首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim  We searched for relationships between latitude and both the geographic range size and host specificity of fleas parasitic on small mammals. This provided a test for the hypothesis that specialization is lower, and thus niche breadth is wider, in high-latitude species than in their counterparts at lower latitudes.
Location  We used data on the host specificity and geographic range size of 120 Palaearctic flea species (Siphonaptera) parasitic on small mammals (Soricomorpha, Lagomorpha and Rodentia). Data on host specificity were taken from 33 regions, whereas data on geographic ranges covered the entire distribution of the 120 species.
Methods  Our analyses controlled for the potentially confounding effects of phylogenetic relationships among flea species by means of the independent-contrasts method. We used regressions and structural equation modelling to determine whether the latitudinal position of the geographic range of a flea covaried with either the size of its range or its host specificity. The latter was measured as the number of host species used, as well as by an index providing the average (and variance in) taxonomic distinctness among the host species used by a flea.
Results  Geographic range size was positively correlated with the position of the centre of the range; in other words, fleas with more northerly distributions had larger geographic ranges. Although the number of host species used by a flea did not vary with latitude, both the mean taxonomic distinctness among host species used and its variance increased significantly towards higher latitudes.
Main conclusions  The results indicate that niche breadth in fleas, measured in terms of both its spatial (geographic range size) and biological (host specificity) components, increases at higher latitudes. These findings are compatible with the predictions of recent hypotheses about latitudinal gradients.  相似文献   

2.
The resource specialization or niche breadth of a species is not fixed across populations, but instead varies over geographical space. A species may be a local specialist but a regional generalist, if it uses locally few resources that are substitutable across locations. In contrast, a species is a local generalist and a regional specialist if it uses locally many resources that cannot be substituted from 1 location to the next. Scale‐dependence can thus be a major factor in estimation of niche breadth. Here, we test for relationships between local and global estimates of host specificity (a measure of niche breadth for parasites) in fleas (Siphonaptera) parasitic on small mammals from 49 different regions within the Holarctic. Across all fleas, we found a strong, positive relationship between the number of host species that a flea uses in 1 locality and the number of different host species that can serve as the flea's principal host (i.e. the one supporting the most fleas in a region) among all regions. Also, we observed a strong positive relationship between the taxonomic distinctness of the host species used in 1 locality and that of all known principal hosts among all localities. These relationships held after correcting for potentially confounding phylogenetic influences. We discuss the implications of scale‐independent host specificity and its association with geographical range size and species‐specific patterns of host use.  相似文献   

3.
Animal species with larger local populations tend to be widespread across many localities, whereas species with smaller local populations occur in fewer localities. This pattern is well documented for free-living species and can be explained by the resource breadth hypothesis: the attributes that enable a species to exploit a diversity of resources allow it to attain a broad distribution and high local density. In contrast, for parasitic organisms, the trade-off hypothesis predicts that parasites exploiting many host species will achieve lower mean abundance on those hosts than more host-specific parasites because of the costs of adaptations against multiple defense systems. We test these alternative hypotheses with data on host specificity and abundance of fleas parasitic on small mammals from 20 different regions. Our analyses controlled for phylogenetic influences, differences in host body surface area, and sampling effort. In most regions, we found significant positive relationships between flea abundance and either the number of host species they exploited or the average taxonomic distance among those host species. This was true whether we used mean flea abundance or the maximum abundance they achieved on their optimal host. Although fleas tended to exploit more host species in regions with either larger number of available hosts or more taxonomically diverse host faunas, differences in host faunas between regions had no clear effect on the abundance-host specificity relationship. Overall, the results support the resource breadth hypothesis: fleas exploiting many host species or taxonomically unrelated hosts achieve higher abundance than specialist fleas. We conclude that generalist parasites achieve higher abundance because of a combination of resource availability and stability.  相似文献   

