首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The studies reported in this paper were undertaken to compare the steady-state kinetics of ATPase of purified platelet actomyosin and myosin free of actin. Actomyosin exhibits highly sigmoid kinetics with at least two interacting ATP or UTP binding sites. These studies were done at O.6 m KCl where actin and myosin are generally supposed to be dissociated in the presence of these nucleotides (M. Gallaghar, T. C. Detwiler, and A. Stracher, 1976, in Cell Motility (Goldman, R., Pollard, T., and Rosenbaum, J., eds.), Vol. 3, Part A, pp. 475–485 Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y.; A. Weber, 1969, J. Gen Physiol.53, 781–791). When the dissociation of platelet actomyosin was actually investigated by a sucrose density gradient technique under conditions which were similar to those of the steady-state kinetic experiments, only partial dissociation of actin from myosin was observed. This was especially true at low nucleotide concentrations where differences in the sigmoidicity of the saturation curves of actomyosin and actin-free myosin have been observed. These findings suggest that in platelet actomyosin, actin enhances the cooperativity of nucleotide binding sites of myosin by reducing the Km for ATP or UTP. In contrast, the saturation curves of platelet myosin using either ATP or UTP as substrates are less sigmoidal and possess an intermediary plateau region, when analyzed by Hill and reciprocal plots, these data indicate both positive and negative cooperativity suggesting more than two substrate binding sites. Platelet myosin also hydrolyzed other nucleotides (the order of rates being ITP > UTP > UTP > ATP > CTP > GTP). The kinetics of ITP differed from that of ATP or UTP in that no plateau region was observed on the saturation curve. In addition, no cooperativity of ITP binding sites was seen at low substrate concentrations (up to 0.2 mm) but was instead observed at high ITP concentration. It is concluded that conformational changes in myosin induced by ITP may not be necessarily identical to those induced by ATP or UTP.  相似文献   

2.
We have perturbed myosin nucleotide binding site with magnesium‐, manganese‐, or calcium‐nucleotide complexes, using metal cation as a probe to examine the pathways of myosin ATPase in the presence of actin. We have used transient time‐resolved FRET, myosin intrinsic fluorescence, fluorescence of pyrene labeled actin, combined with the steady state myosin ATPase activity measurements of previously characterized D.discoideum myosin construct A639C:K498C. We found that actin activation of myosin ATPase does not depend on metal cation, regardless of the cation‐specific kinetics of nucleotide binding and dissociation. The rate limiting step of myosin ATPase depends on the metal cation. The rate of the recovery stroke and the reverse recovery stroke is directly proportional to the ionic radius of the cation. The rate of nucleotide release from myosin and actomyosin, and ATP binding to actomyosin depends on the cation coordination number.  相似文献   

3.
Myosin V is a molecular motor shown to move processively along actin filaments. We investigated the properties of the weak binding states of monomeric myosin V containing a single IQ domain (MV 1IQ) to determine if the affinities of these states are increased as compared to conventional myosin. Further, using a combination of non-hydrolyzable nucleotide analogues and mutations that block ATP hydrolysis, we sought to probe the states that are populated during ATP-induced dissociation of actomyosin. MV 1IQ binds actin with a K(d) = 4 microM in the presence of ATP gamma S at 50 mM KCl, which is 10-20-fold tighter than that of nonprocessive class II myosins. Mutations within the switch II region trapped MV 1IQ in two distinct M.ATP states with very different actin binding affinities (K(d) = 0.2 and 2 microM). Actin binding may change the conformation of the switch II region, suggesting that elements of the nucleotide binding pocket will be in a different conformation when bound to actin than is seen in any of the myosin crystal structures to date.  相似文献   

