首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nine indigenous cachaça Saccharomyces cerevisiae strains and one wine strain were compared for their trehalose metabolism characteristics under non-lethal (40°C) and lethal (52°C) heat shock, ethanol shock and combined heat and ethanol stresses. The yeast protection mechanism was studied through trehalose concentration, neutral trehalase activity and expression of heat shock proteins Hsp70 and Hsp104. All isolates were able to accumulate trehalose and activate neutral trehalase under stress conditions. No correlation was found between trehalose levels and neutral trehalase activity under heat or ethanol shock. However, when these stresses were combined, a positive relationship was found. After pre-treatment at 40°C for 60 min, and heat shock at 52°C for 8 min, eight strains maintained their trehalose levels and nine strains improved their resistance against lethal heat shock. Among the investigated stresses, heat treatment induced the highest level of trehalose and combined heat and ethanol stresses activated the neutral trehalase most effectively. Hsp70 and Hsp104 were expressed by all strains at 40°C and all of them survived this temperature although a decrease in cell viability was observed at 52°C. The stress imposed by more than 5% ethanol (v/v) represented the best condition to differentiate strains based on trehalose levels and neutral trehalase activity. The investigated S. cerevisiae strains exhibited different characteristics of trehalose metabolism, which could be an important tool to select strains for the cachaça fermentation process.  相似文献   

2.
Aims: The objective was to study the response of Cronobacter sakazakii ATCC 29544 cells to heat, pulsed electric fields (PEF), ultrasound under pressure (Manosonication, MS) and ultraviolet light (UV‐C) treatments after exposure to different sublethal stresses that may be encountered in food‐processing environments. Methods and Results: Cronobacter sakazakii stationary growth‐phase cells (30°C, 24 h) were exposed to acid (pH 4·5, 1 h), alkaline (pH 9·0, 1 h), osmotic (5% NaCl, 1 h), oxidative (0·5 mmol l?1 H2O2, 1 h), heat (47·5°C, 1 h) and cold (4°C, 4 h) stress conditions and subjected to the subsequent challenges: heat (60°C), PEF (25 kV cm?1, 35°C), MS (117 μm, 200 kPa, 35°C) and UV‐C light (88·55 mW cm?2, 25°C) treatments. The inactivation kinetics of Csakazakii by the different technologies did not change after exposure to any of the stresses. The combinations of sublethal stress and lethal treatment that were protective were: heat shock–heat, heat shock–PEF and acid pH–PEF. Conversely, the alkaline shock sensitized the cells to heat and UV‐C treatments, the osmotic shock to heat treatments and the oxidative shock to UV‐C treatments. The maximum adaptive response was observed when heat‐shocked cells were subjected to a heat treatment, increasing the time to inactivate 99·9% of the population by 1·6 times. Conclusions: Cronobacter sakazakii resistance to thermal and nonthermal preservation technologies can increase or decrease as a consequence of previous exposure to stressing conditions. Significance and Impact of the Study: The results help in understanding the physiology of the resistance of this emerging pathogen to traditional and novel preservation technologies.  相似文献   

3.
Aims: To evaluate the cross‐protected Salmonella enterica cells under acid and cold stress conditions. Methods and Results: The acid‐adapted S. enterica cells were exposed to pH 4·0 at 4 and 20°C. Recovery of sublethally injured cells was estimated by the difference between the counts obtained on trypticase soy agar (TSA) and xylose lysine desoxycholate (XLD) agar. The survival curves of nonadapted and acid‐adapted S. enterica cells at pH 4·0 were fitted with Weibull distribution model. The recovery behaviour of injured S. enterica cells was estimated by the modified Gompertz parameters. Acid‐adapted S. enterica were more resistant to subsequent acid shock than the nonadapted cells. The numbers of nonadapted S. enterica cells were decreased by 4·57 and 7·55 log CFU ml?1 at 4 and 20°C after 12‐day acid challenge, respectively. The acid adaptation induced cross‐protection and viable nonculturable (VBNC) state against low acid and cold stresses. The 7‐h adaptation showed the least recovery of injured cells. Conclusion: The results suggest that acid‐adapted S. enterica cells induced acid tolerance response and VBNC state. Significance and Impact of the Study: These results provide useful information for understanding the induction of cross‐protected and VBNC pathogens under various stresses, which might be needed in designing new food preservation strategies.  相似文献   

