首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A D-galactose-specific lectin I was extracted from the sponge Geodia cydonium and purified by affinity chromatography. The molecular weight of lectin I as determined by high-pressure liquid gel chromatography, was found to be 36500 +/- 1300. Disc gel electrophoresis in the presence and in the absence of sodium dodecyl sulfate showed that lectin I is a trimer composed of three different subunits (Mr: 13800, 13000 and 12200); two of the three subunits are linked by one disulfide bond. Isoelectric focusing gave a pI of 5.6 for the native molecule and a pI of 4.4 and of 7.4 for the subunits. The three subunits carry carbohydrate side chains, composed of D-galactose (94%) and of arabinose (5%). Based on experiments with lectins, the terminal D-galactose residues are bound by beta 1 leads to 6 and/or beta 1 leads to 4 glycosidic linkages. The Geodia lectin I contains, besides two carbohydrate recognition sites, at least one receptor site for a second lectin I molecule.  相似文献   

2.
3.
Sequence homology predicts that the extracellular domain of the sodium channel beta1 subunit forms an immunoglobulin (Ig) fold and functions as a cell adhesion molecule. We show here that beta1 subunits associate with neurofascin, a neuronal cell adhesion molecule that plays a key role in the assembly of nodes of Ranvier. The first Ig-like domain and second fibronectin type III-like domain of neurofascin mediate the interaction with the extracellular Ig-like domain of beta1, confirming the proposed function of this domain as a cell adhesion molecule. beta1 subunits localize to nodes of Ranvier with neurofascin in sciatic nerve axons, and beta1 and neurofascin are associated as early as postnatal day 5, during the period that nodes of Ranvier are forming. This association of beta1 subunit extracellular domains with neurofascin in developing axons may facilitate recruitment and concentration of sodium channel complexes at nodes of Ranvier.  相似文献   

4.
Using the polymerase chain reaction, we have isolated cDNA clones that encode a new integrin beta subunit--beta 4. Its cDNA, which is 5676 bp in length, has one long coding sequence (5256 bp), a polyadenylation signal and a poly(A) tail. The deduced sequence of 1752 amino acids is unique among the integrin beta subunits. It contains a putative signal sequence as well as a transmembrane domain that divides the molecule into an extracellular domain at the N-terminal side and a cytoplasmic domain at the C-terminal side. The extracellular domain exhibits a 4-fold repeat of cysteine-rich motif similar to those of other integrin beta subunits. Certain features of the extracellular domain, however, are unique to the beta 4 subunit sequence. Of the 56 conserved cysteine residues found within the extracellular domain of other mature beta subunits, eight such residues are deleted from the beta 4 subunit sequence. The cytoplasmic domain is much larger (approximately 1000 amino acids) than those of other beta subunits (approximately 50 amino acids) and has no significant homology with them. A protein homology search revealed that the beta 4 subunit cytoplasmic domain has four repeating units that are homologous to the type III repetition exhibited by fibronectin. The beta 4 subunit mRNA was expressed primarily in epithelial cells. The restricted expression and the new structural features distinguish the integrin beta 4 subunit from other integrin beta subunits.  相似文献   

5.
R Wang  R M Kini  M C Chung 《Biochemistry》1999,38(23):7584-7593
A novel platelet aggregation inhibitor, rhodocetin, was purified from the crude venom of Calloselasma rhodostoma. It inhibited collagen-induced platelet aggregation in a dose-dependent manner, with an IC50 of 41 nM. Rhodocetin has a heterodimeric structure with alpha and beta subunits, which could be separated on a nonreducing denaturing gel or reverse-phase HPLC column. Individually neither subunit inhibited platelet aggregation even at 2.0 microM concentration. Titration and reconstitution experiments showed that, when these subunits are mixed to give a 1:1 complex, most of its biological activity was recovered. The reconstituted complex inhibited platelet aggregation with an IC50 of 112 nM, about 3-fold less effective than the native molecule. Circular dichroism analysis revealed that the reconstituted complex had a spectrum similar to that of the native protein. By using surface plasmon resonance studies, we established that the stoichiometry of binding between the two subunits is 1:1 and the subunits interact with a Kd of 0.14 +/- 0.04 microM. The complete amino acid sequences of the alpha (15956.16 Da, 133 residues) and beta (15185.10 Da, 129 residues) subunits show a high degree of homology with each other (49%) and with the Ca2+-dependent lectin-related proteins (CLPs) (typically 29-48%) isolated from other snake venoms. Unlike the other members of the family in which the subunits are held together by an interchain disulfide bond, rhodocetin subunits are held together only through noncovalent interactions. The cysteinyl residues forming the intersubunit disulfide bridge in all other known CLPs are replaced by Ser-79 and Arg-75 in the alpha and beta subunits of rhodocetin, respectively. These studies support the noncovalent and synergistic interactions between the two subunits of rhodocetin. This is the first reported CLP dimer with such a novel heterodimeric structure.  相似文献   

