepentaacetate. EDTA monooxygenase belongs to a small group of FMNH2-utilizing monooxygenases that attack carbon-nitrogen, carbon-sulfur, and carbon-carbon double bonds.  相似文献   

5.
Ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA) are widely used anthropogenic chelating agents for control of metal speciation and are ubiquitous in natural waters and wastewaters. This is the first report of systematic measurement of the growth yields of a mixed culture (BNC1-BNC2) on EDTA and its biodegradation intermediates, and of Aminobacter aminovorans (aka Chelatobacter heintzii) ATCC 29600 on NTA and its biodegradation intermediates. The yields measured for BNC1-BNC2 co-culture were 75.0 g of cell dry weight (CDW) (mole of EDTA)−1, 68.6 g of CDW (mole of ED3 A)−1, 51.2 g of CDW (mole of N,N′-EDDA)−1, 34.5 g of CDW (mole of ED)−1, 26.3 g of CDW (mole of IDA)−1, 12.2 g of CDW (mole of glycine)−1, and 9.7 g of CDW (mole of glyoxylate)−1. The yields measured for A. aminovorans were 44.3 g of CDW (mole of NTA)−1, 37.9 g of CDW (mole of IDA)−1, 15.2 g of CDW (mole of glycine)−1, and 10.4 g of CDW (mole of glyoxylate)−1. The biodegradation pathways of EDTA, NTA, and several of their metabolic intermediates include reactions catalyzed by oxygenase enzymes, which may reduce energy available for cell synthesis. Comparison of measured yields with predicted yields indicates that the effect of oxygenase reaction on cell yield can be quantified experimentally as well as modeled based on thermodynamics.  相似文献   

6.
Ethylenediaminetetraacetate (EDTA) is the most abundant organic pollutant in surface water because of its extensive usage and the recalcitrance of stable metal‐EDTA complexes. A few bacteria including Chelativorans sp. BNC1 can degrade EDTA with a monooxygenase to ethylenediaminediacetate (EDDA) and then use iminodiacetate oxidase (IdaA) to further degrade EDDA into ethylenediamine in a two‐step oxidation. To alleviate EDTA pollution into the environment, deciphering the mechanisms of the metabolizing enzymes is an imperative prerequisite for informed EDTA bioremediation. Although IdaA cannot oxidize glycine, the crystal structure of IdaA shows its tertiary and quaternary structures similar to those of glycine oxidases. All confirmed substrates, EDDA, ethylenediaminemonoacetate, iminodiacetate and sarcosine are secondary amines with at least one N‐acetyl group. Each substrate was bound at the re‐side face of the isoalloxazine ring in a solvent‐connected cavity. The carboxyl group of the substrate was bound by Arg265 and Arg307. The catalytic residue, Tyr250, is under the hydrogen bond network to facilitate its deprotonation acting as a general base, removing an acetate group of secondary amines as glyoxylate. Thus, IdaA is a secondary amine oxidase, and our findings improve understanding of molecular mechanism involved in the bioremediation of EDTA and the metabolism of secondary amines.  相似文献   

7.
A tertiary amine monoxygenase from a Pseudomonas sp. was partially purified (35-fold) and characterized. In the presence of nitrilotriacetate (NTA), O2, NADH, and Mn2+, the enzyme yielded two sets of products: iminodiacetate, glyoxylate, NAD+ and H2O; or H2O2 and NAD+. Which set of products predominated was a function of enzyme concentration, ionic strength of solution, pH, and cation supplied. NTA functioned both as a modifiable substrate and as a stimulator of NADH oxidase activity. A requirement for preincubation with Mn2+ and NTA to eliminate enzyme hysteresis and the similar Km values for NTA and Mn2+ suggested that the substrate and metal were bound as a unit by the enzyme.  相似文献   

