共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel. 总被引:51,自引:0,他引:51
CFTR, the protein associated with cystic fibrosis, is phosphorylated on serine residues in response to cAMP agonists. Serines 660, 737, 795, and 813 were identified as in vivo targets for phosphorylation by protein kinase A. The SPQ fluorescence assay revealed that mutagenesis of any one of these sites did not affect Cl- channel activity. Indeed, concomitant mutagenesis of three of the four sites still resulted in cAMP-responsive Cl- channel activity. However, mutagenesis of all four sites abolished the response. One interpretation of these results is that the CFTR Cl- channel is blocked by the R domain and that phosphorylation on serines by protein kinase A electrostatically repels the domain, allowing passage of Cl-. The four phosphorylation events appear to be degenerate: no one site is essential for channel activity, and, at least in the case of serine 660, phosphorylation at one site alone is sufficient for regulation of Cl- channel activity. 相似文献
7.
Activation of mitogen-activated protein kinase cascade regulates pituitary tumor-transforming gene transactivation function 总被引:21,自引:0,他引:21
Pei L 《The Journal of biological chemistry》2000,275(40):31191-31198
8.
9.
10.
Carrie S. Shemanko Jasbinder S. Sanghera Rachel E. Milner Steven Pelech Marek Michalak 《Molecular and cellular biochemistry》1995,152(1):63-70
Dystrophin is the 427-kDa protein product of the Duchenne muscular dystrophy gene (DMD). The function of this protein remains to be elucidated. We have recently reported that dystrophin is phosphorylated,in vivo, in rat skeletal muscle primary cell culture (RE Milner, JL Busaan, CFB Holmes, JH Wang, M Michalak (1993) J Biol Chem 268: 21901–21905). This observation suggests that protein phosphorylation may have some role in modulating the function of dystrophin or its interaction with membrane associate dystroglycan. We report here that the carboxyl-terminal of dystrophin is phosphorylated by the MAP kinase p44mpk (mitogen-activated protein kinase), from the sea star oocytes and by soluble extracts of rabbit skeletal muscle. Importantly we showed that native dystrophin in isolated sarcolemmal vesicles is phosphorylated by sea star p44mpk. Partial purification and immunological analysis show that a mammalian kinase related to p44mpk is present in the skeletal muscle extracts and that it contributes to phosphorylation of the carboxyl-terminal of dystrophin. This kinase phosphorylates dystrophin on a threonine residue(s). We conclude that phosphorylation of dystrophin may play an important role in the function of this cytoskeletal protein.Abbreviations MAP kinase
mitogen-activated protein kinase
- DMD
Duchenne muscular dystrophy
- GST
Glutathione S-transferase
- PAGE
polyacrylamide gel electrophoresis
- EDTA
ethylenediaminetetraacetic acid
- EGTA
ethylene glycol bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid
- MOPS
4-morpholinepropanesulfonic acid 相似文献
11.
12.
A Seth F A Gonzalez S Gupta D L Raden R J Davis 《The Journal of biological chemistry》1992,267(34):24796-24804
The nucleus is an important target of signal transduction by growth factor receptors that stimulate mitogen-activated protein (MAP) kinases. We tested the hypothesis that MAP kinases have a signaling role within the nucleus by examining the effect of the expression of a human MAP kinase isoform (p41mapk) in tissue culture cells. The expressed p41mapk was found to be localized in both the cytoplasmic and nuclear compartments of the cells. Significantly, the expression of p41mapk caused an increase in the phosphorylation of a nuclear substrate: Ser62 of c-Myc. Phosphorylation at Ser62 stimulated the activity of the NH2-terminal transactivation domain of c-Myc. Thus, p41mapk causes the phosphorylation and regulation of a physiologically significant nuclear target of signal transduction. These data establish that at least one MAP kinase isoform has a nuclear role during signal transduction. 相似文献
13.
14.