4.
Slove J  Janz N 《PloS one》2011,6(1):e16057
The "oscillation hypothesis" has been proposed as a general explanation for the exceptional diversification of herbivorous insect species. The hypothesis states that speciation rates are elevated through repeated correlated changes--oscillations--in degree of host plant specificity and geographic range. The aim of this study is to test one of the predictions from the oscillation hypothesis: a positive correlation between diet breadth (number of host plants used) and geographic range size, using the globally distributed butterfly subfamily Nymphalinae. Data on diet breadth and global geographic range were collected for 182 Nymphalinae butterflies species and the size of the geographic range was measured using a GIS. We tested both diet breadth and geographic range size for phylogenetic signal to see if species are independent of each other with respect to these characters. As this test gave inconclusive results, data was analysed both using cross-species comparisons and taking phylogeny into account using generalised estimating equations as applied in the APE package in R. Irrespective of which method was used, we found a significant positive correlation between diet breadth and geographic range size. These results are consistent for two different measures of diet breadth and removal of outliers. We conclude that the global range sizes of Nymphalinae butterflies are correlated to diet breadth. That is, butterflies that feed on a large number of host plants tend to have larger geographic ranges than do butterflies that feed on fewer plants. These results lend support for an important step in the oscillation hypothesis of plant-driven diversification, in that it can provide the necessary fuel for future population fragmentation and speciation.  相似文献   

5.
Aim We determined whether dissimilarity in species composition between parasite communities depends on geographic distance, environmental dissimilarity or host faunal dissimilarity, for different subsets of parasite species with different levels of host specificity. Location Communities of fleas parasitic on small mammals from 28 different regions of the Palaearctic. Method Dissimilarities in both parasite and host species composition were computed between each pair of regions using the Bray–Curtis index. Geographic distances between regions were also calculated, as were measures of environmental dissimilarity consisting of the pairwise Euclidean distances between regions derived from elevation, vegetation and climatic variables. The 136 flea species included in the dataset were divided into highly host‐specific species (using 1–2 host species per region, on average), moderately host‐specific species (2.2–4 hosts per region) and generalist species (>4 hosts per region). The relative influence of geographic distance, host faunal dissimilarity and environmental dissimilarity on dissimilarity of flea species composition among all regions was analysed for the entire set of flea species as well as for the three above subsets using multiple regressions on distance matrices. Results When including all flea species, dissimilarity in flea species composition was affected by all three independent variables, although the pure effect of dissimilarity in host species composition was the strongest. Results were different when the subsets of fleas differing in host specificity were treated separately. In particular, dissimilarity in species composition of highly host‐specific fleas increased solely with environmental dissimilarity, whereas dissimilarity for both moderately specific and non‐specific fleas increased with both geographic distance and dissimilarity in host species composition. Main conclusions Host specificity seems to dictate which of the three factors considered is most likely to affect the dissimilarity between flea communities. Counter‐intuitively, environmental dissimilarity played a key role in determining dissimilarity in species composition of highly host‐specific fleas, possibly because, although their presence in a region relies on the occurrence of particular host species, their abundance is itself mostly determined by climatic conditions. Our results show that deconstructing communities into subsets of species with different traits can make it easier to uncover the mechanisms shaping geographic patterns of diversity.  相似文献   

6.
There is substantial variability among populations of the same species in basic features such as abundance or niche breadth, and it is unclear to what extent these are true species traits as opposed to the product of local environmental factors. In parasites, abundance and niche breadth, i.e. host specificity, show repeatability among different populations of the same species, but may also be influenced by external forces, depending on the parasite taxa studied. We tested whether the abundance and host specificity of gamasid mites parasitic on small mammals from 26 different geographic regions of the Palaearctic, are species-specific or instead determined by host identity and/or parameters of the biotic and abiotic environment. Values of abundance and host specificity (measured as the number of host species used) were significantly more similar among populations of the same mite species than among different mite species; despite also showing consistency within particular host species or regions independently of mite species identity, both abundance and the number of host species used appear to be true mite species traits. In contrast, the taxonomic distinctness of host species used by a mite showed little repeatability among populations of the same mite species, and appears mostly determined by the local pool of available host species. Within given mite species, all three variables (abundance, number of host species used, and their taxonomic distinctness) covaried to some extent with one or more environmental factors (e.g., nature of the local host assemblage, temperature, precipitation) across geographical regions, but there was no universal pattern among results from different mite species. These results are similar to those obtained earlier on other taxa, e.g. fleas, and suggest that there are general laws acting on spatial patterns of parasite abundance and host specificity.  相似文献   

