首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Assembly and characterization of nucleosomal cores on B- vs. Z-form DNA   总被引:5,自引:0,他引:5  
The ability of right- vs. left-handed alternating purine/pyrimidine copolymers to support the formation of nucleosomes has been examined by using a trout testis assembly factor. The protein, which is thermostable, has a molecular weight of 29000 and will assemble nucleosomes onto both SV40 and calf thymus DNA. This assembly factor has been used to assemble nucleosomes onto the B and Z conformations of poly[d(Gm5C)] and the B conformation of poly[d(GC)]. The isolated B-form particles, which sediment at approximately 11 S in a sucrose density gradient, contain DNA of 140-200 bases in length and the four core histones. The isolated Z-form particles, which also sediment at approximately 11 S, contain the four core histones and DNA of 170-250 bases in length. Physical analysis of the particles by absorbance and circular dichroic spectroscopy indicates that the DNA remains in the original conformation throughout the isolation procedure. Further, the particles reconstituted onto left-handed DNA compete effectively for an anti-Z DNA antibody, while the corresponding right-handed particles do not. Analytical sedimentation velocity determinations indicate that the B-form poly[d(Gm5C)] and poly[d(GC)] particles sediment at 11.2 and 11.1 S, respectively. In contrast, the poly[d(Gm5C)] Z-form particles have an S20,w of 10.6 S. The differences in the sedimentation velocity and the density of the cores, and in the lengths of DNA associated with the particles, suggest that the conformation of the DNA affects the manner in which it associates with the histone octamer.  相似文献   

2.
We have studied the circular dichroism and ultraviolet difference spectra of T7 bacteriophage DNA and various synthetic polynucleotides upon addition of Escherichia coli RNA polymerase. When RNA polymerase binds nonspecifically to T7 DNA, the CD spectrum shows a decrease in the maximum at 272 but no detectable changes in other regions of the spectrum. This CD change can be compared with those associated with known conformational changes in DNA. Nonspecific binding to RNA polymerase leads to an increase in the winding angle, theta, in T7 DNA. The CD and UV difference spectra for poly[d(A-T)] at 4 degrees C show similar effects. At 25 degrees C, binding of RNA polymerase to poly[d(A-T)] leads to hyperchromicity at 263 nm and to significant changes in CD. These effects are consistent with an opening of the double helix, i.e. melting of a short region of the DNA. The hyperchromicity observed at 263 nm for poly[d(A-T)] is used to determine the number of base pairs disrupted in the binding of RNA polymerase holoenzyme. The melting effect involves about 10 base pairs/RNA polymerase molecule. Changes in the CD of poly(dT) and poly(dA) on binding to RNA polymerase suggest an unstacking of the bases with a change in the backbone conformation. This is further confirmed by the UV difference spectra. We also show direct evidence for differences in the template binding site between holo- and core enzyme, presumably induced by the sigma subunit. By titration of the enzyme with poly(dT) the physical site size of RNA polymerase on single-stranded DNA is approximately equal to 30 bases for both holo- and core enzyme. Titration of poly[d(A-T)] with polymerase places the figure at approximately equal to 28 base pairs for double-stranded DNA.  相似文献   

3.
A model chromatin assembly system. Factors affecting nucleosome spacing   总被引:14,自引:0,他引:14  
Poly[d(A-T)].poly[d(A-T)], when reconstituted with chicken erythrocyte core histones and subsequently incubated with sufficient histone H5 in a solution containing polyglutamic acid, forms structures resembling chromatin. H5 induces nucleosome alignment in about two hours at physiological ionic strength and 37 degrees C. The nucleosome spacing and apparent linker heterogeneity in the assembled nucleoprotein are very similar to those in chicken erythrocyte chromatin. Also, condensed chromatin-like fibers on the polynucleotide can be visualized. The binding of one mole of H5 per mole of core octamer is necessary to generate the physiological nucleosome spacing, which remains constant with the addition of more H5. The nucleosome repeat length is not a function of the core histone to poly[d(A-T)] ratio for values lower than the physiological ratio. With increasing ratios, in excess of the physiological value, nucleosome spacing first becomes non-uniform, and then takes on the close packing limit of approximately 165 base-pairs. In addition to eliminating possible base sequence effects on nucleosome positioning, poly[d(A-T)] allows nucleosomes to slide more readily than does DNA, thereby facilitating alignment. Evidence is presented that polyglutamic acid facilitates the nucleosome spacing activity of histone H5, primarily by keeping the nucleoprotein soluble. This model system should be useful for understanding how different repeat lengths arise in chromatin.  相似文献   