8.
Iminodiacetate (IDA) is a xenobiotic intermediate common to both aerobic and anaerobic metabolism of nitrilotriacetate (NTA). It is formed by either NTA monooxygenase or NTA dehydrogenase. In this paper the detection and characterization of a membrane-bound iminodiacete dehydrogenase (IDA-DH) from Chelatobacter heintzii ATCC 29600 is reported, which oxidizes IDA to glycine and glyoxylate. Out of 15 compounds tested, IDA was the only substrate for the enzyme. Optimum activity of IDA-DH was found at pH 8.5 and 25°C, respectively, and the Km for IDA was found to be 8mM. Activity of the membrane-bound enzyme was inhibited by KCN, antimycine and dibromomethylisopropyl-benzoquinone. When inhibited by KCN IDA-DH was able to reduce the artificial electron acceptor iodonitrotetrazolium (INT). It was possible to extract IDA-DH from the membranes with 2% cholate, to reconstitute the enzyme into soybean phospholipid vesicles and to obtain IDA-DH activity (more than 50% recovery) using ubiquinone Q1 as the intermediate electron carrier and INT as the final electron acceptor. Growth experiments with different substrates revealed that in all NTA-degrading strains tested both NTA monooxygenase and IDA-DH were only expressed when the cells were grown on NTA or IDA. Furthermore, in Cb. heintzii ATCC 29600 growing exponentially on succinate and ammonia, addition of 0.4 g l-1 NTA led to the induction of the two enzymes within an hour and NTA was utilized simultaneously with succinate. The presence of IDA-DH was confirmed in ten different NTA-degrading strains belonging to three different genera.Abbreviations cA component A - cB component B - DBMIB dibromomethylisopropyl-benzoquinone - HEPES hydroxyethylpiperazinethanesulfonic acid - IDA iminodiacetate, HN(CH2COOH)2 - IDA-DH iminodiacetate dehydrogenase - INT iodonitrotetrazolium chloride - NTA nitrilotriacetate, N(CH2COOH)3 - NTA-MO nitrilotriacetate monooxygenase - PMS phenazine methosulphate - SDS-PAGE sodium dodecylsulfate polyacrylamide gel electrophoresis - Suc-DH succinate dehydrogenase  相似文献   

9.
The pathway of degradation of nitrilotriacetate (NTA) was determined by using cell-free extracts and a 35-fold purification of NTA monooxygenase. The first step in the breakdown was an oxidative cleavage of the tertiary amine by the monooxygenase to form the aldo acid, glyoxylate, and the secondary amine, iminodiacetate (IDA). NTA N-oxide acted as a substrate analog for induction of the monooxygenase and was slowly metabolized by the enzyme, but was not an intermediate in the pathway. No intermediate before IDA was found, but an unstable alpha-hydroxy-NTA intermediate was postulated. IDA did undergo cleavage in the presence of the purified monooxygenase to give glyoxylate and glycine, but was not metabolized in cell-free extracts. Glyoxylate was further metabolized by cell-free extracts to yield CO2 and glycerate or glycine, products also found from NTA metabolism. Of the three bacterial isolates in which the NTA pathway has been studied, two strains, one isolated from a British soil and ours from a Michigan soil, appear to be almost identical.  相似文献   

10.
The influence of metal ions on the metabolism of ethylenediaminetetraacetate (EDTA) by whole cells and cell-free extracts of strain BNC1 was investigated. Metal-EDTA chelates with thermodynamic stability constants below 1012 were readily mineralized by whole cells with maximum specific turnover rates of 15 (MnEDTA) to 20 (Ca-, Mg-, and BaEDTA) μmol g protein−1 min−1. With the exception of ZnEDTA, chelates with stability constants greater than 1012 were not oxidized at a significant rate. However, it was shown for Fe(III)EDTA that even strong complexes can be degraded after pretreatment by addition of calcium and magnesium salts in the pH range 9–11. The range of EDTA chelates converted by cell-free extracts of strain BNC1 did not depend on their thermodynamic stabilities. The EDTA chelates of Ba2+, Co2+, Mg2+, Mn2+, and Zn2+ were oxidized whereas Ca-, Cd-, Cu-, Fe-, Pb-, and SnEDTA were not. The first catabolic enzyme appears to be an EDTA monooxygenase since it requires O2, NADH, and FMN for its activity and yields glyoxylate and ethylenediaminetriacetate as products. The latter is further degraded via N,N′-ethylenediaminediacetate. The maximum specific turnover rate with MgEDTA, the favoured EDTA species, was 50–130 μmol g protein−1 min−1, and the K m value was 120 μmol/l (K s for whole cells = 8 μmol/l). Whole cells as well as cell-free extracts of strain BNC1 also converted several structural analogues of EDTA. Received: 4 July 1997 / Received revision: 25 September 1997 / Accepted: 29 September 1997  相似文献   