6.
The GABA(A) receptors are ligand-gated chloride channels. The subunit stoichiometry of the receptors is controversial; four, five, or six subunits per receptor molecule have been proposed for alphabeta receptors, whereas alphabetagamma receptors are assumed to be pentamers. In this study, alpha-beta and beta-alpha tandem cDNAs from the alpha1 and beta2 subunits of the GABA(A) receptor were constructed. We determined the minimal length of the linker that is required between the two subunits for functional channel expression for each of the tandem constructs. 10- and 23-amino acid residues are required for alpha-beta and beta-alpha, respectively. The tandem constructs either alone or in combination with each other failed to express functional channels in Xenopus oocytes. Therefore, we can exclude tetrameric or hexameric alphabeta GABA(A) receptors. We can also exclude proteolysis of the tandem constructs. In addition, the tandem constructs were combined with single alpha, beta, or gamma subunits to allow formation of pentameric arrangements. In contrast to the combination with alpha subunits, the combination with either beta or gamma subunits led to expression of functional channels. Therefore, a pentameric arrangement containing two alpha1 and three beta2 subunits is proposed for the receptor composed of alpha and beta subunits. Our findings also favor an arrangement betaalphagammabetaalpha for the receptor composed of alpha, beta, and gamma subunits.  相似文献   

7.
Meprin A and B are disulfide-linked, tetrameric metalloendopeptidases in renal brush border membranes. Meprin A contains 90-kDa subunits (alpha subunits) and is expressed in random-bred and some inbred strains of mice. Meprin B contains subunits of 110 kDa (beta subunits) in situ, and the enzyme from C3H mice, a strain that does not express alpha subunits, has been characterized. Evidence from this and previous studies indicate that beta subunits are expressed in all mouse strains. The tetrameric organization of these meprins was examined in brush border membrane fractions from a random-bred strain (ICR) and two inbred strains of mice (C57BL/6 and C3H/He). Lectin blotting using biotinylated concanavalin A revealed that membranes from the random-bred strain contained three oligomeric complexes of approximately 390, 440, and 490 kDa as determined after sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in the absence of reducing agents. The subunits in all three oligomers were linked by disulfide bridges. Western blotting using an anti-alpha monoclonal antibody indicated that alpha subunits (90 kDa) were present in the 390- and 440-kDa complexes. Western blotting with a polyclonal antibody specific for beta subunits (110 kDa) indicated the presence of these subunits in the 440- and 490-kDa complexes. Electroelution of the individual oligomers followed by SDS-PAGE under reducing conditions confirmed that the 390- and 490-kDa molecules are homotetramers of alpha and beta subunits, respectively, and that the 440-kDa molecule is a heterotetramer consisting of disulfide-bridged alpha and beta subunits. C57BL/6 mice expressed both alpha and beta subunits and contained tetramers composed of alpha 4 and alpha 2 beta 2. C3H/He mice expressed only the 110-kDa beta subunits and the beta 4 oligomer. This type of multimeric organization of disulfide-linked subunits is unique for the known endopeptidases.  相似文献   

8.
M Satre  M Bof  J P Issartel  P V Vignais 《Biochemistry》1982,21(19):4772-4776
N,N'-Dicyclohexylcarbodiimide (DCCD) covalently binds to the beta subunit of Escherichia coli F1-ATPase (BF1). The ATPase activity is fully inhibited when 1 mol of DCCD is bound/mol of BF1, in spite of the fact that BF1 contains several beta subunits [Satre, M., Lunardi, J., Pougeois, R., & Vignais, P.V. (1979) Biochemistry 18, 3134-3140]. Advantage was taken of the reactivity of DCCD with respect to BF1 to determine the exact stoichiometry of the beta subunits in BF1. Two methods were used. The first one was based on the fact that modification of the beta subunit by DCCD results in the disappearance of one negative charge, due to the binding of DCCD to a carboxyl group of the beta subunit. The nonmodified and the modified beta subunits were separated by electrofocusing, and the percentage of modified beta subunits was assessed as a function of the percentage of ATPase inactivation. The second method relied on direct comparison, after inactivation of BF1 by [14C]DCCD, of the specific radioactivities of the whole BF1 and the isolated beta subunits. Both methods indicate that each molecule of BF1 contains three beta subunits.  相似文献   