7.
1. The distribution patterns of unicellular and multicellular organisms have recently been shown to differ profoundly, with the former probably being mostly cosmopolitan, whereas the latter are mostly restricted to certain regions. However, the within‐region distribution patterns of these two organism groups may be rather similar. 2. We predicted that the degree of regional occupancy in unicellular eukaryotes would be related to niche characteristics, dispersal ability and size, as has been found previously for multicellular organisms. The niche characteristics we considered were niche position, that measures marginality in species habitat distribution, and niche breadth, that measures amplitude in species habitat distribution. Niche characteristics were determined using Outlying Mean Index (OMI) analysis. 3. We found that the regional occupancy in our model group of unicellular eukaryotes, stream diatoms, was primarily a reflection of the niche position of a species or, more generally, habitat availability. Thus, non‐marginal species (i.e. species that occupied common habitat conditions across the region) tended to be more widely distributed than marginal species (i.e. species that were restricted to a limited range of rare habitat conditions). This finding was further supported by the general linear model, with niche position, niche breadth, maximum size and attachment mode as explanatory variables: niche position was by far the most important variable accounting for variability in regional occupancy, with significant amounts of additional variation related to niche breadth and maximum size of diatoms. 4. Thus, the degree of regional occupancy among unicellular eukaryotes may be primarily governed by habitat availability, supporting former findings for multicellular organisms.  相似文献   

8.
We studied ecological correlates of body size (abundance and niche breadth) in gamasid mites parasitic on small mammals in 28 regions of the Palearctic. We predicted that smaller species would be characterized by higher abundance than larger species, all else (e.g. host species) being equal. We also predicted that host specificity of mites would decrease (that is, number of host species they use would increase) with an increase in their body size. We focused on mites collected from host bodies that include a) species that feed solely on host’s blood (obligate exclusive haematophages), b) species that feed on both host’s blood and small arthropods (obligate non‐exclusive haematophages), and c) facultative haematophages. We expected that the relationship between body size and abundance and/or host specificity would be more pronounced in obligate exclusively haematophagous mites than for obligate non‐exclusively and facultative haematophagous mites. Across all mite species across regions, mean abundance correlated negatively with body size. The same was true for obligate haematophagous species, but not for facultative haematophages. When mite communities on the same host in a location were considered, the negative body mass–abundance relationship was found in only 3 of 44 communities. Nevertheless, a meta‐analytic (across host species) estimate of the slope of this relationship appeared to be significantly negative. No significant relationship between mite body size and host specificity was found in the analyses across all mite species as well as in obligate exclusive or obligate non‐exclusive haematophages. However, the number of hosts used by facultative haematophagous mites decreased significantly with an increase in their body size. We explain the relationships between morphological (body size) and ecological (abundance and niche breadth) properties of ectoparasites by their interactions with hosts or physical environment.  相似文献   

9.
10.
The evolution of host specificity remains a central issue in the study of host‐parasite relationships. Here we tackle three basic questions about host specificity using data on host use by fleas (Siphonaptera) from 21 geographical regions. First, are the host species exploited by a flea species no more than a random draw from the locally available host species, or do they form a taxonomically distinct subset? Using randomization tests, we showed that in the majority of cases, the taxonomic distinctness (measured as the average taxonomic distances among host species) of the hosts exploited by a flea is no different from that of random subsets of hosts taken from the regional pool. In the several cases where a difference was found, the taxonomic distinctness of the hosts used by a flea was almost always lower than that of the random subsets, suggesting that the parasites use hosts within a narrower taxonomic spectrum than what is available to them. Second, given the variation in host specificity among populations of the same flea species, is host specificity truly a species character? We found that host specificity measures are repeatable among different populations of the same flea species: host specificity varies significantly more among flea species than within flea species. This was true for both measures of host specificity used in the analyses: the number of host species exploited, and the index measuring the average taxonomic distinctness of the host species and its variance. Third, what causes geographical variation in host specificity among populations of the same flea species? In the vast majority of flea species, neither of our two measures of host specificity correlated with either the regional number of potential host species or their taxonomic distinctness, or the distance between the sampled region and the center of the flea's geographical range. However, in most flea species host specificity correlated with measures of the deviation in climatic conditions (precipitation and temperature) between the sampled region and the average conditions computed across the flea's entire range. Overall, these results suggest that host specificity in fleas is to a large extent phylogenetically constrained, while still strongly influenced by local environmental conditions.  相似文献   