4.
The contribution of electrostatic forces to the interaction of Na,K-ATPase with adenine nucleotides was investigated by studying the effect of ionic strength on nucleotide binding. At pH 7.0 and 20 degrees C, there was a qualitative correlation between the equilibrium dissociation constant (K(d)) values for ATP, ADP, and MgADP and their total charges. All K(d) values increased with increasing ionic strength. According to the Debye-Hückel theory, this suggests that the nucleotide binding site and its ligands have "effective" charges of opposite signs. However, quantitative analysis of the dependence on ionic strength shows that the product of the effective electrostatic charges on the ligand and the binding site is the same for all nucleotides, and is therefore independent of the total charge of the nucleotide. The data suggest that association of nucleotides with Na,K-ATPase is governed by a partial charge rather than the total charge of the nucleotide. This charge, interacting with positive charges on the protein, is probably the one corresponding to the alpha-phosphate of the nucleotide. Dissociation rate constants measured in complementary transient kinetic experiments were 13 s(-1) for ATP and 27 s(-1) for ADP, independent of the ionic strength in the range 0.1-0.5 M. This implies similar association rate constants for the two nucleotides (about 40 x 10(6) M(-1) s(-1) at I = 0.1 M). The results suggest that long-range Coulombic forces, affecting association rates, are not the main contributors to the observed differences in affinities, and that local interactions, affecting dissociation rates, may play an even greater role.  相似文献   

5.
We previously determined the binding constants of ADP, adenylyl imidodiphosphate (AMP-PNP), and inorganic pyrophosphate (PPi) to acto . myosin subfragment 1 (acto X S-1) by measuring the dissociation of acto X S-1 as a function of ATP analog concentration (Greene, L.E., and Eisenberg, E. (1980) J. Biol. Chem. 255, 543-548). In the present study, we reinvestigated this question by measuring the extent to which these ATP analogs inhibit the acto X S-1 ATPase activity using both cross-linked actin X S-1 and non-cross-linked proteins. No significant difference was found between the cross-linked and non-cross-linked acto X S-1 complexes in their affinity for either ADP or AMP-PNP. The binding constant of ADP to acto X S-1 determined by the inhibition method was in excellent agreement with that obtained previously by the dissociation method, both techniques giving values of about 7 X 10(3) M-1. However, this was not the case for AMP-PNP and PPi, with the inhibition method giving about 10-fold weaker binding constants than those determined previously by the dissociation method. Upon redoing our dissociation experiments over a wider range of actin concentrations than we used previously, we now find that the dissociation method gives much weaker values for the binding constants of PPi and AMP-PNP to acto X S-1, i.e. values on the order of 4 X 10(2) M-1. The very weak binding of these ATP analogs to acto X S-1 makes it difficult to obtain these values with great accuracy. Nevertheless, they seem to be in good agreement with the binding constants determined by the inhibition method. The weak binding of AMP-PNP and PPi to acto X S-1 is consistent with the recent fiber studies of Pate and Cooke (Pate, E., and Cooke, R. (1985) Biophys. J. 47, 773-780) and Schoenberg and Eisenberg (Schoenberg, M., and Eisenberg, E. (1986) Biophys. J. 48, 863-872).  相似文献   

6.
We have examined the kinetics of nucleotide binding to actomyosin VI by monitoring the fluorescence of pyrene-labeled actin filaments. ATP binds single-headed myosin VI following a two-step reaction mechanism with formation of a low affinity collision complex (1/K(1)' = 5.6 mm) followed by isomerization (k(+2)' = 176 s-1) to a state with weak actin affinity. The rates and affinity for ADP binding were measured by kinetic competition with ATP. This approach allows a broader range of ADP concentrations to be examined than with fluorescent nucleotide analogs, permitting the identification and characterization of transiently populated intermediates in the pathway. ADP binding to actomyosin VI, as with ATP binding, occurs via a two-step mechanism. The association rate constant for ADP binding is approximately five times greater than for ATP binding because of a higher affinity in the collision complex (1/K(5b)' = 2.2 mm) and faster isomerization rate constant (k(+5a)' = 366 s(-1)). By equilibrium titration, both heads of a myosin VI dimer bind actin strongly in rigor and with bound ADP. In the presence of ATP, conditions that favor processive stepping, myosin VI does not dwell with both heads strongly bound to actin, indicating that the second head inhibits strong binding of the lead head to actin. With both heads bound strongly, ATP binding is accelerated 2.5-fold, and ADP binding is accelerated >10-fold without affecting the rate of ADP release. We conclude that the heads of myosin VI communicate allosterically and accelerate nucleotide binding, but not dissociation, when both are bound strongly to actin.  相似文献   