4.
J Greve  M F Maestre  A Levin 《Biopolymers》1977,16(7):1489-1504
Circular dichroism (CD) spectra of poly(dA), poly(dT), poly(dA)·poly(dT), and poly[d(A-T)]·poly[d(T-A)] have been measured as a function of temperature. From these data difference spectra have been calculated by subtracting the spectrum measured at low temperature from the spectra measured at higher temperatures. The CD difference spectra obtained upon melting of the two double-stranded polymers are very similar. From a comparison of these difference spectra with calculated ones it is shown that optical transitions near 272 nm (on A) and 288 nm (most probably on T) are present. The premelting changes of the CD spectrum of poly[d(A-t)]·poly[d(T-A)] are due to a change in conformation in which the secondary structure goes from a C- to B-type spectrum by increasing the A-type nature of the polymer. Such a change is not observed for poly(dA)·poly(dT). Instead, a transition between two different B-type geometries occurs.  相似文献   

5.
The pressure dependence of the helix–coil transition of poly(dA)∙poly(dT) and poly[d(A-T)]·poly[d(A-T)] in aqueous solutions of NaCl and CsCl at concentrations between 10 and 200 mM is reported and used to calculate the accompanying volume change. We also investigated the binding parameters and volume change of ethidium bromide binding with poly(dA)∙poly(dT) and poly[d(A-T)]·poly[d(A-T)] in aqueous solutions of these two salts. The volume change of helix–coil transition of poly(dA)∙poly(dT) in Cs+-containing solutions differs by less than 1 cm3 mol− 1 from the value measured when Na+ is the counter-ion. We propose that this insensitivity towards salt type arises if the counter-ions are essentially fully hydrated around DNA and the DNA conformation is not significantly altered by salt types. Circular dichroism spectroscopy showed that the previously observed large volumetric disparity for the helix–coil transition of poly[d(A-T)]·poly[d(A-T)] in solutions containing Na+ and Cs+ is likely result of a Cs+-induced conformation change that is specific for poly[d(A-T)]·poly[d(A-T)]. This cation-specific conformation difference is mostly absent for poly(dA)∙poly(dT) and EB bound poly[d(A-T)]·poly[d(A-T)].  相似文献   

6.
The secondary structures of double-stranded poly[d(A-T)].poly[d(A-T)] in films have been studied by IR spectroscopy with three different counterions (Na+, Cs+, and Ni2+) and a wide variety of water content conditions (relative humidity between 100 and 47%). In addition to the A-, B-, C-, and D-form spectra, a new IR spectrum has been obtained in the presence of nickel ions. The IR spectra of Ni2+-poly[d(A-T)].poly[d(A-T)] films are analyzed by comparison with previously assigned IR spectra of left-handed poly[d(G-C)].poly[d(G-C)] and poly[d(A-C)].poly[d(G-T)], and it is possible to conclude that they reflect a Z-type structure for poly[d(A-T)].poly[d(A-T)]. The Z conformation has been favored by the high polynucleotide concentration, by the low water content of the films, and by specific interactions of the transition metal ions with the purine bases stabilized in a syn conformation. A structuration of the water hydration molecules around the double-stranded Ni2+-poly[d(A-T)].poly[d(A-T)] is shown by the presence of a strong sharp water band at 1615 cm-1.  相似文献   