A series of human adenovirus type 5 derivatives carrying deletion mutations in early region 4 (E4) were constructed and characterized with respect to viral late protein synthesis, viral cytoplasmic late message accumulation, viral DNA accumulation, and plaquing ability. Viral late protein synthesis was essentially normal in cells infected by mutants expected to produce either the E4 open reading frame (ORF) 3 product or the E4 ORF 6 product. In cells infected by mutants lacking both ORF 3 and ORF 6, late protein synthesis was dramatically reduced. The basis for this reduction appears to be a concomitant reduction in cytoplasmic late message levels. Our results suggest that the products of ORFs 3 and 6 are redundant, since they are individually able to satisfy the requirement for E4 in late gene expression. Two of the mutants examined were defective for viral late protein synthesis but showed no measurable defect in viral DNA accumulation. The defect in late gene expression is not, therefore, a reflection of a primary defect in viral DNA synthesis. Finally, mutants expected to express ORF 3 or ORF 6 formed plaques with normal or only modestly reduced efficiency, whereas mutants expected to express neither ORF formed plaques with an efficiency less than 10(-6) that of wild-type virus. Thus, plaque-forming ability reflected late protein synthetic ability, suggesting that among these mutants late protein synthetic proficiency is the principle determinant of plaquing efficiency. 相似文献
15.
Six independent rat hybridoma cell lines producing monoclonal antibodies to human subgroup C adenovirus early region 1A (E1A) proteins were isolated. Competition binding experiments revealed that each of the monoclonal antibodies was directed against the same epitope or overlapping cluster of epitopes on the E1A proteins. Viral E1A deletion mutants and deleted forms of E1A proteins expressed in Escherichia coli were used to localize the antibody recognition sites to sequences between amino acids 23 and 120, encoded within the first exon of the E1A gene. Similarly, polyclonal antisera raised against the trpE-E1A fusion protein, as well as against the native, biologically active E1A protein, were also directed primarily against this immunodominant region. 相似文献
16.
Ashida K Goto K Zhao Y Okabe T Yanase T Takayanagi R Nomura M Nawata H 《Biochimica et biophysica acta》2005,1728(1-2):84-94
Dehydroepiandrosterone-sulfate, the sulfated form of dehydroepiandrosterone, is the most abundant steroid in young adults, but gradually declines with aging. In humans, the clinical application of dehydroepiandrosterone targeting some collagen diseases, such as systemic lupus erythematosus, as an adjunctive treatment has been applied in clinical trial. Here, we report that dehydroepiandrosterone may negatively regulate the mitogen-activated protein kinase pathway in humans via a novel dual specificity protein phosphatase, DDSP (dehydroepiandrosterone-enhanced dual specificity protein phosphatase). DDSP is highly homologous to LCPTP/HePTP, a tissue-specific protein tyrosine phosphatase (PTP) which negatively regulates both ERK and p38-mitogen-activated protein kinase, and is transcribed from the PTPN7 locus by alternative splicing. Although previous reports have shown that the mRNA expression of the LCPTP/HePTP gene was inducible by extracellular signals such as T-cell antigen receptor stimulation, reverse transcribed (RT)-PCR experiments using specific sets of primers suggested that the expression of LCPTP/HePTP was constitutive while the actual inducible sequence was that of DDSP. Furthermore DDSP was widely distributed among different types of human tissues and specifically interacted with p38-mitogen-activated protein kinase. This inducible negative regulation of the p38-mitogen-activated protein kinase-dependent pathway may help to clarify the broad range of dehydroepiandrosterone actions, thereby aiding the development of new preventive or adjunctive applications for human diseases. 相似文献
17.
WAVE is a Wiskott-Aldrich syndrome protein (WASP)-family protein that functions in membrane-ruffling formation induced by Rac, a Rho family small GTPase. Here we report that WAVE is a phosphoprotein whose phosphorylation increases in response to various external stimuli that activate mitogen-activated protein (MAP) kinase signaling. When Swiss 3T3 cells are stimulated with platelet-derived growth factor, electrophoretic mobility shift occurs to WAVE, which reflects hyperphosphorylation. This is perfectly inhibited by the addition of PD98059, a specific inhibitor of MAP kinase kinase. Indeed, the ectopic expression of an activated mutant of MAP kinase kinase induces WAVE mobility shift. When MAP kinase activation is suppressed by PD98059, the intensity of platelet-derived growth factor-induced membrane ruffling is greatly reduced. In various cancer cell lines, the amount of WAVE mobility shift was found to increase significantly, suggesting the importance of WAVE hyperphosphorylation in the formation of membrane ruffles and oncogenic transformation. 相似文献
18.