11.
Alcohol oxidase (alcohol:oxygen oxidoreductase) was crystallized from a methanolgrown yeast, Pichia sp. The crystalline enzyme is homogenous as judged from polyacrylamide gel electrophoresis. Alcohol oxidase catalyzed the oxidation of short-chain primary alcohols (C1 to C6), substituted primary alcohols (2-chloroethanol, 3-chloro-1-propanol, 4-chlorobutanol, isobutanol), and formaldehyde. The general reaction with an oxidizable substrate is as follows: Primary alcohol + O2 → aldehyde + H2O2 Formaldehyde + O2 → formate + H2O2. Secondary alcohols, tertiary alcohols, cyclic alcohols, aromatic alcohols, and aldehydes (except formaldehyde) were not oxidized. The Km values for methanol and formaldehyde are 0.5 and 3.5 mm, respectively. The stoichiometry of substrate oxidized (alcohol or formaldehyde), oxygen consumed, and product formed (aldehyde or formate) is 1:1:1. The purified enzyme has a molecular weight of 300,000 as determined by gel filtration and a subunit size of 76,000 as determined by sodium dodecyl sulfate-gel electrophoresis, indicating that alcohol oxidase consists of four identical subunits. The purified alcohol oxidase has absorption maxima at 460 and 380 nm which were bleached by the addition of methanol. The prosthetic group of the enzyme was identified as a flavin adenine dinucleotide. Alcohol oxidase activity was inhibited by sulfhydryl reagents (p-chloromercuribenzoate, mercuric chloride, 5,5′-dithiobis-2-nitrobenzoate, iodoacetate) indicating the involvement of sulfhydryl groups(s) in the oxidation of alcohols by alcohol oxidase. Hydrogen peroxide (product of the reaction), 2-aminoethanol (substrate analogue), and cupric sulfate also inhibited alcohol oxidase activity.  相似文献   

12.
The glyoxylate cycle enzyme, isocitrate lyase (EC 4.1.3.1) was purified from cotyledons of Citrullus vulgaris (watermelon). The final preparation, which had been 97-fold purified with a specific activity of 16.1 units/mg protein in a yield of 36%, was homogeneous by gel- and immunoelectrophoretic criteria. The tetrameric enzyme had: a molecular weight of 277 000, a sedimentation coefficient of 12.4 s, and a Km for Ds-isocitrate equal to 0.25 mM. Isocitrate lyase from this source is not a glycoprotein as shown by total carbohydrate content after precipitation by trichloroacetic acid of the purified enzyme. Reduction of the enzyme with thiols increased activity and maximal activity was obtained with at least 5 mM dithiothreitol. EDTA partially substituted for thiol in freshly isolated enzyme. Watermelon isocitrate lyase was also protected against thermal denaturation at 60° for at least 1 hr by 5 mM Mg2+ plus 5 mM oxalate. Oxalate was a competitive inhibitor with respect to isocitrate (Ki: 1.5 μM, pH 7.5, 30°).  相似文献   

13.
EDTA, a common chelating agent, is becoming a major organic pollutant in the form of metal-EDTA complexes in surface waters, partly due to its recalcitrance to biodegradation. Even an EDTA-degrading bacterium, BNC1, does not degrade stable metal-EDTA complexes. In the present study, an ABC-type transporter was identified for possible uptake of EDTA because the transporter genes and the EDTA monooxygenase gene were expressed from a single operon in BNC1. The ABC-type transporter had a periplasmic-binding protein (EppA) that should confer the substrate specificity for the transporter; therefore, EppA was produced in Escherichia coli, purified, and characterized. EppA was shown to bind free EDTA with a dissociation constant as low as 25 nM by using isothermal titration calorimetry. When unstable metal-EDTA complexes, e.g., (Mg-EDTA)2−, were added to the EppA solution, binding was also observed. However, experimental data and theoretical analysis supported EppA binding only of free EDTA. When stable metal-EDTA complexes, e.g., (Cu-EDTA)2−, were titrated into the EppA solution, no binding was observed. Since EDTA monooxygenase in the cytoplasm uses some of the stable metal-EDTA complexes as substrates, we suggest that the lack of EppA binding and EDTA uptake are responsible for the failure of BNC1 cells to degrade the stable complexes.  相似文献   