7.
The large change in fluorescence emission of 1-N6-etheno-2-aza-ATP (epsilon-aza-ATP) has been used to investigate the kinetic mechanism of etheno-aza nucleotide binding to bovine cardiac myosin subfragment 1 (myosin-S1) and actomyosin subfragment 1 (actomyosin-S1). The time course of nucleotide fluorescence enhancement observed during epsilon-aza-ATP hydrolysis is qualitatively similar to the time course of tryptophan fluorescence enhancement observed during ATP hydrolysis. In single turnover experiments, the nucleotide fluorescence rapidly increases to a maximum level, then decreases with a rate constant of 0.045 s-1 to a final level, which is about 30% of the maximal enhancement; a similar fluorescence enhancement is obtained by adding epsilon-aza-ADP to cardiac myosin-S1 or actomyosin-S1 under the same conditions (100 mM KCl, 10 mM 4-morpholinepropanesulfonic acid, 5 mM MgCl2, 0.1 mM dithiothreitol, pH 7.0, 15 degrees C). The kinetic data are consistent with a mechanism in which there are two sequential (acto)myosin-S1 nucleotide complexes with enhanced nucleotide fluorescence following epsilon-aza-ATP binding. The apparent second order rate constants of epsilon-aza-ATP binding to cardiac myosin subfragment 1 and actomyosin subfragment 1 are 2-12 times slower than those for ATP. Actin increases the rate of epsilon-aza-ADP dissociation from bovine cardiac myosin-S1 from 1.9 to 110 s-1 at 15 degrees C which can be compared to 0.3 and 65 s-1 for ADP dissociation under similar conditions. Although there are quantitative differences between the rate and equilibrium constants of epsilon-aza- and adenosine nucleotides to cardiac actomyosin-S1 and myosin-S1, the basic features of the nucleotide binding steps of the mechanism are unchanged.  相似文献   

8.
It was previously reported that 2',3'-O-(2,4,6-trinitrocyclohexadienylidene) (TNP)-nucleotides bind with high affinity to the sarcoplasmic reticulum Ca-ATPase (Dupont, Y., Chapron, Y., and Pougeois, R. (1982) Biochem. Biophys. Res. Commun. 106, 1272-1279 and Watanabe, T., and Inesi, G. (1982) J. Biol. Chem. 257, 11510-11516). Here we report a study of the Ca-ATPase nucleotide binding sites using TNP-nucleotides. Competition at equilibrium between TNP-nucleotides and ATP was measured in the absence of calcium; it was found that TNP-nucleotides and ATP competitively bind to two classes of sites of equal concentration (3.5 nmol/mg). The ATP dissociation constants for the two classes of sites were found to be sensitive to H+ and Mg2+ concentrations. In the absence of Mg2+ (independently of pH) or at acid pH (independently of Mg2+ concentration), the nucleotide sites behave like one single family of sites of intermediate affinity (Kd = 20 microM). They split into two classes of sites of high (Kd = 2-4 microM) and low (Kd greater than 1 mM) affinity at pH values higher than neutral and in the presence of Mg2+. The calcium-activated ATP hydrolysis is accelerated by TNP-ATP (or TNP-AMP-PNP) binding on the phosphorylated enzyme. It is concluded 1) that the Ca-ATPase enzyme possesses two classes of ATP binding sites, 2) that the affinity of these two sites and the nature of their interaction is modulated by the H+ and Mg2+ concentrations, and 3) that the hydrolytic activity of the high affinity ATP binding site is activated by ATP or TNP-AMP-PNP (or TNP-ATP) binding in a low affinity ATP binding site.  相似文献   

9.
Recent studies have revealed that myosin IX is a single-headed processive myosin, yet it is unclear how myosin IX can achieve the processive movement. Here we studied the mechanism of ATP hydrolysis cycle of actomyosin IXb. We found that myosin IXb has a rate-limiting ATP hydrolysis step unlike other known myosins, thus populating the prehydrolysis intermediate (M.ATP). M.ATP has a high affinity for actin, and, unlike other myosins, the dissociation of M.ATP from actin was extremely slow, thus preventing myosin from dissociating away from actin. The ADP dissociation step was 10-fold faster than the overall ATP hydrolysis cycle rate and thus not rate-limiting. We propose the following model for single-headed processive myosin. Upon the formation of the M.ATP intermediate, the tight binding of actomyosin IX at the interface is weakened. However, the head is kept in close proximity to actin due to the tethering role of loop 2/large unique insertion of myosin IX. There is enough freedom for the myosin head to find the next location of the binding site along with the actin filament before complete dissociation from the filament. After ATP hydrolysis, Pi is quickly released to form a strong actin binding form, and a power stroke takes place.  相似文献   