9.
We have previously described a variant form of the integrin beta 1 subunit (beta 1B)1 characterized by an altered sequence at the cytoplasmic domain. Using polyclonal antibodies to a synthetic peptide corresponding to the unique sequence of the beta 1B, we analyzed the expression of this molecule in human tissues and cultured cells. Western blot analysis showed that the beta 1B is expressed in skin and liver and, in lower amounts, in skeletal and cardiac muscles. The protein was not detectable in brain, kidney, and smooth muscle. In vitro cultured keratinocytes and hepatoma cells are positive, but fibroblasts, endothelial cells, and smooth muscle cells are negative. An astrocytoma cell line derived from immortalized fetal astrocytes was found to express beta 1B. In these cells beta 1B represent integral of 30% of the beta 1 and form heterodimers with alpha 1 and alpha 5 subunits. To investigate the functional properties of beta 1B, the full- length cDNA coding for this molecule was transfected into CHO cells. Stable transfectants were selected and the beta 1B was identified by a mAb that discriminate between the transfected human protein and the endogenous hamster beta 1A. Immunoprecipitation experiments indicated that the beta 1B was exported at the cell surface in association with the endogenous hamster alpha subunits. The alpha 5/beta 1B complex bound to a fibronectin-affinity matrix and was specifically released by RGD-containing peptides. Thus beta 1B and beta 1A are similar as far as the alpha/beta association and fibronectin binding are concerned. The two proteins differ, however, in their subcellular localization. Immunofluorescence studies indicated, in fact, that beta 1B, in contrast to beta 1A, does not localize in focal adhesions. The restricted tissue distribution and the distinct subcellular localization, suggest that beta 1B has unique functional properties.  相似文献   

10.
The structure of the mammalian 20S proteasome at 2.75 A resolution   总被引:12,自引:0,他引:12  
The 20S proteasome is the catalytic portion of the 26S proteasome. Constitutively expressed mammalian 20S proteasomes have three active subunits, beta 1, beta 2, and beta 5, which are replaced in the immunoproteasome by interferon-gamma-inducible subunits beta 1i, beta 2i, and beta 5i, respectively. Here we determined the crystal structure of the bovine 20S proteasome at 2.75 A resolution. The structures of alpha 2, beta 1, beta 5, beta 6, and beta 7 subunits of the bovine enzyme were different from the yeast enzyme but enabled the bovine proteasome to accommodate either the constitutive or the inducible subunits. A novel N-terminal nucleophile hydrolase activity was proposed for the beta 7 subunit. We also determined the site of the nuclear localization signals in the molecule. A model of the immunoproteasome was predicted from this constitutive structure.  相似文献   

11.
The structural variations that distinguish the A molecules encoded by wild-derived H-2 complexes which express Ak-related molecules have been localized into the alpha 1 and beta 1 domains by radiochemical sequence analyses of tryptic peptides. The A alpha subunits of B10.STC90 (Akv1) and W12A (Akv2) differ from those of B10.BR (Ak) in two adjacent tryptic peptides spanning positions 43 to 71 in the alpha 1 domain. The A beta subunit of W12A differs from that of B10.BR in two peptides spanning positions 26 to 29 and 95 to 106. Isoleucine and leucine residues present at positions 28 and 95, respectively, in the B10.BR A beta subunit are not found in the corresponding positions in W12A A beta subunits. Both of these A beta sequence variations are in the beta 1 domain. B10.STC90 A beta subunits are identical to those of W12A except for a structural variation in the beta 1 domain affecting the HPLC retention time of a peptide spanning positions 49 to 63. These results suggest that these A molecules are encoded by closely related class II gene alleles which have diversified by the accumulation of discrete mutations within the exons encoding the alpha 1 and beta 1 domains of the A molecule. Our previous functional analyses of these minor variant A molecules have demonstrated that they are readily distinguished with A molecule-specific alloreactive T lymphocytes. Together, these findings suggest that minor structural variations in the alpha 1 and beta 1 domains of the A molecule can dramatically modify the allodeterminants recognized by alloreactive T lymphocytes.  相似文献   