7.
gp32 I is a protein with a molecular weight of 27 000. It is obtained by limited hydrolysis of T4 gene 32 coded protein, which is one of the DNA melting proteins. gp32 I itself appears to be also a melting protein. It denatures poly[d(A-T)].poly[d(A-T)] and T4 DNA at temperatures far (50-60 degrees C) below their regular melting temperatures. Under similar conditions gp32 I will denature poly[d(A-T).poly[d(A-T)] at temperatures approximately 12 degrees C lower than those measured for the intact gp32 denaturation. For T4 DNA gp32 shows no melting behavior while gp32 I shows considerable denaturation (i.e., hyperchromicity) even at 1 degree C. In this paper the denaturation of poly[d(A-T)].poly[d(A-T)] and T4 DNA by gp32 I is studied by means of circular dichroism. It appears that gp32 I forms a complex with poly[d(A-T)]. The conformation of the polynucleotide in the complex is equal to that of one strand of the double-stranded polymer in 6 M LiCl. In the gp32 I DNA complex formed upon denaturation of T4 DNA, the single-stranded DNA molecule has the same conformation as one strand of the double-strand T4 DNA molecule in the C-DNA conformation.  相似文献   

8.
Synthetic double-stranded polydeoxynucleotides of the general form poly[d(AnT).d(ATn)], with n ranging from 3 to 11, have been synthesized. The conformation of the polymers was investigated by circular dichroism spectroscopy and the polymers were examined for their ability to form nucleosomes. Although spectra show that a circular dichroism band characteristic of poly[d(A.T)] appears in the polymer family for n greater than 7, we demonstrate that even polynucleotides with the longest tracts of contiguous adenosine bases (n = 11) are able to form nucleosomes when reconstituted using a histone exchange procedure. Thus resistance to nucleosome formation does not coincide with the appearance of features similar to that of poly[d(A.T)] over the bulk of the nucleosomal DNA. Furthermore, we show that an approximately 150 base-pair poly[d(A.T)] itself, long thought to be refractory to nucleosome formation, can assemble into such a protein-DNA complex when reconstituted by a low-salt exchange procedure. Competitive assays show that the homopolymer reconstitutes about as well as heterogeneous sequences DNA. Our work, therefore, suggests that highly adenosine-rich sequences in vivo apparently have a function that operates at a level other than that of nucleosome structure.  相似文献   

9.
CD spectra were obtained for eight synthetic double-stranded DNA polymers down to at least 175 nm in the vacuum uv. Three sets of sequence isomers were studied: (a) poly[d(A-C).d(G-T)] and poly[d(A-G).d(C-T)], (b) poly[d(A-C-C).d(G-G-T)] and poly[d(A-C-G).d(C-G-T)], and (c) poly[d(A).d(T)], poly[d(A-T).d(A-T)], poly[d(A-A-T).d(A-T-T)], and poly[d(A-A-T-T).d(A-A-T-T)]. There were significant differences in the CD spectra at short wavelengths among each set of sequence isomers. The (G.C)-containing sequences had the largest vacuum uv bands, which were positive and in the wavelength range of 180-191 nm. There were no large negative bands at longer wavelengths, consistent with the polymers all being in right-handed conformations. Among the set of sequences containing only A.T base pairs, poly[d(A).d(T)] had the largest vacuum uv CD band, which was at 190 nm. This CD band was not present in the spectra of the other (A.T)-rich polymers and was absent from two first-neighbor estimations of the poly[d(A).d(T)] spectrum obtained from the other three sequences. We concluded that the sequence dependence of the vacuum uv spectra of the (A.T)-rich polymers was due in part to the fact that poly[d(A).d(T)] exists in a noncanonical B conformation.  相似文献   

10.
We report the temperature and salt dependence of the volume change (DeltaVb) associated with the binding of ethidium bromide and netropsin with poly(dA).poly(dT) and poly[d(A-T)].poly[d(A-T)]. The DeltaV(b) of binding of ethidium with poly(dA).poly(dT) was much more negative at temperatures approximately 70 degrees C than at 25 degrees C, whereas the difference is much smaller in the case of binding with poly[d(A-T)].poly[d(A-T)]. We also determined the volume change of DNA-drug interaction by comparing the volume change of melting of DNA duplex and DNA-drug complex. The DNA-drug complexes display helix-coil transition temperatures (Tm several degrees above those of the unbound polymers, e.g., the Tm of the netropsin complex with poly(dA)poly(dT) is 106 degrees C. The results for the binding of ethidium with poly[d(A-T)].poly[d(A-T)] were accurately described by scaled particle theory. However, this analysis did not yield results consistent with our data for ethidium binding with poly(dA).poly(dT). We hypothesize that heat-induced changes in conformation and hydration of this polymer are responsible for this behavior. The volumetric properties of poly(dA).poly(dT) become similar to those of poly[d(A-T)].poly[d(A-T)] at higher temperatures.  相似文献   