10.
Transient kinetic data of the hydrolysis of several nucleotides (TTP, CTP, UTP, GTP) by cardiac myosin subfragment 1 (S1) were analyzed to obtain values for the equilibrium constant for nucleotide binding and rate constants for the S1-nucleotide isomerization and the subsequent nucleotide hydrolysis as well as the magnitudes of the relative fluorescence enhancements of the myosin that occur upon isomerization and hydrolysis. These data are compared with data from a previous study with ATP. Nucleotide binding is found to be relatively insensitive to nucleotide ring structure, being affected most by the group at position C6. Isomerization and hydrolysis are more sensitive to nucleotide structure, being inhibited by the presence of a bulky group at position C2. Kinetic parameters decrease as follows: for binding, GTP greater than UTP approximately TTP greater than ATP greater than CTP; for isomerization, ATP greater than UTP approximately TTP approximately CTP greater than GTP; for hydrolysis, ATP greater than TTP greater than CTP approximately UTP greater than GTP. Fluorescence enhancements appear to be most dependent upon the relative values of the individual rate constants.  相似文献   

11.
P D Wagner  R G Yount 《Biochemistry》1975,14(23):5156-5162
A purine disulfide analog of ATP, 6,6'-dithiobis(inosinyl imidodiphosphate), forms mixed disulfide bonds between the 6 thiol group on the purine ring and certain key cysteines on myosin, heavy meromyosin, and subfragment one. The EDTA ATPase activities of myosin and heavy meromyosin were completely inactivated when 4 mol of thiopurine nucleotide was bound. When similarly inactivated, subfragment one, depending on its method of preparation, incorporated either 1 or 2 mol of thiopurine nucleotide. Modification of a single cysteine on subfragment one resulted in an inhibition of both the Ca2+ and the EDTA ATPase activities, but the latter always to a greater extent. Modification of two cysteines per head of heavy meromyosin had the same effect suggesting that the active sites were not blocked by the thiopurine nucleotides. Direct evidence for this suggestion was provided by equilibrium dialysis experiments. Heavy meromyosin and subfragment one bound 1.9 and 0.8 mol of [8-3H]adenylyl imidodiphosphate per mol of enzyme, respectively, with an average dissociation constant of 5 X 10(-7) M. Heavy meromyosin with four thiopurine nucleotides bound or subfragment one with two thiopurine nucleotides bound retained 65-80% of these tight adenylyl imidodiphosphate binding sites confirming the above suggestion. Thus previous work assuming reaction of thiopurine nucleotide analogs at the active site of myosin must be reevaluated. Ultracentrifugation studies showed that heavy meromyosin which had incorporated four thiopurine nucleotides did not bind to F-actin while subfragment one with one thiopurine nucleotide bound interacted only very weakly with F-actin. Thus reaction of 6,6'-dithiobis(inosinyl imidodiphosphate) at nucleotide binding sites other than the active sites reduces the rate of ATP hydrolysis and inhibits actin binding. It is suggested that these second sites may function as regulatory sites on myosin.  相似文献   

12.
Fedosova NU  Esmann M 《Biochemistry》2007,46(31):9116-9122
Investigation of the ionic strength effect on the interactions between nucleotides (ATP and ADP) and Na,K-ATPase in a broad pH range was aimed at revealing pK values of the charged groups of the interacting species. Ionic strength experiments suggested that an amino acid residue with a pK > 8.0 is part of the protein binding site. A combination of equilibrium and transient experiments at various pH values allowed for the characterization of the groups electrostatically involved in either the association process (kon) or the stability of the preformed complexes (koff). Two groups (pK1 = 6.7 and pK2 = 8.4) appear to be important for the proper organization of the binding site and, therefore, the association reaction. Moreover, deprotonation of the basic group completely precludes association. pH dependencies of the dissociation rate constants for ATP and ADP are very different. An increase in pH from 5 to 9.5 induces a 9-fold increase in koff for ATP, whereas koff for ADP decreases 4-fold between pH 5 and 8, and decreases further in the alkaline region. A comparison of the pH dependencies for koff for ATP and ADP suggests two effects: (1) at acidic pH, the value of the total negative charge of the nucleotide determines the tightness of binding; and (2) short-range interactions involving the terminal phosphate group are important for nucleotide dissociation from the site. The difference in the pH dependencies of koff for the nucleotides suggests the existence of positive charges in close proximity to Asp369, relieving the repulsion between the gamma-phosphate of ATP and Asp369.  相似文献   

