首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To identify the antigen-specific recognition complex containing elements from T cells and antigen-presenting cells (APC), a photoactivatable antigen system was developed which could potentially crosslink the complex during the specific cellular responses. In this paper we describe the development of this system using murine T-cell hybridomas responding to stimulator cells chemically conjugated with N-hydroxysuccinimidyl 4-azidobenzoate (HSAB) and genetically restricted by I-Ad. In initial experiments it was found that several I-Ad-positive B-cell lines were nonstimulatory when coupled with HSAB, but that I-Ad-positive P388D1 macrophage-like cells were efficient stimulators of HSAB-specific T-cell responses. These results suggested that the relevant HSAB coupled surface structure was not likely I-Ad. To substantiate this point, Ia-positive or Ia-negative P388D1 cells were initially coupled with HSAB and the expression of Ia was modulated by the addition and withdrawal of Con A-stimulated spleen cell supernatant fluid through several days of culture. Under these conditions, efficient stimulation was only observed when Ia was expressed, although the HSAB antigen was continuously present. In other experiments it was found that exposure of HSAB-coupled APC to light selectively eliminated their stimulatory capacity for HSAB-specific T hybridomas, suggesting that the light-induced crosslinking by HSAB directly eliminates the antigenic determinant. This antigen system allows a unique opportunity to manipulate the antigen during specific cellular interactions, and to introduce covalent crosslinking of the specific antigen recognition complex that may allow its isolation and characterization.  相似文献   

2.
This study was undertaken to determine the nature of the antigens recognized in allogeneic and syngeneic mixed leukocyte reactions (MLR). Specifically, we wished to determine whether Ia antigens alone were recognized by MLR-reactive T cells, or whether the specificity was determined by the corecognition of non-MHC antigens together with syngeneic or allogeneic Ia. To do this we used 11 T cell hybrids that were characterized as being specific for Iad and were tested their capacity to respond to isolated I-Ad or I-Ed that had been incorporated into liposomes and had bound to the surface of glass beads. Of nine alloreactive T cell hybrids (five I-Ad-and four I-Ed-specific), seven were shown to be responsive to the relevant isolated Ia antigen on glass beads. Also, two of two syngeneic I-Ad-specific T cell hybrids responded to I-Ad on the glass beads. One of the two alloreactive T cell hybrids that failed to respond to the relevant Ia antigen on glass beads was shown to be specific for an antigen in fetal calf serum (FCS) that was recognized in the context of the allo-Ia antigen (I-Ed), because when intact accessory cells were used, a response by this hybrid was only observed when FCS was present in the assay culture medium or when the accessory cells were pre-pulsed with FCS. The possible involvement of FCS antigens and non-Ia accessory cell antigens in the stimulation of the nine T cell hybrids that responded to isolated Ia on glass beads was evaluated. T cell hybrids that were grown and were tested in serum free medium were still capable of reacting to Ia on beads. The isolated Ia preparations used were greater than 90% pure, and their capacity to stimulate the T cell hybrids did not correlate with the degree of contamination with non-Ia proteins. We conclude from these studies that the majority of T cells that respond to allogeneic or syngeneic Ia bearing stimulator cells are specific for the Ia antigens themselves, and do not require the co-recognition of other non-Ia antigens; nor is there any requirement for Ia antigen processing for this recognition.  相似文献   

3.
Previous experiments suggested a role for specific B cells in the induction of antigen (SRBC)-specific T cell proliferation. Two models were proposed: in the first, B cells directly presented antigen to T cells; alternatively, B cells secreted antibody, which opsonized antigen for presentation by macrophages. Experiments to distinguish between these possibilities are presented here. Three lines of evidence support the conclusion that antigen is presented directly by specific B cells. First, nonimmune splenic adherent cells (SAC), which efficiently induced proliferation of appropriately primed T cells to antigens such as OVA and GAT, were unable to induce SRBC-specific proliferation. Secondly, a slope analysis of the logarithmic plot of T cell proliferation vs the number of irradiated B cells suggested that two cells were limiting within the presenting population. The addition of IL 1 or SAC reduced the slope to 1 (although in serum-free conditions, the addition of IL 1, but not SAC, reduced the slope of the line). Specificity of the B cells for the antigen continued to be required in the presence of exogenous IL 1 or SAC. These results suggested that presentation by specific B cells and the amount of IL 1 were the limiting requirements for the induction of SRBC-specific T cell proliferation. The third line of evidence was the demonstration of a restricted interaction between T cells and B cells. The addition of irradiated, allogeneic SRBC-specific B cells to T cell lines and syngeneic SAC failed to support proliferative responses. We further show that a GAT-specific T cell clone was triggered to proliferate by either SAC or B cells, but that antigen-specific B cells were necessary at low doses of antigen. This finding is important in two respects. First, the T cell clone previously has been shown to act as a helper; secondly, when low doses of antigen are used, the requirement for priming of the B cells to the specific antigen is true for a soluble, as well as a particulate, antigen. We propose that at low (physiologic) doses of antigen, presentation to secondary T cells takes place mainly at the surface of antigen-specific B cells. At high doses of antigen,h presentation can also be accomplished by nonspecific cells such as other B cells, macrophages, or dendritic cells.  相似文献   