4.
5.
A sublethal dose of ethanol (5%, vol/vol), acid (HCl, pH 4.5 to 5.0), H2O2 (500 ppm), or NaCl (7%, wt/vol) was added to a Listeria monocytogenes culture at the exponential phase, and the cells were allowed to grow for 1 h. Exponential-phase cells also were heat shocked at 45 degrees C for 1 h. The stress-adapted cells were then subjected to the following factors at the indicated lethal levels--NaCl (25%, wt/vol), ethanol (17.5%, vol/vol), hydrogen peroxide (0.1%, wt/vol), acid (pH 3.5), and starvation on 0.1 M phosphate buffer at pH 7.0 (up to 300 h). Viable counts of the pathogen, after the treatment, were determined on Trypticase soy agar-yeast extract, and survivor plots were constructed. The area (h.log10 CFU/ml) between the control and treatment curves was calculated to represent the protective effect resulting from adaptation to the sublethal stress factor. Adaptation to pH 4.5 to 5.0 or 5% ethanol significantly (P < 0.05) increased the resistance of L. monocytogenes to lethal doses of acid, ethanol, and H2O2. Adaptation to ethanol significantly (P < 0.05) increased the resistance to 25% NaCl. When L. monocytogenes was adapted to 500 ppm of H2O2, 7% NaCl, or heat, resistance of the pathogen to 1% hydrogen peroxide increased significantly (P < 0.05). Heat shock significantly (P < 0.05) increased the resistance to ethanol and NaCl. Therefore, the occurrence of stress protection after adaptation of L. monocytogenes to environmental stresses depends on the type of stress encountered and the lethal factor applied. This "stress hardening" should be considered when current food processing technologies are modified or new ones are developed.  相似文献   

6.
Assessment of Stress Response of the Probiotic Lactobacillus acidophilus   总被引:6,自引:0,他引:6  
Different aspects of stress response of Lactobacillus acidophilus were investigated. First, the sublethal and lethal levels of bile, heat, and NaCl stresses were determined. They were 0.05% and 0.5% (bile), 53°C and 60°C (heat), and 2% and 18% (NaCl), respectively. To evaluate the effect of each stress at log phase, log-phase cultures were challenged directly with the lethal level of each stress (control) and were compared to log-phase cultures that were pre-exposed to the sublethal level prior to the exposure at the lethal level (test). Some, if not most, of the cells were killed in the control cultures against each of the three stresses. However, in the test cultures, the number of cells that had survived increased significantly. It appears that L. acidophilus is capable of displaying adaptive response to stress. The adaptive response to one stress was also shown to provide cross-protection against different stresses tested. The effect of each stress on stationary-phase cultures was also investigated. In contrast to log-phase culture, stationary-phase culture was inherently resistant to stress. Received: 5 March 2001 / Accepted: 3 April 2001  相似文献   

7.
Appropriate timing of cold deacclimation is an important component of winter survival of perennial plants, such as trees, in temperate and boreal zones. Recently, concerns about predicted global climate change disturbing deacclimation timing have been increasing. The relationship between ambient temperatures and the manner by which cells' freezing resistance changes is essential for forecasting the timing of deacclimation. In this study, Japanese white birch twigs that underwent deacclimation treatment at a constant temperature of −2, 0, 4, 10, or 20 °C were separated into bark in which cells adapted to subfreezing temperatures by extracellular freezing and xylem in which cells adapted to subfreezing temperatures by deep supercooling, and the freezing resistance of cells in each tissue type was investigated by measuring percentage electrolyte leakage. Birch cells deacclimated in a different manner according to tissue type. Within 7 days under deacclimation treatment, xylem cells decreased their freezing resistance significantly at a high subfreezing temperature (−2 °C). In contrast, bark cells required a temperature of 10 or 20 °C for a detectable decrease in freezing resistance to occur within the same period. At a temperature lower than 0 °C, bark cells did not decrease their freezing resistance, even after 28 days of treatment. The difference in freezing behavior of cells might involve the difference in how deacclimation occurred in bark and xylem cells.  相似文献   

8.
Bioethanol is an attractive alternative to fossil fuels. Saccharomyces cerevisiae is the most important ethanol producer. However, yeast cells are challenged by various environmental stresses during the industrial process of ethanol production. The robustness under heat, acetic acid, and furfural stresses was improved for ethanologenic S. cerevisiae in this work using genome shuffling. Recombinant yeast strain R32 could grow at 45°C, and resist 0.55% (v/v) acetic acid and 0.3% (v/v) furfural at 40°C. When ethanol fermentation was conducted at temperatures ranging from 30 to 42°C, recombinant strain R32 always gave high ethanol production. After 42 h of fermentation at 42°C, 187.6 ± 1.4 g/l glucose was utilized by recombinant strain R32 to produce 81.4 ± 2.7 g/l ethanol, which were respectively 3.4 and 4.1 times those of CE25. After 36 h of fermentation at 40°C with 0.5% (v/v) acetic acid, 194.4 ± 1.2 g/l glucose in the medium was utilized by recombinant strain R32 to produce 84.2 ± 4.6 g/l of ethanol. The extent of glucose utilization and ethanol concentration of recombinant strain R32 were 6.3 and 7.9 times those of strain CE25. The ethanol concentration produced by recombinant strain R32 was 8.9 times that of strain CE25 after fermentation for 48 h under 0.2% (v/v) furfural stress at 40°C. The strong physiological robustness and fitness of yeast strain R32 support its potential application for industrial production of bioethanol from renewable resources such as lignocelluloses.  相似文献   