11.
The rate constants of 1H----3H exchange between water and C8H-groups of purine residues of alternating polynucleotides: poly[d(A-C)].poly[d(G-T)] and poly[d(A-T)].poly[d(A-T)], as well as Escherichia coli DNA, dAMP and dGMP, in solutions with high concentration (4.3 or 6 M) CsF, in water ethanol (60%) solution and (in comparison) in 0.15 M NaCl were determined at 25 degrees C. The 1H----3H exchange rate exchange rate constants for adenylic (kA) and guanylic (kG) residues of polynucleotides were compared with the corresponding constant for DNA and mononucleotides. It was shown that at conditions when poly[d(G-T)] and poly[d(A-T)].poly[d(A-T)] exhibit the "X-form" CD spectrum, alteration of exchange rates in polynucleotides (approximately 2-fold increase in kA in CSF and approximately 1.5-fold decrease in kA and kG in 60% ethanol with 0.15 M NaCl) is due to the effect of solvents on the chemical reactivity of purine residues, but does not reflect a conformational transition. The analysis of these results allows us to conclude, that alternating polynucleotides under the above mentioned conditions retain roughly the conformations inherent in them in 0.15 M NaCl: poly[d(A-C)].poly[d(G-T)] conformation in 4.3 m CsF or 60% ethanol differs only insignificantly from the "canonic" B-DNA, whereas the poly[d(A-T)].poly[d(A-T)] conformation in 6 M CSF corresponds to B-alternating DNA.  相似文献   

12.
Raman spectra of six synthetic polydeoxyribonucleotide duplexes with different base sequences have been examined in aqueous solutions with different salt or nucleotide concentrations. Detailed conformational differences have been indicated between B and Z forms of poly[d(G-C)] X poly[d(G-C)], between B forms of poly[d(G-C)] X poly[d(G-C)] and poly[d(G-m5C)] X poly[d(G-m5C)], between A and B forms of poly(dG) X poly(dC), between B and "CsF" forms of poly[d(A-T)] X poly[d(A-T)], between B forms of poly[d(A-U)] X poly[d(A-U)] and poly[d(A-T)] X poly[d(A-T)], and between low- and high-salt (CsF) forms of poly(dA) X poly(dT). The Raman spectrum of calf-thymus DNA in aqueous solution was also observed and was compared with the Raman spectra of its fibers in A, B, and C forms.  相似文献   

13.
Chemical cross-linking was used to study the interaction between non-histone high-mobility-group (HMG)1 and histone H5 in free solution. The presence of acidic C-terminal domain in HMG1 was shown to be a prerequisite for HMG1 binding to histone H5. The objective of this communication is to ascertain whether HMG1 could affect the conformation of DNA associated with a linker histone H5. Complexes of histone H5 with chicken erythrocyte DNA or an alternating purine-pyrimidine polynucleotide poly[d(A-T)] were prepared at different molar ratios H5/DNA. Changes in DNA conformation in the complexes with histone H5 or H5/HMG1 were monitored by circular dichroism (c.d.). Depending on the molar ratio H5/poly[d(A-T)], under conditions limiting the complex aggregation, three distinct types of c.d. spectra were observed. The addition of HMG1 to H5-DNA complexes reduced in all cases the histone H5-induced conformational changes in poly[d(A-T)]. The sensitivity of H5-poly[d(A-T)] complexes to HMG1 was inversely proportional to the amount of H5 in the complex. The effect of HMG1 was not observed upon removal of the acidic C-terminal domain of HMG1.  相似文献   