4.
The nature of T lymphocyte recognition of foreign antigens is not known, despite recent advances in elucidating the cellular structures that may be involved in the specific interactions. The central difficulty in this process is that T cells respond to foreign antigen only in the context of major histocompatibility complex (MHC) antigens expressed by another antigen-presenting cell. In addition, T cells that interact with class II MHC antigens do not bind foreign protein antigens in their native form, but seem to recognize only proteolytic peptide fragments as the relevant antigen. The simplest explanation for these observations is that the class II MHC antigens themselves bind antigenic peptides to form the appropriate determinant that interacts with the antigen-specific T cell receptor. However, to date no such antigenic complex has been found with MHC antigens despite rigorous attempts at their demonstration. One alternative explanation described here is that there is no preexisting foreign antigen-MHC antigen complex prior to interaction with T cells, and it is the T cells that cause the two moieties to become associated for recognition by a single antigen-specific T cell receptor. Central to this mechanism is that foreign antigenic peptides must be associated with specific antigen retention structures (SARS) expressed by antigen-presenting cells which retain and protect the peptide on the cell surface. These SARS, upon interaction with T cell membrane moieties, would subsequently associate with MHC antigens. A hypothesis to describe this mechanism is developed to account for published observations of antigen processing by antigen-presenting cells and T cell antigen recognition, and makes several predictions that are experimentally testable. This mechanism is also generally applicable to other cellular interactions in which soluble peptide mediators may become associated with surface components of one cell type, and this newly formed complex is in turn recognized by a receptor on a second cell type to deliver functional signals.  相似文献   

5.
To study the role of antigen-presenting cells (APC) in T lymphocyte responses, the stimulation requirements of a murine T cell hybridoma specific for the peptide antigen human fibrinopeptide B (hFPB)/I-Ak was examined. The fine specificity of T cell recognition of this peptide was determined by using several hFPB homologs and analogs, which indicated that the intact 14-amino acid peptide must remain intact to preserve the antigenic determinant, and that the carboxyl terminal Arg14 was important for T cell responses. Of particular interest was the finding that APC-associated hFPB failed to stimulate the T cells, and that activation was only observed with soluble peptide or by brief hFPB treatment of the T cells and APC mixed together. In addition, hFPB covalently bound to agarose beads was able to cause T cell activation, provided that I-Ak+ APC were also present in the culture. A number of control experiments were performed that showed that hFPB was not released from the bead and that the antigenic peptide involved in T cell responses remained bound to the beads. These results indicate that the form of the hFPB peptide antigen recognized by this T cell can be provided separately from APC.  相似文献   

6.
It has been demonstrated previously that mixed cell suspensions from the female reproductive tract consisting of human epithelial and stromal cells were capable of presenting foreign antigen to autologous T cells. There have been, however, no reported studies examining antigen presentation by isolated epithelial cells from the human female reproductive tract. It is now shown that freshly isolated epithelial cells from the uterine endometrium constitutively express MHC class II antigen and that class II was upregulated on cultured epithelium by interferon gamma (IFNγ). Using a highly purified preparation, it was demonstrated that these epithelial cells were able to process and present tetanus toxoid recall antigen driving autologous T cell proliferation. Cells isolated from the basolateral sub-epithelium stroma were also potent antigen presenting cells in this model system. Thus, isolated endometrial epithelial cells were able to directly process and present antigen to T cells and may be responsible for the transcytosis and delivery of antigen to professional antigen presenting cells found in the sub-epithelial stroma.  相似文献   