12.
The sodium channel purified from rat brain is composed of three subunits: alpha (Mr 260,000), beta 1 (Mr 36,000), and beta 2 (Mr 33,000). alpha and beta 2 subunits are linked through disulfide bonds. Procedures are described for preparative isolation of the beta 1 and beta 2 subunits under native conditions. Pure beta 2 subunits obtained by this procedure were used to prepare a specific anti-beta 2 subunit antiserum. Antibodies purified from this serum by antigen affinity chromatography recognize only disulfide-linked alpha beta 2 complexes and beta 2 subunits in immunoblots, and immunoprecipitate 32P-labeled alpha subunits of purified sodium channels having intact disulfide bonds, but not those of sodium channels from which beta 2 subunits have been detached by reduction of disulfide bonds. These antibodies also immunoprecipitate 89% of the high affinity saxitoxin-binding sites from rat brain membranes, indicating that nearly all sodium channels in rat brain have disulfide-linked alpha beta 2 subunits. Approximately 22% of beta 2 subunits in adult rat brain are not disulfide-linked to alpha subunits. Anti-beta 2 subunit antibodies are specific for sodium channels in the central nervous system and will not cross-react with sodium channels in skeletal muscle or sciatic nerve. The brains of a broad range of vertebrate species, including electric eel, are shown to express sodium channels with disulfide-linked alpha beta 2 subunits.  相似文献   

13.
Earlier studies have shown that native phenylalanyl-tRNA synthetase from baker's yeast contains two different kinds of subunits, alpha of molecular weight 73000 and beta of molecular weight 63000. The enzyme is an asymmetric tetramer alpha-2beta-2, which binds two moles of each ligand per mole. Incubation of the purified enzyme with trypsin results in an irreversible conversion: the alpha-subunit remains apparently unchanged but beta is rapidly degraded and yields a lighter species beta of molecular weight 41000. The trypsin-modified enzyme is an alpha-2beta-2 molecule which can still activate phenylalanine but cannot transfer it to tRNA-Phe; furthermore it does not bind tRNA-Phe but its kinetic parameters are identical to those of the native enzyme with respect to ATP and phenylalanine. Therefore the two beta subunits play a critical part in tRNA binding. Isolated alpha or beta subunits exhibit no significant activity and both types of subunit seem to be required for phenylalanine activation.  相似文献   

14.
The beta subunits of the Escherichia coli F1-ATPase react independently with chemical reagents (Stan-Lotter, H. and Bragg, P.D. (1986) Arch. Biochem. Biophys. 248, 116-120). Thus, one beta subunit is readily crosslinked to the epsilon subunit, another reacts with N-N'-dicyclohexylcarbodiimide (DCCD), and a third one is modified by 4-chloro-7-nitrobenzofurazan (NbfCl). This asymmetric behaviour is not due to the association of the delta and epsilon subunits of the ATPase molecule with specific beta subunits since it is maintained in a delta, epsilon-deficient form of the enzyme.  相似文献   

15.
16.
Clones carrying cDNA sequences for the delta subunit precursor of the acetylcholine receptor from calf skeletal muscle have been isolated. Nucleotide sequence analysis of the cloned cDNA has indicated that this polypeptide consists of 516 amino acids including a hydrophobic prepeptide of 21 amino acids. The delta subunit of the calf muscle acetylcholine receptor, like the alpha, beta and gamma subunits of the same receptor as well as the alpha and gamma subunits of its human counterpart, exhibits structural features common to all four subunits of the Torpedo electroplax receptor, apparently being oriented across the membrane in the same manner as proposed for the fish receptor subunits. The degree of amino acid sequence homology between the calf and Torpedo delta subunits (60%) is comparable to that between the beta subunits (59%) and to that between the gamma subunits (56%), but is lower than that between the alpha subunits of the two species (81%). This suggests that the alpha subunit evolved more slowly than the three other subunits. A dendrogram representing the sequence relatedness among the four subunit precursors of the mammalian and fish acetylcholine receptors has been constructed. Some regions of the delta subunit molecule, including the region containing the putative disulphide bridge and that encompassing the clustered putative transmembrane segments M1, M2 and M3, are relatively well conserved between calf and Torpedo. The relative pattern of regional homology is similar for all four subunit precursors.  相似文献   