Phosphorylation at the carboxy terminus of the 55-kilodalton adenovirus type 5 E1B protein regulates transforming activity. 总被引:2,自引:5,他引:2 下载免费PDF全文
J G Teodoro T Halliday S G Whalen D Takayesu F L Graham P E Branton 《Journal of virology》1994,68(2):776-786
The 55-kDa product of early region 1B (E1B) of human adenoviruses is required for viral replication and participates in cell transformation through complex formation with and inactivation of the cellular tumor suppressor p53. We have used both biochemical and genetic approaches to show that this 496-residue (496R) protein of adenovirus type 5 is phosphorylated at serine and threonine residues near the carboxy terminus within sequences characteristic of substrates of casein kinase II. Mutations which converted serines 490 and 491 to alanine residues decreased viral replication and greatly reduced the efficiency of transformation of primary baby rat kidney cells. Such mutant 496R proteins interacted with p53 at efficiencies similar to those of wild-type 496R but only partially inhibited p53 transactivation activity. These results indicated that phosphorylation at these carboxy-terminal sites either regulates the inhibition of p53 or regulates some other 496R function required for cell transformation. 相似文献
19.
Pushkar Sharma Monica VeerannaSharma Niranjana D Amin Ram K Sihag Philip Grant Natalie Ahn Ashok B Kulkarni Harish C Pant 《The Journal of biological chemistry》2002,277(1):528-534
Cyclin-dependent protein kinase 5 (cdk5), a member of the cdk family, is active mainly in postmitotic cells and plays important roles in neuronal development and migration, neurite outgrowth, and synaptic transmission. In this study we investigated the relationship between cdk5 activity and regulation of the mitogen-activated protein (MAP) kinase pathway. We report that cdk5 phosphorylates the MAP kinase kinase-1 (MEK1) in vivo as well as the Ras-activated MEK1 in vitro. The phosphorylation of MEK1 by cdk5 resulted in inhibition of MEK1 catalytic activity and the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2. In p35 (cdk5 activator) -/- mice, which lack appreciable cdk5 activity, we observed an increase in the phosphorylation of NF-M subunit of neurofilament proteins that correlated with an up-regulation of MEK1 and ERK1/2 activity. The activity of a constitutively active MEK1 with threonine 286 mutated to alanine (within a TPXK cdk5 phosphorylation motif in the proline-rich domain) was not affected by cdk5 phosphorylation, suggesting that Thr286 might be the cdk5/p35 phosphorylation-dependent regulatory site. These findings support the hypothesis that cdk5 and the MAP kinase pathway cross-talk in the regulation of neuronal functions. Moreover, these data and the recent studies of Harada et al. (Harada, T., Morooka, T., Ogawa, S., and Nishida, E. (2001) Nat. Cell Biol. 3, 453-459) have prompted us to propose a model for feedback down-regulation of the MAP kinase signal cascade by cdk5 inactivation of MEK1. 相似文献
20.
The E4 region of Adenovirus 2 is a leftward transcribed part of the viral genome. Its nucleotide sequence has already been analysed. From this sequence several open reading frames were defined, which could be used in the coding of the E4 proteins. Using S1 digestion of mRNA-DNA hybrids a precise mapping of donor and acceptor sites was done. Their use in various combinations allows the synthesis of mRNAs, able to direct the synthesis of at least 7 polypeptides, ranging in size from 9K to 34K. Comparison of the sequences of the different acceptor sites indicates that they all conform to the consensus sequence. Analysis of the ATG surrounding sequence shows that initiator ATG may be positively selected according to Kozak's rule. 相似文献