13.
M Ikebe  D J Hartshorne 《Biochemistry》1986,25(20):6177-6185
It was shown previously [Ikebe, M., & Hartshorne, D. J. (1985) Biochemistry 24, 2380-2387] that the conformation of gizzard myosin, either 10S or 6S, influences proteolysis of myosin at two regions designated sites A and B. The studies reported here are focused on site A, which is located approximately 68,000 daltons from the N-terminus of the myosin heavy chain. With papain, Staphylococcus aureus protease, and actinidin, it is shown that the formation of 10S myosin reduces proteolysis at site A. Binding of actin to 6S myosin also hinders cleavage at site A for each of these proteases. To investigate binding of actin to 6S and 10S myosins, adenosine 5'-(beta,gamma-imidotriphosphate) (AMPPNP) is used as a substitute for ATP. In the presence of AMPPNP, it is shown that the 6S to 10S transition occurs and that 10S myosin binds actin with lower affinity than 6S myosin. For 6S myosin at high salt (0.35 M KCl) the dissociation constant of actin from the actin-myosin-nucleotide complex (K3) is approximately the same for phosphorylated (1.9 mol of P/mol of myosin) and dephosphorylated myosin, i.e., 1.3-2.4 microM, respectively. At lower ionic strength (0.17 M KCl) K3 for dephosphorylated myosin (10S myosin) is 42 microM and K3 for phosphorylated myosin (6S myosin) is 0.3 microM. These data show that the conformation of myosin influences the actin-myosin interaction. The constant (K4) for the dissociation of nucleotide from the actin-myosin-nucleotide complex varies slightly (in the range of 0.2-1.3 mM), but there is no marked change as a result of either a conformational change or phosphorylation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
A method for determining individual rate constants for nucleotide binding to and dissociation from membrane bound pig kidney Na,K-ATPase is presented. The method involves determination of the rate of relaxation when Na,K-ATPase in the presence of eosin is mixed with ADP or ATP in a stopped-flow fluorescence apparatus. It is shown that the nucleotide dependence of this rate of relaxation--taken together with measured equilibrium binding values for eosin and ADP--makes possible a reasonably reliable determination of the rate constant for dissociation of nucleotide, i.e., determination of the rate constant k-1 in the following model (where E denotes Na,K-ATPase): [formula: see text] All experiments are carried out at about 4 degrees C in a buffer containing 200 mM sucrose, 10 mM EDTA, 25 mM Tris and 73 mM NaCl (pH 7.4). Values obtained for the rate constants for dissociation are about 6 s-1 for ADP and 2-3 s-1 for ATP.  相似文献   

15.
Actin and myosin interact with one another to perform a variety of cellular functions. Central to understanding the processive motion of myosin on actin is the characterization of the individual states along the mechanochemical cycle. We present an all-atom molecular dynamics simulation of the myosin II S1 domain in the rigor state interacting with an actin filament. We also study actin-free myosin in both rigor and post-rigor conformations. Using all-atom level and coarse-grained analysis methods, we investigate the effects of myosin binding on actin, and of actin binding on myosin. In particular, we determine the domains of actin and myosin that interact strongly with one another at the actomyosin interface using a highly coarse-grained level of resolution, and we identify a number of salt bridges and hydrogen bonds at the interface of myosin and actin. Applying coarse-grained analysis, we identify differences in myosin states dependent on actin-binding, or ATP binding. Our simulations also indicate that the actin propeller twist-angle and nucleotide cleft-angles are influenced by myosin at the actomyosin interface. The torsional rigidity of the myosin-bound filament is also calculated, and is found to be increased compared to previous simulations of the free filament.  相似文献   

16.
Separation of heavy meromyosin subfragment-1 treated with N-ethyl maleimide (MalNEt) into native -SH1- and -(SH1, SH2)-blocked protein populations could be achieved by affinity chromatography on agarose-ATP columns in the presence of Mg2+ or Ca2+. Covalent bridging of the two -SH groups by p-phenylenedimaleimide gave a product which has the same affinity of binding to ATP columns as the doubly blocked MalNEt preparation. Treatment with p-phenylenedimaleimide abolished binding to immobilized F-actin columns, whereas modifications by MalNEt did not affect adsorption by this chromatographic medium. Affinity chromatography on immobilized nucleotide and actin columns is suggested as an analytical tool in the study of the involvement of thiol groups in the myosin active site and its conformation.  相似文献   