11.
喜马拉雅山南坡蚤类营养生态位的研究   总被引:6,自引:1,他引:6  
对喜马拉雅山南坡地区的46种蚤的营养生态位宽度和生态位重叠进行了研究。结果表明,23种蚤只有1种宿主,其营养生态位宽度最窄(B=0),而方指双蚤的营养生态位宽度最大(B=0.6694),其次为斯氏新蚤(B=0.4968).寄生于9种小兽宿主的12种主要蚤种中,尼泊尔古蚤和后厉蚤和窄突厉蚤因其宿主动物以食虫类为主,相互间的营养生态位重叠指数最高。  相似文献   

12.
Many plant species exhibit strong association with topographic habitats at local scales. However, the historical biogeographic and physiological drivers of habitat specialization are still poorly understood, and there is a need for relatively easy‐to‐measure predictors of species habitat niche breadth. Here, we explore whether species geographic range, climatic envelope, or intraspecific variability in leaf traits is related to the degree of habitat specialization in a hyperdiverse tropical tree community in Amazonian Ecuador. Contrary to our expectations, we find no effect of the size of species geographic ranges, the diversity of climate a species experiences across its range, or intraspecific variability in leaf traits in predicting topographic habitat association in the ~300 most common tropical tree species in a 25‐ha tropical forest plot. In addition, there was no phylogenetic signal to habitat specialization. We conclude that species geographic range size, climatic niche breadth, and intraspecific variability in leaf traits fail to capture the habitat specialization patterns observed in this highly diverse tropical forest.  相似文献   

13.
Host specificity is often measured as the number of host species used by a parasite, or as their phylogenetic diversity; both of these measures ignore the larger scale component of host use by parasites. A parasite may exploit very few host species in one locality but these hosts may be substituted for completely different species elsewhere; in contrast, another parasite may exploit many host species in one locality, with the identity of these hosts remaining the same throughout the parasite’s geographical range. To capture these spatial nuances of host specificity, we propose to use an index for host species turnover across localities, or beta-specificity (βSPF), that is derived from studies of spatial patterns in plant and animal diversity. We apply this index to fleas parasitic on small mammals to show that: (i) it is statistically independent of traditional or “local” measures of host specificity as well as of “global” measures of host specificity, and (ii) it is also independent of the size of the geographical area studied or the sampling effort put into collecting hosts and parasites. Furthermore, the distribution of βSPF values among flea species shows a significant phylogenetic signal, i.e. related flea species have more similar βSPF values than expected by chance. Nevertheless, most possible combinations of either local specificity (alpha-specificity) or global (gamma-specificity) and beta-specificity are observed among flea species, suggesting that adding a spatial component to studies of host use reveals a new facet of specificity. The measure presented here provides a new perspective on host specificity on a scale relevant to studies on topics ranging from biogeography to evolution and may underlie the rate and extent of disease transmission and population dynamics.  相似文献   