7.
Antibody inhibition studies were done to determine which molecules on the surface of the T cell hybridomas other than their receptors for antigen plus IAd were involved in interaction with antigen-presenting B cells, with artificial IAd membranes on glass beads, or with anti-receptor antibodies coupled to Sepharose beads. We found that T cell LFA-1 was only involved when B cells were used to present antigen plus IAd, whereas T cell L3T4 was involved in the response of T cells to antigen plus IAd either on cells or in artificial membranes, but not if anti-receptor antibodies were used to stimulate the T cells. From these results we concluded that LFA-1 may be involved in the recognition of a ligand on cells that was not present in artificial membranes, but that L3T4 might interact with a nonpolymorphic portion of class II molecules present in both intact antigen-presenting cells and the antigen-presenting artificial membranes.  相似文献   

8.
A hapten-specific unresponsive state was induced in vitro by the incubation of normal murine spleen cells with highly conjugated dinitrophenylated bovine gamma-globulin (DNP-BGG) or a dinitrophenylated copolymer of D-glutamic acid and D-lysine (DNP-D-GL) for 24 hr. After this incubation period spleen cells were washed and cultured for 4 days with the thymic-independent antigen dinitrophenylated polyacrylamide beads (DNP-PAA) or the thymic-dependent antigen trinitrophenylated burro the erythrocytes (TNP-BRBC). Preincubation with either DNP-BGG or DNP-D-GL led to a specific depression of the in vitro anti-hapten plaque-forming cell response. The degree of depression was dependent upon the concentration of the tolerogen and the duration of preincubation. The response to DNP-PAA or TNP-PAA beads was depressed to a greater degree than was the response to TNP-BRBC. The cellular basis of the immunologic unresponsiveness induced by DNP-BGG was attributable to an inhibition of B cell function whereas the unresponsive state induced with DNP-D-GL was due to both a specific inhibition of B cell function and the activation of antigen-specific suppressor T cells.  相似文献   

9.
It is shown that the anti-trinitrophenyl (TNP) response of human B cells to trinitrophenyl polyacrylamide beads (TNP-PAA) is monocyte dependent. This response is abolished by extensive adherent cell depletion and restored by the addition of monocytes. The optimal response is obtained with 3% monocytes, higher numbers being suppressive. Supernatants from muramyl dipeptide (MDP)-activated monocytes can restore the response of monocyte-depleted preparations even when cells are cultured at suboptimal concentration. A partially purified preparation of interleukin (IL-1) has a comparable restorative ability. The following arguments suggest that monocytes do not function as antigen-presenting cells for this particulate antigen: (i) anti-genpulsed monocytes induce neither an anti-TNP response nor a specific T-cell proliferative response; (ii) allogeneic monocytes function as well as autologous monocytes to restore the response of nonadherent cells; (iii) HLA-DR-negative cells from the human leukemia cell line K562 can replace monocytes for this response. Monocyte supernatants do not replace T cells for the response of B-enriched lymphocytes, showing that T cells are directly involved in B-cell activation.  相似文献   

10.
Murine T cell clones, which were retrieved from an A.TH anti-A.TL(lak) T cell line and had been long-term cultured in the medium supplemented with T cell growth factor (TCGF) and mitomycin C(MMC)-treated feeder cells of either Is or Ik haplotype, were found to survive in TCGF-free medium for a long time, quite in contrast to so far reported TCGF-dependent T cell clones. When T cells of these clones at the full growth in the TCGF-medium were transferred to TCGF-free medium, they survived at resting state for a long time, and half-life, i.e., the time when 50% of the transferred cells were still viable, of some clones reached 20 days. The cloned T cells at the resting state retained full responsiveness to the specific lak antigen but lost the responsiveness to TCGF as determined by [3H]thymidine uptake, whereas the same T cells harvested from TCGF-medium did not show the antigen-specific responsiveness. The cloned T cells at the resting state showed marked DNA synthesis in response to the specific antigen but never entered the phase of the cell division. Addition of TCGF to the antigen-activated cloned T cells at their peak DNA synthesis triggered the cell division without time lag. Thus, it was confirmed at a single clone level that two sequential signals, one via the antigen-receptor reacting with specific antigen and another via the TCGF-receptor accepting TCGF, are required for clonal expansion of T cells reacting with antigen. The mitogen-responsiveness among five clones was examined at their resting state; two clones responded to Con A and PHA only in the presence of accessory cells (MMC-treated, T cell-depleted syngeneic spleen cells), and one clone responded well to Con A and PHA in the absence of accessory cells. Thus, most of our clones retained physiologic characteristics of T cells directly collected from mice even after long-term culture in TCGF-medium.  相似文献   