9.
Fourteen wild-type baking strains of Saccharomyces cerevisiae were grown in batch culture to true stationary phase (exogenous carbon source exhausted) and tested for their trehalose content and their tolerance to heat (52°C for 4.5 min), ethanol (20% v/v for 30 min), H2O2 (0.3 M for 60 min), rapid freezing (−196°C for 20 min, cooling rate 200°C min−1), slow freezing (−20°C for 24 h, cooling rate 3°C min−1), salt (growth in 1.5 M NaCl agar) or acetic acid (growth in 0.4% w/v acetic acid agar) stresses. Stress tolerance among the strains was highly variable and up to 1000-fold differences existed between strains for some types of stress. Compared with previously published reports, all strains were tolerant to H2O2 stress. Correlation analysis of stress tolerance results demonstrated relationships between tolerance to H2O2 and tolerance to all stresses except ethanol. This may imply that oxidative processes are associated with a wide variety of cellular stresses and also indicate that the general robustness associated with industrial yeast may be a result of their oxidative stress tolerance. In addition, H2O2 tolerance might be a suitable marker for the general assessment of stress tolerance in yeast strains. Trehalose content failed to correlate with tolerance to any stress except acetic acid. This may indicate that the contribution of trehalose to tolerance to other stresses is either small or inconsistent and that trehalose may not be used as a general predictor of stress tolerance in true stationary phase yeast. Received 10 October 1995/ Accepted in revised form 10 September 1996  相似文献   

10.
1. The objective was to determine the thermal limits for feeding and survival in the bullhead, Cottus gobio, using juveniles (total length 20–30 mm, live weight 0.5–1.5 g) from one population and adults (50–70 mm, 3.5–5.5 g) from three populations. 2. Fish were acclimated to constant temperatures (3, 7, 10, 15, 20, 25 or 27 °C) and the temperature was then changed at a rate of 1 °C /30 min to determine the critical limits for feeding, survival over 7 days (incipient lethal temperature), or survival for 10 min or less (ultimate lethal temperature). The rate of 1 °C/30 min was the optimum value from preliminary experiments, using nine rates from 0.5 °C/48 h to 18 °C h?1. As values for adults were not significantly different between populations, they were pooled to provide arithmetic means (with 95% CL) for the thermal limits at each acclimation temperature. 3. Feeding limits increased with acclimation temperature to upper and lower mean values (± 95% CL) of 26.5 ± 0.16 °C and 4.2 ± 0.20 °C for adults, 26.6 ± 0.59 °C and 5.0 ± 0.55 °C for juveniles. Incipient lethal levels defined a tolerance zone within which fish survive indefinitely; upper limits increased with acclimation temperature to a plateau of 27.6 ± 0.22 °C for adults and 27.5 ± 0.47 °C for juveniles, lower limits increased from near 0 °C to 2.5 ± 0.31 °C for adults and 2.7 ± 0.47 °C for juveniles. Ultimate lethal levels increased with acclimation temperature to a plateau of 32.5 ± 0.24 °C for adults and 32.6 ± 0.46 °C for juveniles, whilst the lower limits increased from near 0 to 0.9 ± 0.29 °C. Upper feeding, incipient and ultimate lethal values were significantly lower for juveniles than those for adults at acclimation temperatures < 20, < 20 and < 15 °C, respectively. 4. The thermal tolerance of bullheads was slightly lower than that of stone loach, similar to that of juvenile Atlantic salmon and higher than that of brown trout; the thermal limits for feeding were much wider than those for salmon or trout.  相似文献   