14.
1. An enzyme system that catalyses a synergistic decarboxylation of glyoxylate and 2-oxoglutarate has been purified from pig-liver mitochondria. 2. The purified system is specific for glyoxylate and 2-oxoglutarate as substrates, although in earlier stages of purification glycine and l-glutamate are also active. 3. The reaction is inhibited strongly by EDTA and N-ethylmaleimide. Substrate analogues, present at concentrations equimolar with respect to the substrates, are not effective as inhibitors. 4. The reaction proceeds in the absence of added cofactors. Magnesium chloride, mercaptoethanol and sucrose stimulate the reaction, and stabilize the activity of the enzyme. 5. The pH optimum of the reaction is 7·0. The Km values of glyoxylate and 2-oxoglutarate, at saturating concentration of the corresponding co-substrate, are 16mm and 3·6mm respectively. 6. Isotopic work with specifically labelled [14C]glyoxylate and 2-oxo[14C]-glutarate suggests that the enzyme system catalyses an initial condensation of glyoxylate and 2-oxoglutarate that results in, or leads to, release of C-1 of both substrates as carbon dioxide. C-2 of glyoxylate and C-5 of 2-oxoglutarate do not appear as carbon dioxide. 7. The stoicheiometry of the reaction is complex. During the initial stages of the reaction, more carbon dioxide is recovered from 2-oxoglutarate than from glyoxylate. Subsequently, there is a disproportionate increase with time of carbon dioxide evolution from the carboxyl group of glyoxylate. The excess of decarboxylation of glyoxylate over 2-oxogluturate is further increased by treatment of reaction products with acid.  相似文献   

15.
Glycolate oxidase was isolated and partially purified from human and rat liver. The enzyme preparation readily catalyzed the oxidation of glycolate, glyoxylate, lactate, hydroxyisocaproate and α-hydroxybutyrate. The oxidation of glycolate and glyoxylate by glycolate oxidase was completely inhibited by 0.02 m dl-phenyllactate or n-heptanoate. The oxidation of glyoxylate by lactic dehydrogenase or xanthine oxidase was not inhibited by 0.067 m dl-phenyllactate or n-heptanoate. The conversion of [U-14C] glyoxylate to [14C] oxalate by isolated perfused rat liver was completely inhibited by dl-phenyllactate and n-heptanoate confirming the major contribution of glycolate oxidase in oxalate synthesis. Since the inhibition of oxalate was 100%, lactic dehydrogenase and xanthine oxidase do not contribute to oxalate biosynthesis in isolated perfused rat liver. dl-Phenyllactate also inhibited [14C] oxalate synthesis from [1-14C] glycolate, [U-14C] ethylene glycol, [U-14C] glycine, [3-14C] serine, and [U-14C] ethanolamine in isolated perfused rat liver. Oxalate synthesis from ethylene glycol was inhibited by dl-phenyllactate in the intact male rat confirming the role of glycolate oxidase in oxalate synthesis in vivo and indicating the feasibility of regulating oxalate metabolism in primary hyperoxaluria, ethylene glycol poisoning, and kidney stone formation by enzyme inhibitors.  相似文献   

16.
《Anaerobe》1999,5(5):539-546
Brachyspira (Serpulina) hyodysenteriae cells consume oxygen during growth under a 1%O2:99%N2atmosphere. A major mechanism of O2metabolism by this anaerobic spirochete is the enzyme NADH oxidase (EC 1.6.99.3). In these investigations, the NADH oxidase gene (nox) of B. hyodysenteriae strain B204 was cloned, expressed in Escherichia coli, and sequenced. By direct cloning of aHind III-digested DNA fragment which hybridized with a nox DNA probe and by amplification of B204 DNA through the use of inverse PCR techniques, overlapping portions of the nox gene were identified and sequenced. The nox gene and flanking chromosome regions (1.7 kb total) were then amplified and cloned into plasmid pCRII. Lysates of E. coli cells transformed with this recombinant plasmid expressed NADH oxidase activity (1.1 μmol NADH oxidized/min/mg protein) and contained a protein reacting with swine antiserum raised against purified B. hyodysenteriae NADH oxidase. The nox ORF (1.3 kb) encodes a protein with a predicted molecular mass of 50 158 kDa. The B. hyodysenteriae NADH oxidase shares significant (46%) amino acid sequence identity and common functional domains with the NADH oxidases of Enterococcus faecalis and Streptococcus mutans, suggesting a common evolutionary origin for these proteins. Cloning of the B. hyodysenteriae nox gene is an important step towards the goal of generating B. hyodysenteriae mutant strains lacking NADH oxidase and for investigating the significance of NADH oxidase in the physiology and pathogenesis of this anaerobic spirochete.  相似文献   