11.
The capacity of membrane immunoglobulin A (IgA)-bearing B cells to respond to specific antigen in the absence of T cell influences has not been defined. A human-human hybridoma, constructed from an Epstein-Barr virus transformed tonsil B cell that secreted IgA anti-phosphorycholine (PC) and a human plasmacytoma cell, was utilized to examine this issue. The cloned hybridoma expressed membrane IgA and secreted IgA specific for PC. Stimulation of the hybridoma cells with PC conjugated to Sepharose beads (PC-Sepharose) but not glycine-conjugated Sepharose resulted in an increase in DNA synthesis. Affinity purified goat anti-human IgA bound to Sepharose also augmented DNA synthesis. Soluble PC did not increase DNA synthesis and inhibited the increase in DNA synthesis resulting from PC-Sepharose. IgA secretion was augmented in response to PC-Sepharose, as demonstrated by an increase in the number of Ig-secreting cells detected by a reverse hemolytic plaque assay and by quantitation of the IgA secreted per cell by enzyme-linked immunosorbent assay. Mitogen-stimulated T cell supernatants increased IgA secretion of the hybridoma cells but did not cause synergistic stimulation of the cells in the presence of PC-Sepharose. These data indicate that Sepharose-bound antigen was sufficient to induce proliferation and augment IgA secretion by this membrane IgA anti-PC-bearing hybridoma. The results suggest that cross-linking of membrane IgA by specific antigen may be a sufficient stimulus for proliferation and differentiation of B cells at this stage of maturation.  相似文献   

12.
Novel cell-sized, supported artificial membranes bearing class I antigens have been prepared by a simple dialysis procedure and then used to study the requirements for antigen recognition by precursor cytotoxic T lymphocytes (CTL). The membranes were made by mixing lipid, H-2 antigen, and C18 alkylated 5 microns silica beads in deoxycholate, and dialyzing to remove the detergent. The H-2 antigen-bearing, cell-sized beads, termed pseudocytes (artificial cells), were able to simulate generation of secondary CTL responses with the same specificity as alloantigen-bearing spleen cells. Comparative analyses demonstrated that the size of an antigen-bearing structure, and thus its potential for multivalent interaction, was a critical determinant of effectiveness of antigen recognition, and showed that H-2 antigen was recognized as effectively on cell-sized beads as on allogeneic spleen cells. Generation of a response to antigen on the cell-sized beads was completely dependent on addition of lymphokines to the cultures. Thus, unlike liposomes, H-2 antigen on beads was not available to accessory cells for stimulation of Ia-dependent production of lymphokines by T helper cells. These results, as well as direct observations by microscopy, strongly indicate that antigen is recognized on the surface of the beads. Despite effective stimulation of secondary CTL responses, antigen on beads was completely inactive in stimulating a primary CTL response by naive spleen cells. The results of mixing experiments by using beads and alloantigen-bearing cells or plasma membrane vesicles indicate that the lack of a primary response may result from a requirement for a soluble factor(s) that is not needed for generation of secondary responses. The unique advantages of cell-size supported membranes for studying antigen recognition by T cells are discussed. The beads can be handled and used like antigen-bearing cells in functional assays, while possessing well-defined, readily varied, and easily quantitated composition.  相似文献   

13.
In this report we describe in detail a new method for cloning antigen-specific, proliferating T lymphocytes directly from primed murine lymph nodes after 3 days of activation in vitro. After expansion in liquid culture the cells from the colonies were shown to be antigen specific and to require I-A histocompatible, irradiated spleen cells for stimulation. For hapten-carrier-type antigens, the T cells were shown to be carrier specific in their recognition but they were also capable of distinguishing the presence of the hapten. Recloning of small numbers of these cells in soft agar under conditions of high plating efficiency yielded true clones (i.e., populations derived from a single cell) whose antigen specificity was identical to that of cells from the original colony. The fact that a clone of T cells was I-A restricted in its antigen recognition demonstrates that suppressor T cell function cannot account for the phenomenon of major histocompatibility complex restriction.  相似文献   