17.
It has long been known that binding of actin and binding of nucleotides to myosin are antagonistic, an observation that led to the biochemical basis for the crossbridge cycle of muscle contraction. Thus ATP binding to actomyosin causes actin dissociation, whereas actin binding to the myosin accelerates ADP and phosphate release. Structural studies have indicated that communication between the actin- and nucleotide-binding sites involves the opening and closing of the cleft between the upper and lower 50K domains of the myosin head. Here we test the proposal that the cleft responds to actin and nucleotide binding in a reciprocal manner and show that cleft movement is coupled to actin binding and dissociation. We monitored cleft movement using pyrene excimer fluorescence from probes engineered across the cleft.  相似文献   

18.
Chara corallina class XI myosin is by far the fastest molecular motor. To investigate the molecular mechanism of this fast movement, we performed a kinetic analysis of a recombinant motor domain of Chara myosin. We estimated the time spent in the strongly bound state with actin by measuring rate constants of ADP dissociation from actin.motor domain complex and ATP-induced dissociation of the motor domain from actin. The rate constant of ADP dissociation from acto-motor domain was >2800 s(-1), and the rate constant of ATP-induced dissociation of the motor domain from actin at physiological ATP concentration was 2200 s(-1). From these data, the time spent in the strongly bound state with actin was estimated to be <0.82 ms. This value is the shortest among known values for various myosins and yields the duty ratio of <0.3 with a V(max) value of the actin-activated ATPase activity of 390 s(-1). The addition of the long neck domain of myosin Va to the Chara motor domain largely increased the velocity of the motility without increasing the ATP hydrolysis cycle rate, consistent with the swinging lever model. In addition, this study reveals some striking kinetic features of Chara myosin that are suited for the fast movement: a dramatic acceleration of ADP release by actin (1000-fold) and extremely fast ATP binding rate.  相似文献   

19.
Actin and myosin interact with one another to perform a variety of cellular functions. Central to understanding the processive motion of myosin on actin is the characterization of the individual states along the mechanochemical cycle. We present an all-atom molecular dynamics simulation of the myosin II S1 domain in the rigor state interacting with an actin filament. We also study actin-free myosin in both rigor and post-rigor conformations. Using all-atom level and coarse-grained analysis methods, we investigate the effects of myosin binding on actin, and of actin binding on myosin. In particular, we determine the domains of actin and myosin that interact strongly with one another at the actomyosin interface using a highly coarse-grained level of resolution, and we identify a number of salt bridges and hydrogen bonds at the interface of myosin and actin. Applying coarse-grained analysis, we identify differences in myosin states dependent on actin-binding, or ATP binding. Our simulations also indicate that the actin propeller twist-angle and nucleotide cleft-angles are influenced by myosin at the actomyosin interface. The torsional rigidity of the myosin-bound filament is also calculated, and is found to be increased compared to previous simulations of the free filament.  相似文献   

20.
Binding of chara Myosin globular tail domain to phospholipid vesicles   总被引:1,自引:0,他引:1  
Binding of Chara myosin globular tail domain to phospholipid vesicles was investigated quantitatively. It was found that the globular tail domain binds to vesicles made from acidic phospholipids but not to those made from neutral phospholipids. This binding was weakened at high KCl concentration, suggesting that the binding is electrostatic by nature. The dissociation constant for the binding of the globular tail domain to 20% phosphatidylserine vesicles (similar to endoplasmic reticulum in acidic phospholipid contents) at 150 mM KCl was 273 nM. The free energy change due to this binding calculated from the dissociation constant was -37.3 kJ mol(-1). Thus the bond between the globular tail domain and membrane phospholipids would not be broken when the motor domain of Chara myosin moves along the actin filament using the energy of ATP hydrolysis (DeltaG degrees ' = -30.5 kJ mol(-1)). Our results suggested that direct binding of Chara myosin to the endoplasmic reticulum membrane through the globular tail domain could work satisfactorily in Chara cytoplasmic streaming. We also suggest a possible regulatory mechanism of cytoplasmic streaming including phosphorylation-dependent dissociation of the globular tail domain from the endoplasmic reticulum membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号