17.
Glycolate oxidase (GO; EC 1.1.3.1) was purified from the leaves of three plant species:Amaranthus hypochondriacus L.(NAD-ME type C4 dicot),Pisum sativum L. (C3 species) andParthenium hysterophorus L. (C3–C4. intermediate). A flavin moiety was present in the enzyme from all the three species. The enzyme from the C4 plant had a low specific activity, exhibited lower KM for glycolate, and required a lower pH for maximal activity, compared to the C3 enzyme. The enzyme from the C4 species oxidized glyoxylate at <10% of the rate with glycolate, while the GO from the C3 plant oxidized glyoxylate at a rate of about 35 to 40% of that with glycolate. The sensitivity of GO from C4 plant to -hydroxypyridinemethane sulfonate, 2-hydroxy-3-butynoate and other inhibitors was less than that of the enzyme from C3 source. The properties of GO fromParthenium hysterophorus, were similar to those of the enzyme fromPisum sativum. The characteristics of glycolate oxidase from leaves of a C4 plant,Amaranthus hypochondriacus are different from those of the C3 species or the C3–C4 intermediate.  相似文献   

18.
Hydroxypyruvate reductase (HPR), a marker enzyme of peroxisomes, has been purified to homogeneity from cotyledons of light-grown cucumber seedlings (Cucumis sativus var. Improved Long Green). In addition, the peroxisomal location of both HPR and serine-glyoxylate aminotransferase has been confirmed in cucumber cotyledons. The isolation procedure involved Polymin-P precipitation, a two-step precipitation with ammonium sulfate (35 and 50% saturation), affinity chromatography on Cibacron Blueagarose, and ion-exchange chromatography on DEAE-cellulose. HPR was purified 541-fold to a final specific activity of 525 ± 19 micromoles per minute per milligram of protein. Enzyme homogeneity was established by native and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The native molecular weight was 91 to 95 kilodaltons, approximately double the apparent subunit molecular weight of 40,500 ± 1,400. With hydroxypyruvate as substrate, the pH optimum was 7.1 and Km values were 62 ± 6 and 5.8 ± 0.7 micromolar for hydroxypyruvate and NADH, respectively. With glyoxylate as substrate, the pH optimum was 6.0, and the Km values for glyoxylate and NADH were 5700 ± 600 and 2.9 ± 0.5 micromolar, respectively. Antibodies to HPR were raised in mice (by the ascites tumor method) and in rabbits, and their monospecificity was demonstrated by a modified Western blot immunodetection technique.  相似文献   

19.
《BBA》1986,849(2):203-210
A highly active O2-evolving Photosystem II complex which was greatly depleted of phycobiliproteins was isolated from the cyanobacterium Anacystis nidulans. This complex contained the flavoprotein with l-amino acid oxidase activity which we have previously shown to be present in thylakoid preparations of this cyanobacterium (Pistorius, E.K. and Voss, H. (1982) Eur. J. Biochem. 126, 203–209). One of the most prominent polypeptides in this O2-evolving Photosystem II complex had a molecular weight of 49 kDa. This polypeptide co-chromatographed on SDS-polyacrylamide gels with the purified l-amino acid oxidase which consists of two subunits of 49 kDa. The antagonistic effect of CaCl2 on the two examined reactions could also be demonstrated with this O2-evolving Photosystem II complex: CaCl2 stimulated photosynthetic O2 evolution, but inhibited the l-amino acid oxidase activity. Both reactions were inhibited by o-phenanthroline. These results further support a functional relationship between the flavoprotein with l-amino acid oxidase activity and Photosystem II activities in A. nidulans. However, we only found 1 mol FAD per 350–650 mol chlorophyll, although 1 gatom Mn per 5–10 mol chlorophyll was present. When we assume a photosynthetic unit of about 40 chlorophylls, then in most preparations the FAD values were more than a factor of 10 too low. Results which we obtained with the purified l-amino acid oxidase showed that the FAD values were in most enzyme samples lower than the theoretically expected value of 2 mol FAD per mol enzyme. Moreover, in some cases the absorption spectrum of the enzyme showed substantial deviations from the spectrum of oxidized FAD. These experiments indicated that the flavin in the enzyme could partly exist in a form which was different from ‘authentic oxidized FAD’. We do not yet know the chemical nature of this ‘modified flavin’.  相似文献   

20.
Diamine oxidase was purified sixty-fold from millet shoots. The partially purified enzyme of 150 kDa oxidized 1, 3-diaminopropane (1, 3-DAP) to 3-aminopropionaldehyde. The Km values were 9.1×10−5M for 1, 3-DAP and 6.3×10−4M for putrescine. Extracts of shoots of prosomillet, maize and barley also contained an activity that oxidized 1, 3-DAP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号