14.
The strength of interspecific interactions varies over geographical scales, and can influence patterns of resource specialisation. Even with gene flow preventing local adaptation of a consumer to particular resources, we might expect that across its entire range, the consumer would show some specialisation for the resource types most likely to be encountered across the localities where it occurs. We tested the hypothesis that generalist fleas are more successful at exploiting small mammalian host species with which they co-occur frequently across their geographical range than host species that, though suitable, are encountered less frequently. This hypothesis was tested with data on 121 flea species compiled from field surveys across 35 regions of the Palaearctic. Using abundance (mean number of individual fleas per individual host) as a measure of flea success on a particular host species, positive correlations between flea abundance and the frequency of co-occurrence of a flea with each of its hosts amongst all regions surveyed were found in all but two of the flea species investigated, with one-fifth of these being significant. If overlap in geographical range between flea and host is used as a measure of frequency of encounters instead of the actual proportion of regions where they both occur, similar patterns are observed, though they are much weaker. In a comparative analysis across all flea species, there were significant relationships between the average abundance of fleas and average values of both measures of frequency of encounters (proportion of sites where they co-occur and range overlap), even when correcting for potential phylogenetic influences. The results suggest that for any given flea species, host species more commonly encountered throughout the spatial range of the flea are generally those on which the flea does best. Interaction frequency may be a key determinant of specialisation and abundance in host-parasite systems.  相似文献   

15.
Tales E  Keith P  Oberdorff T 《Oecologia》2004,138(3):360-370
We examined the relation between the local density of species and the size of the geographic range for French riverine fishes. As for most other taxonomic groups, a positive interspecific relationship is found for this group. This relationship is robust to the confounding effects of phylogeny and is not a priori a product of other potential mechanistic artefacts. We formally tested two of the principal biological mechanisms already proposed (i.e. the niche breadth hypothesis and the resource availability hypothesis). We found no support for the niche breadth hypothesis. In contrast, we found consistent support for the closely related resource availability hypothesis. Species utilising resources (habitats) that are marginal tend to appear at low density and to have narrow distribution whereas species utilising widespread habitats tend to be more abundant and more widely distributed. Using data on body size and reproductive traits we explored the potential influence of these variables in explaining significant variation around the density-range size relationship. Only body size explains significant variation around the relationship, being negatively correlated with local density and positively correlated with range size.  相似文献   

16.
Nested pattern in flea assemblages across the host's geographic range   总被引:1,自引:0,他引:1  
Understanding non-random patterns in the taxonomic composition of communities occurring in insular or fragmented habitats remains a major goal of ecology. Nested subset patterns are one possible departure from random community assembly that has been reported for communities of both free-living and parasitic animals. Here, we investigate the effects of extrinsic factors on the occurrence of nestedness among the assemblages of fleas found in different populations of the same host species, using data on 25 mammalian host species. The patterns of flea species composition among host populations spanned the entire spectrum from significantly nested to significantly anti-nested. After controlling for host phylogeny, we found that across host species, the tendency for flea assemblages to approach nestedness increased with increasing host geographic range size and with decreasing latitude of the host's geographic range. This tendency also decreased with an increase in a composite variable combining data on mean January and July temperature. The number of closely-related mammalian species living in sympatry with a given host species had no influence on whether or not the structure of flea assemblages among its populations departed from randomness. We propose explanations for these results that include: the possible gradual loss of flea species as a host expands its range from its initial area of origin, the lack of specific flea faunas in narrowly-distributed host species, interspecific differences in the dispersal abilities of flea species becoming amplified in hosts with broad geographical ranges, and the effect of latitude, climate and environment on the probabilities of host-switching and extinction in fleas. Overall, our results suggest that the structure of flea assemblages in mammalian hosts may be driven by features of host biology.  相似文献   

17.
The geographical distribution of species richness and species range size of African anthropoid primates (catarrhines) is investigated and related to patterns of habitat and dietary niche breadth. Catarrhine species richness is concentrated in the equatorial regions of central and west Africa; areas that are also characterised by low average species range sizes and increased ecological specificity. Species richness declines with increasing latitude north and south of the equator, while average species range size, habitat and dietary breadth increase. Relationships between species richness, species range size and niche breadth remain once latitudinal and longitudinal effects have been removed. Among areas of lowest species richness, however, there is increased variation in terms of average species range size and niche breadth, and two trends are identified. While most such areas are occupied by a few wide-ranging generalists, others are occupied by range-restricted specialist species. That conservation efforts increasingly focus on regions of high species richness may be appropriate if these regions are also characterised by species that are more restricted in both their range size and their ecological versatility, although special consideration may be required for some areas of low species richness.  相似文献   