11.
The effect of 24-epibrassinolide (BR27) on cold resistance of rape seedlings was studied by ion leakage and photosynthetic pigment degradation measurements. Aqueous solutions of BR27 were injected into cotyledons or primary leaves of rape plants and these plants were incubated at 2 °C or 20 °C. Cold treatment (2 °C) without BR27 injection elevated the membrane permeability in both primary leaves and cotyledons significantly. Surprisingly, injection of leaves with water or 0.467 % aqueous ethanol solution led to a massive increase in membrane permeability after cold stress at 2 °C. The synergistic effect of leaf infiltration and cold on permeability was abolished by 0.05 and 1.00 μM of BR27 in primary leaves and by 1.00 μM of BR27 in cotyledons. On the other hand, BR27 solutions strongly elevated the membrane permeability at 20 °C, while water and ethanol solutions brought about only negligible increases. Water or ethanol infiltrations strongly reduced the leaf contents of chlorophyll (Chl) a, Chl b and carotenoids at 2 °C but less markedly at 20 °C. However, in seedlings exposed to 2 °C pigments content was significantly higher in BR27-treated leaves as compared to water/ethanol control. There were no differences between pigment contents of leaves injected with BR27 solutions or only water/ethanol at 20 °C. The above data strongly support the stress protecting effect of BR27.  相似文献   

12.
1. The chief objective was to determine the upper and lower thermal limits for feeding and survival in the stone loach, Noemacheilus barbatulus, using juveniles (total length 30–45 mm, live weight 0.25–0.80 g) from one population and adults (total length 77–100 mm, live weight 3.6–7.9 g) from three populations. 2. Fish were acclimatized to constant temperatures of 3, 7, 10, 15, 20, 25 and 27°C; then the temperature was changed at a rate of 1°C/30min to determine the critical limits for feeding, survival over 7 days (incipient lethal temperature), or survival for 10 min or less (ultimate lethal temperature). The rate of 1°C/30min was the optimum value from preliminary experiments, using nine rates from 0.5°C/48h to 18°Ch?1. As values for adults were not significantly different between populations, they were pooled to provide arithmetic means (with 95% CL) for the thermal limits at each acclimation temperature. 3. Feeding limits increased with acclimation temperature to upper and lower mean values of 28.0 ± 0.15°C and 5.1 ± 0.55°C for adults, 25.0 ± 0.54°C and 6.1 ± 0.92°C for juveniles. Incipient lethal levels defined a tolerance zone within which stone loach survive for a considerable time; upper limits increased with acclimation temperature to reach a maximum plateau of 29.1 ± 0.18°C for adults and 29.0 ± 0.40°C for juveniles; lower limits also increased from near 0°C to 3.0 ± 0.40°C for adults and juveniles. Upper limits for the ultimate lethal level increased with acclimation temperature to a maximum plateau of 33.5°C for adults (95% CL ± 0.19) and juveniles (95% CL ± 0.40), whilst the lower limits increased from near 0°C to 2.5 ± 0.30°C. At acclimation temperatures below 20°C, upper incipient and ultimate lethal values were significantly lower for juveniles than those for adults. 4. The thermal tolerance of stone loach was higher than that of juvenile Atlantic salmon or brown trout, one or both of these species often being dominant in streams with stone loach.  相似文献   

13.
Thermotolerant ethanol fermenting yeasts have been extensively used in industrial bioethanol production. However, little is known about yeast physiology under stress during bioethanol processing. This study investigated the physiological characteristics of the thermotolerant yeast Pichia kudriavzevii, strains NUNS-4, NUNS-5 and NUNS-6, under the multiple stresses of heat, ethanol and sodium chloride. Results showed that NUNS-4, NUNS-5 and NUNS-6 displayed higher growth rates under each stress condition than the reference strain, Saccharomyces cerevisiae TISTR5606. Maximum specific growth rates under stresses of heat (45°C), 15% v/v ethanol and 1·0 M sodium chloride were 0·23 ± 0·04 (NUNS-4), 0·11 ± 0·01 (NUNS-5) and 0·15 ± 0·01 h–1 (NUNS-5), respectively. Morphological features of all yeast studied changed distinctly with the production of granules and vacuoles when exposed to ethanol, and cells were elongated under increased sodium chloride concentration. This study suggests that the three P. kudriavzevii strains are potential candidates to use in industrial–scale fermentation due to a high specific growth rate under multiple stress conditions. Multiple stress-tolerant P. kudriavzevii NUNS strains have received much attention not only for improving large-scale fuel ethanol production, but also for utilizing these strains in other biotechnological industries.  相似文献   