14.
31P- and 1H-nmr and laser Raman spectra have been obtained for poly[d(G-T)]·[d(C-A)] and poly[d(A-T)] as a function of both temperature and salt. The 31P spectrum of poly[d(G-T)]·[d(C-A)] appears as a quadruplet whose resonances undergo separation upon addition of CsCl to 5.5M. 1H-nmr measurements are assigned and reported as a function of temperature and CsCl concentration. One dimensional nuclear Overhauser effect (NOE) difference spectra are also reported for poly[d(G-T)]·[d(C-A)] at low salt. NOE enhancements between the H8 protons of the purines and the C5 protons of the pyrimidines, (H and CH3) and between the base and H-2′,2″ protons indicate a right-handed B-DNA conformation for this polymer. The NOE patterns for the TH3 and GH1 protons in H2O indicate a Watson–Crick hydrogen-bonding scheme. At high CsCl concentrations there are upfield shifts for selected sugar protons and the AH2 proton. In addition, laser Raman spectra for poly[d(A-T)] and poly[d(G-T)]·[d(C-A)] indicate B-type conformations in low and high CsCl, with predominantly C2′-endo sugar conformations for both polymers. Also, changes in base-ring vibrations indicate that Cs+ binds to O2 of thymine and possibly N3 of adenine in poly[d(G-T)]·[d(C-A)] but not in poly[d(A-T)]. Further, 1H measurements are reported for poly[d(A-T)] as a function of temperature in high CsCl concentrations. On going to high CsCl there are selective upfield shifts, with the most dramatic being observed for TH1′. At high temperature some of the protons undergo severe changes in linewidths. Those protons that undergo the largest upfield shifts also undergo the most dramatic changes in linewidths. In particular TH1′, TCH3, AH1′, AH2, and TH6 all undergo large changes in linewidths, whereas AH8 and all the H-2′,2″ protons remain essentially constant. The maximum linewidth occurs at the same temperature for all protons (65°C). This transition does not occur for d(G-T)·d(C-A) at 65°C or at any other temperature studied. These changes are cooperative in nature and can be rationalized as a temperature-induced equilibrium between bound and unbound Cs+, with duplex and single-stranded DNA. NOE measurements for poly[d(A-T)] indicate that at high Cs+ the polymer is in a right-handed B-conformation. Assignments and NOE effects for the low-salt 1H spectra of poly[d(A-T)] agree with those of Assa-Munt and Kearns [(1984) Biochemistry 23 , 791–796] and provide a basis for analysis of the high Cs+ spectra. These results indicate that both polymers adopt a B-type conformation in both low and high salt. However, a significant variation is the ability of the phosphate backbone to adopt a repeat dependent upon the base sequence. This feature is common to poly[d(G-T)]·[d(C-A)], poly[d(A-T)], and some other pyr–pur polymers [J. S. Cohen, J. B. Wouten & C. L Chatterjee (1981) Biochemistry 20 , 3049–3055] but not poly[d(G-C)].  相似文献   

15.
DNA's of various AT content, poly[d(A-T)-d(A-T)], and double-stranded RNA were irradiated with UV light at 365 nm in the presence of linear (xanthotoxin) or angular (angelicin) furocoumarins. The covalent photobinding is strongly dependent on the spatial arrangement of furocoumarin molecules at the polymer conformation. CD measurements demonstrate that the bifunctional photochemical binding of xanthotoxin with double-stranded DNA's and poly[d(A-T)-d(A-T)] is accompanied by conformational changes which involve probably decreasing helical twisting of the double helix. This effect is greatly enhanced with increasing AT content. The formation of A-like structures is very unlikely since the B leads to A transition induced by ethanol addition was found to be strongly suppressed in xanthotoxin photoreacted DNA. The B-type helix appears to be the most sensitive conformation with minor restriction to produce photochemically induced cross-links.  相似文献   

16.
The nature of binding of Ru(phen) 2+ (I), Ru(bipy) 2+ (II), Ru(terpy) 2+ (III) (phen = 1,10-phenanthroline, bipy 3 = 2,2'-bipyridyl, 3 terpy = 2,2'2," - 2 terpyridyl) to DNA, poly[d(G-C)] and poly[d(A-T)] has been compared by absorption, fluorescence, DNA melting and DNA unwinding techniques. I binds intercalatively to DNA in low ionic strength solutions. Topoisomerisation shows that it unwinds DNA by 22 degrees +/- 1 per residue and that it thermally stabilizes poly[d(A-T)] in a manner closely resembling ethidium. Poly[d(A-T)] induces greater spectral changes on I than poly[d(G-C)] and a preference for A-T rich regions is indicated. I binding is very sensitive to Mg2+ concentration. In contrast to I the binding of II and III appears to be mainly electrostatic in nature, and causes no unwinding. There is no evidence for the binding of the neutral Ru(phen)2 (CN)2 or Ru(bipy)2 (CN)2 complexes. DNA is cleaved, upon visible irradiation of aerated solutions, in the presence of either I or II.  相似文献   