18.
The non‐independence of traits among closely related species is a well‐documented phenomenon underpinning modern methods for comparative analyses or prediction of trait values in new species. Surprisingly such studies have mainly focused on life‐history or morphological traits of free‐living organisms, ignoring ecological attributes of parasite species in spite of the fact that they are critical for conservation and human health. We tested for a phylogenetic signal acting on two ecological traits, abundance and host specificity, using data for 218 flea species parasitic on small mammals in 19 regions of the Palaearctic and Nearctic, and a phylogenetic tree for these species. We tested for the presence of a phylogenetic signal at both regional and continental scales using three measures (Abouheif/Moran's I, Pagel's λ, and Blomberg et al.'s K). Our results show 1) a consistent positive phylogenetic signal for flea abundance, but only a weaker and erratic signal for host specificity, and 2) a clear dependence on scale, with the signals being stronger at the continental scale and relatively weaker or inconsistent at the regional scale. Whenever values of Blomberg et al.'s K were found significant, they were <1 suggesting that the effects of phylogeny on the evolution of abundance and host specificity in fleas are weaker than expected from a Brownian motion model. The most striking finding is that, within a continental fauna, closely‐related flea species are characterized by similar levels of abundance, though this pattern is weaker within local assemblages, possibly eroded by local biotic or abiotic conditions. We discuss the link between history (represented by phylogeny) and pattern of variation among species in morphological and ecological traits, and use comparisons between the Palaearctic and Nearctic to infer a role of historical events in the probability of detecting phylogenetic signals.  相似文献   

19.
Invasive species are an important issue worldwide but predicting invasiveness, and the underlying mechanisms that cause it, is difficult. There are several primary hypotheses to explain invasion success. Two main hypothesis based on niche spaces stand out as alternative, although not exclusive. The empty niche hypothesis states that invaders occupy a vacant niche space in the recipient community, and the niche competition hypothesis states that invaders overlap with native species in niche space. Studies on trait similarity/dissimilarity between the invader and native species can provide information on their niche overlap. Here, we use the highly invasive and well‐studied cane toad (Rhinella marina) to test these two hypotheses in Australia, and assess its degree of overlap with native species in several niche dimensions. We compare extensive morphological and environmental data of this successful invader to 235 species (97%) of native Australian frogs. Our study is the first to document the significant morphological differences between the invasive cane toad and a continent‐wide frog radiation: despite significant environmental overlap, cane toads were distinct in body size and shape from most Australian frog species, suggesting that in addition to their previously documented phenotypic plasticity and wide environmental and trophic niche breadth, their unique shape also may have contributed to their success as an invasive species in Australia. Thus, the invasive success of cane toads in Australia may be explained through them successfully colonizing an empty niche among Australian anurans. Our results support that the cane toad's distinct morphology may have played a unique role in the invasiveness of this species in Australia, which coupled with a broad environmental niche breadth, would have boosted their ability to expand their distribution across Australia. We also propose RLLR (Relative limb length ratio) as a potentially useful measure of identifying morphological niche uniqueness and a potential measure of invasiveness potential in anuran amphibians.  相似文献   

20.
We investigated the empirical relationship between mean abundance and its variance, known as Taylor’s power law, in fleas parasitic on small mammals. It has been suggested that the exponent of this function, b, represents a true biological character of a species and, dependent on the level of host specificity, varies among species. Other empirical and theoretical studies suggest that exponent b depends on interspecific competition and varies intraspecifically. We tested these hypotheses using data from central and eastern Slovakia. We demonstrate that the slope of Taylor’s relationship (a) is repeatable within a flea species, i.e. the slope represents a true species character; (b) increases with an increase of the degree of flea host specificity; and (c) decreases with an increase in flea community size. We discuss our results with the idea that the host can mediate interactions among and within flea species. Co-ordinating editor: A. Biere  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号