14.
Crofton weed is an invasive weed in southwestern China. The activities of several antioxidative enzymes involved in plant protection against oxidative stress were assayed to determine physiological aspects of the crofton weed that might render the plant vulnerable to environmental stress. Stresses imposed on crofton weed were heat (progressively increasing temperatures: 25 ℃, 30 ℃, 35 ℃, 38℃ and 42 ℃ at 24 h intervals), cold (progressively decreasing temperatures: 25 ℃, 20 ℃, 15℃, 10 ℃ and 5℃ at 24h intervals), and drought (without watering up to 4days). The three stresses induced oxidative damage as evidenced by an increase in lipid peroxidation. The effect varied with the stress imposed and the length of exposure. The activity of superoxide dismutase (SOD) increased in response to all stresses but was not significantly different from the controls (P 〈 0.05) when exposed to cold stress. Catalase (CAT) activity decreased in response to heat and drought stress but increased when exposed to cold conditions. Guaiacol peroxidase (POD) and glutathione reductase (GR) activities increased in response to cold and drought but decreased in response to heat stress. The activity of ascorbata peroxidase (APX) responded differently to all three stresses. Monodehydroascorbate reductase (MDHAR) activity decreased in response to heat and drought, and slightly increased in response to the cold stress but was not significantly different from the controls (P 〈 0.05). The activity of dehydroascorbata reductase (DHAR) increased in response to all three stresses. Taken together, the co-ordinate increase of the oxygen-detoxifying enzymes might be more effective to protect crofton weed from the accumulation of oxygen radicals at low temperatures rather than at high temperatures.  相似文献   

15.
Non‐lethal heat‐shock (HS) treatment has previously been shown to induce thermotolerance in soybean (Glycine max cv. Kaohsiung No.8) seedlings. This acquired thermotolerance correlates with the de novo synthesis of heat‐shock proteins (HSPs). Interestingly, we found that ethanol treatments also elicited HS‐like responses in aetiolated soybean seedlings at their normal growth temperature of 28 °C. Northern blot analyses revealed that the expression of HS genes hsp17.5, hsp70 and hsc 70 was induced by ethanol. Radioactive amino acids were preferentially incorporated into high molecular weight (HMW) HSPs rather than class I low molecular weight (LMW) HSPs during non‐lethal ethanol treatments. Immunoblot analysis confirmed that no accumulation of class I LMW HSPs occurred after non‐lethal ethanol treatment. Pre‐treatment with a non‐lethal dose of ethanol did not provide thermotolerance, as the aetiolated soybean seedlings could not survive a subsequent heat shock of 45 °C for 2 h. In contrast, non‐lethal HS pre‐treatment, 40 °C for 2 h, conferred tolerance on aetiolated soybean seedlings to otherwise lethal treatments of 7·5% ethanol for 8 h or 10% ethanol for 4 h. These results suggest that plant class I LMW HSPs may play important roles in providing both thermotolerance and ethanol tolerance.  相似文献   

16.
This study of the bed bug, Cimex lectularius, examines tolerance of adult females to extremes in temperature and loss of body water. Although the supercooling point (SCP) of the bed bugs was approximately −20°C, all were killed by a direct 1 h exposure to −16°C. Thus, this species cannot tolerate freezing and is killed at temperatures well above its SCP. Neither cold acclimation at 4°C for 2 weeks nor dehydration (15% loss of water content) enhanced cold tolerance. However, bed bugs have the capacity for rapid cold hardening, i.e. a 1‐h exposure to 0°C improved their subsequent tolerance of −14 and −16°C. In response to heat stress, fewer than 20% of the bugs survived a 1‐h exposure to 46°C, and nearly all were killed at 48°C. Dehydration, heat acclimation at 30°C for 2 weeks and rapid heat hardening at 37°C for 1 h all failed to improve heat tolerance. Expression of the mRNAs encoding two heat shock proteins (Hsps), Hsp70 and Hsp90, was elevated in response to heat stress, cold stress and during dehydration and rehydration. The response of Hsp90 was more pronounced than that of Hsp70 during dehydration and rehydration. Our results define the tolerance limits for bed bugs to these commonly encountered stresses of temperature and low humidity and indicate a role for Hsps in responding to these stresses.  相似文献   

17.
18.
The main reaction product obtained when butylated hydroxyanisole (BHA) and tri-methylamine oxide (TMAO) were thermally treated in liquid paraffin under a nitrogen stream at 180 C for 1 hr, was investigated. The crystalline substance obtained by the silica gel chromatography was recrystallized from ethanol and identified as the BHA dimer of biphenyltype, i.e., 2,2′-dihydroxy-5,5′-dimethoxy-3,3′-di-tert-butyl biphenyl, by means of the elementary analysis and the spectroscopic studies.

The BHA dimer was found to be inferior to BHA in the antioxidative activity which was compared according to the weight gain method, in either case when lard (at 60°C) and methyl esters of linseed oil (at 30°C) were used as substrates. The dimer showed a synergism with TMAO.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号