14.
The present studies were undertaken to characterize the antigen-processing requirements involved in the responses to T cells to soluble antigen (antigen specific), to allogeneic cell surface MHC determinants (alloreactive), and to syngeneic MHC determinants (autoreactive). T cell clones were used that have dual cross-reactive specificities either 1) for self MHC plus soluble antigen and for allogeneic MHC products or 2) for syngeneic MHC and for allogeneic MHC, in order to permit comparison of the processing requirements for responses of the same T cell to distinct antigenic stimuli. The proliferative responses of antigen-specific, Ia-restricted T cell clones to soluble antigens were sensitive to treatment of antigen-presenting cells (APC) with 125 to 250 microM chloroquine, a lysosomotropic agent previously shown to inhibit the processing of soluble antigens. In contrast, the same T cell clones were only minimally affected in their ability to respond to similarly chloroquine-treated APC expressing allogeneic MHC products. The responses of autoreactive T cell clones to syngeneic stimulating cells and their cross-reactive responses to allogeneic cells were both resistant to chloroquine treatment of stimulating cells. The failure of chloroquine to inhibit antigen presentation to autoreactive T cell clones suggests that these clones are specific for self Ia not associated with in vitro processed foreign antigen. Thus, chloroquine sensitivity distinguishes the in vitro antigen-processing requirements for presentation of the soluble antigens tested from the requirements for presentation of syngeneic or allogeneic cell surface MHC determinants to the same T cells.  相似文献   

15.
TGFβ1 (Transforming Growth Factor-beta1) is a versatile regulator of T cell immune responses. Depending on its context in the immunological environment, TGFβ1 guides T cells toward specific activation programs including TH17 and regulatory T cell activities. Moreover, TGFβ signals function in immune homeostasis by directly attenuating T cell effector activities. We uncovered a novel context under which TGFβ1 stringently and reversibly silences activation responses of resting human T cells to TCR/CD28 stimulating surfaces:Using ligand-presenting beads, TGFβ1 and TCR/CD28-activating signals were directed into defined plasma membrane domains of T cells. Selective targeting of TGFβ1 cytokine into TCR/CD28 signalling plasma membrane domains held back early response of TCR-proximal tyrosine phosphorylation and bead engulfment at activation sites. Consequently, downstream induction of proliferation and cytokine secretion were stringently attenuated. After extended incubation with TGFβ1-presenting beads, silenced T cells became receptive again to activation by renewed TCR/CD28-stimuli, indicating that the unresponsive state of T cells was reverted and did not reflect long-lasting anergy or decrease in T cell viability. These findings outline a new strategy of physically linking TGFβ1 and TCR-activating functions for the treatment of disease and pathological conditions which are caused by unwanted T cell activity.  相似文献   

16.
We have investigated the ability of long-term cultured T helper (Th) cell lines to help an in vivo cytotoxic T lymphocyte (CTL) response to non-H-2 alloantigens (minor antigens). Th cell lines specific for various single or undefined minor antigens were selected by regular restimulation with antigen in vitro. They were antigen specific and H-2 restricted in proliferation assays and were found to be able to help primary CTL responses to multiple minor antigens and secondary CTL responses to single minor antigens. Although the Th were antigen specific they did not determine the specificity of the CTL. Th cells were both necessary and limiting for an effective CTL response indicating that "helper-independent" CTL are not in themselves sufficient to generate a strong in vivo response. Under conditions where a CTL response was clearly H-2 restricted, Th cells were not. Thus, the Th cells appeared to be activated by reprocessed antigen rather than antigen on the surface of the injected antigenic cells even though the CTL themselves reacted directly to the injected antigen.  相似文献   

17.
Background aimsAdoptive immunotherapy with the use of chimeric antigen receptor (CAR)-engineered T cells specific for CD19 has shown promising results for the treatment of B-cell lymphomas and leukemia. This therapy involves the transduction of autologous T cells with a viral vector and the subsequent cell expansion. We describe a new, simplified method to produce anti-CD19-CAR T cells.MethodsT cells were isolated from peripheral blood mononuclear cell (PBMC) with anti-CD3/anti-CD28 paramagnetic beads. After 2 days, the T cells were added to culture bags pre-treated with RetroNectin and loaded with the retroviral anti-CD19 CAR vector. The cells, beads and vector were incubated for 24 h, and a second transduction was then performed. No spinoculation was used. Cells were then expanded for an additional 9 days.ResultsThe method was validated through the use of two PBMC products from a patient with B-cell chronic lymphoblastic leukemia and one PBMC product from a healthy subject. The two PBMC products from the patient with B-cell chronic lymphoblastic leukemia contained 11.4% and 12.9% T cells. The manufacturing process led to final products highly enriched in T cells with a mean CD3+ cell content of 98%, a mean expansion of 10.6-fold and a mean transduction efficiency of 68%. Similar results were obtained from the PBMCs of the first four patients with acute lymphoblastic leukemia treated at our institution.ConclusionsWe developed a simplified, semi-closed system for the initial selection, activation, transduction and expansion of T cells with the use of anti-CD3/anti-CD28 beads and bags to produce autologous anti-CD19 CAR–transduced T cells to support an ongoing clinical trial.  相似文献   