17.
Spectrin, the major component of the erythroid membrane skeleton, is a long, asymmetrical rodlike protein that interacts with several other proteins to form a two-dimensional membrane skeleton. Progress in several laboratories over the past few years including substantial partial peptide and nucleotide sequence determination has greatly enhanced our knowledge of the structural properties of this large molecule (heterodimer = 465,000 daltons). The alpha and beta subunits are homologous with approximately 30% identity. They are aligned in an antiparallel side-to-side orientation with the amino- and carboxy-termini near opposite physical ends of the molecule. The predominant structural feature elucidated from sequencing this large molecule is the nearly universal occurrence in both subunits of a single type of repetitive structure. The periodicity of this homologous structure is exactly 106 amino acid residues. As many as 36 homologous, but nonidentical, repeats exist and comprise more than 90% of the mass of the heterodimer. Each of these repetitive units is folded into a triple-stranded structure that is highly helical. Peptide maps, antibody crossreactivity, peptide sequence analysis, and more recently nucleic acid sequences have defined several major properties of the erythroid molecule and related proteins in other tissues. Tissue-specific spectrins have the same 106-residue repetitive structure and show sequence homology to erythroid spectrin.  相似文献   

18.
G Marlas 《Biochimie》1985,67(12):1231-1239
It was concluded in a previous paper that the high Mr platelet-activating glycoprotein isolated earlier from the venom of Crotalus durissus cascavella has an hexameric structure of the alpha 3 beta 3 type involving two distinct subunits. Data reported here demonstrate that these two subunits are separable from each other by ion exchange chromatography under denaturating conditions, have similar Mrs (alpha = 12,540 et beta = 13,770) and exist in a one to one ratio within the native molecule. Carbohydrate analysis indicated that they are both similarly glycosylated to a small extent. They have slightly different amino-acid compositions, a common N-terminal sequence up to the fifth residue and similar extinction coefficients at 280 nm. The native molecule has a calculated Mr of 78,930. Additional data demonstrated that convulxin from the venom of Crotalus durissus terrificus is the same platelet-activating agent as the presently described platelet-activating glycoprotein (PAG) from the venom of Crotalus durissus cascavella.  相似文献   

19.
The quaternary structure of the Mo-Fe-protein from Azotobacter vinelandii has been studied by electron microscopy. A model of the molecule of the Mo-Fe-protein has been proposed: two alpha subunits are displaced relative to two beta subunits along a twofold axis, so the molecule can be characterized by the point-group pseudosymmetry 222. Computer averaging of the images showed that one of the projections of the molecule could be characterized by twofold rotational symmetry. Micrographs of nitrogenase recombined complex (Mo-Fe-protein + Fe-protein) have been obtained. They showed particles close in size and form to the Mo-Fe-protein molecule. Therefore, it has been proposed that the Fe-protein could be situated in the central cavity of Mo-Fe-protein.  相似文献   

20.
The thermal and the urea-induced unfolding profiles of the coiled-coil alpha-helix of native and refolded tropomyosin from chicken gizzard were studied by circular dichroism. Refolding of tropomyosin at low temperature from alpha + beta subunits, dissociated by guanidinium chloride, urea, or high temperature, predominantly produced alpha alpha + beta beta homodimers in agreement with earlier studies of refolding from guanidinium chloride (Graceffa, P. (1989) Biochemistry 28, 1282-1287). The presence of two unfolding transitions in low salt solutions with about equal helix loss verified the composition with the first unfolding transition of the homodimer mixture originating from alpha alpha. In contrast, refolding by equilibrating at temperatures close to physiological, however, produced the native alpha beta heterodimer, which unfolded in a single transition. The refolding kinetics of dissociated alpha + beta subunits indicated that beta beta homodimers form first, leading to alpha alpha homodimers both of which are relatively stable against chain exchange below approximately 25 degrees C. Equilibrating the homodimer mixture at 37-40 degrees C for long times, however, produced the native alpha beta molecule via chain exchange. The equilibria involved indicate that the free energy of formation from subunits of alpha beta is much less than that of (alpha alpha + beta beta)/2. In vivo folding of alpha beta from the two separate alpha and beta gene products is, therefore, thermodynamically favored over the formation of homodimers and biological factors need not be considered to explain the native preferred alpha beta composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号