18.
The addition of monoclonal antibodies against the human C3b/C4b receptor (CR1) to cultures of peripheral blood lymphocytes in the presence of suboptimal amounts of TNP bound to polyacrylamide beads enhanced by 150 to 400% the specific anti-TNP response, as measured by a plaque-forming cell assay on day 7. Anti-CR1 antibodies similarly enhanced the anti-fluorescein antibody response. Enhancement only occurred in cultures performed in the presence of the relevant antigen. No enhancing effect on the anti-TNP response was observed on addition to cultures of monoclonal antibodies directed against other surface antigens of B cells or an anti-T cell antibody of the same subclass as that of anti-CR1 antibodies. Anti-CR1 antibodies alone did not induce nonspecific B cell proliferation and did not provide B cells with a first signal for proliferation in the presence of a source of B cell growth factors. Anti-CR1 antibodies did not enhance the nonspecific proliferative response of B cells to growth factors derived from PHA-stimulated T cells, semi-purified BCGF 20 KD, BCGF 50 KD, or recombinant IL 2 in the presence of anti-mu. In this respect, the effect of anti-CR1 antibodies differs from that of anti-CR2 antibodies which interact with early stages of B cell activation. In contrast, anti-CR1 antibodies enhanced specific differentiation of antigen-activated B cells in the absence of T cells when soluble T cell factors were provided. Similar results were obtained by using either of two sources of differentiation factors, the MLA-144 supernatant or a 30 to 15 KD fraction from PHA-stimulated T cells. These results indicate that triggering of CR1 on B cells positively regulates the specific antibody response to low doses of antigen by enhancing B cell differentiation whether T cell help is provided by intact T cells or by T cell-derived differentiation factors.  相似文献   

19.
Microbial superantigens can alter host immunity through aberrant activation and subsequent anergy of responding naive T cells. We show here that the superantigen, staphylococcal enterotoxin B (SEB), directly induces tolerance in memory CD4 T cells. Murine naive and memory CD4(+) T cells were labeled with the fluorescent dye CFSE and the cells were exposed to SEB before they were cultured with specific peptide antigen. Memory, but not naive, T cells became anergic and did not respond to their cognate peptide antigen. The extent and duration of T cell receptor (TCR) clustering was similar to promote naive T cell activation and memory T cell anergy, suggesting similar TCR-SEB interactions led to distinct intracellular signaling processes in the two cell types. Like SEB, soluble anti-CD3 mAb does not stimulate memory cell proliferation. However, unlike SEB, soluble anti-CD3 mAbs did not induce anergy to cognate peptide. Anergy was directly visualized in vivo. CD4(+) memory T cells were identified in mice that had been administered SEB. The cells failed to proliferate in response to subsequent immunization with their cognate recall antigen. Hence, one mode of pathogen survival is the modulation of host immunity through selective elimination of memory T cell responses.  相似文献   

20.
It has been suggested that the cross-reaction of a single T cell receptor with multiple different peptide ligands is a mechanism for maintaining a diverse yet compact immune repertoire. In the context of autoimmune disease it is important to understand how this property is balanced against the maintenance of self-tolerance. Specifically, whether the cross-reactivity inherent in the immune system is focused or unfocused will have important consequences for the development of autoimmune disease. If cross-reactivity is "focused," then in an immune response to a foreign antigen all T cell receptors that recognize the foreign antigen will cross-react with a specific autoantigenic peptide. However, if cross-reactivity is "unfocused," an immune response to a foreign antigen will result in the activation of a small number of self-reactive cells within a larger pool of cells specific for the foreign antigen. We have tested whether cross-reactivity is focused or unfocused by generating a panel of T cell clones that respond to two closely related ligands. W144 is an autoantigenic peptide of myelin proteolipid protein, PLP 139-151 (HSLGKWLGHPDKF), and Q144 is an altered peptide of PLP 139-151 bearing a glutamine for tryptophan substitution at position 144. The Q144-responsive clones have a broad degree of cross-reactivity with other position 144 substituted peptides. We find that despite their characteristic responses to Q144 and W144, the patterns of responses of these clones to other structurally related ligands are random, demonstrating that cross-reactivity is unfocused in the absence of selection. Maintaining a diverse range of cross-reactive interactions may limit nonspecific responses to autoantigens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号