17.
Synthetic RNA poly[r(A-T)] has been synthesized and its CD spectral properties compared to those of poly[r(A-U)], poly[d(A-T)], and poly[d(A-U)] in various salt and ethanolic solutions. The CD spectra of poly[r(A-T)] in an aqueous buffer and of poly[d(A-T)] in 70.8% v/v ethanol are very similar, suggesting that they both adopt the same A conformation. On the other hand, the CD spectra of poly[r(A-T)] and of poly[r(A-U)] differ in aqueous, and even more so in ethanolic, solutions. We have recently observed a two-state salt-induced isomerization of poly[r(A-U)] into chiral condensates, perhaps of Z-RNA [M. Vorlícková, J. Kypr, and T. M. Jovin, (1988) Biopolymers 27, 351-354]. It is shown here that poly[r(A-T)] does not undergo this isomerization. Both the changes in secondary structure and tendency to aggregation are different for poly[r(A-T)] and poly[r(A-U)] in aqueous salt solutions. In most cases, the CD spectrum of poly[r(A-U)] shows little modification of its CD spectrum unless the polymer denatures or aggregates, whereas poly[r(A-T)] displays noncooperative alterations in its CD spectrum and a reduced tendency to aggregation. At high NaCl concentrations, poly[r(A-T)] and poly[r(A-U)] condense into psi(-) and psi(+) structures, respectively, indicating that the type of aggregation is dictated by the polynucleotide chemical structure and the corresponding differences in conformational properties.  相似文献   

18.
G H Shimer  A R Wolfe  T Meehan 《Biochemistry》1988,27(20):7960-7966
We have investigated the equilibrium binding of racemic 7r,8t,9t,10c-tetrahydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene to the double-stranded, synthetic polynucleotides poly[d(A-T)], poly[d(G-C)], and poly[d(G-m5C)] at low binding ratios. Difference absorption spectroscopy shows a 10-nm red shift for binding to poly[d(A-T)] and an 11-nm red shift for binding to either poly[d(G-C)] or poly[d(G-m5C)]. The value of delta epsilon for binding is approximately the same for all three hydrocarbon-polynucleotide complexes. Binding of this neutral polycyclic aromatic hydrocarbon derivative to these polynucleotides is dependent upon ionic strength and temperature. Analysis of complex formation employing polyelectrolyte theory shows a greater release of counterions associated with binding to poly[d(A-T)] than with the other two polynucleotides (0.5 and ca. 0.36, respectively). Thus, sequence-selective binding of this hydrocarbon in DNA would be expected to change depending on salt concentration. The temperature dependence of binding was studied at 100 mM Na+ where the equilibrium binding constants for poly[d(A-T)] and poly[d(G-m5C)] are roughly equivalent and 6-fold greater than the binding affinity for poly[d(G-C)]. The binding to poly[d(A-T)] and poly[d(G-C)] is characterized by a delta H omicron = -7.0 kcal/mol, and the large difference in affinity constants arises from differences in negative entropic contributions. Formation of hydrocarbon-poly[d(G-m5C)] complexes is accompanied by a delta H = -9.1 kcal/mol. However, the affinity for poly[d-(G-m5C)] is the same as that for poly[d(A-T)] due to the much more negative entropy associated with binding to poly[d(G-m5C)].  相似文献   

19.
Fluorescence-determined preferential binding of quinacrine to DNA.   总被引:1,自引:0,他引:1       下载免费PDF全文
Quinacrine complexes with native DNA (Calf thymus, Micrococcus lysodeikticus, Escherichia coli, Bacillus subtilis, and Colstridium perfringens) and synthetic polynucleotides (poly(dA) . poly(dT), poly[d(A-T)] . poly[d(A-T)], poly(dG) . poly(dC) and poly[d(G-C)] . poly[d(G-C)]) has been investigated in solution at 0.1 M NaCl, 0.05 M Tris HCl, 0.001 M EDTA, pH 7.5, at 20 degrees C. Fluorescence excitation spectra of complexes with dye concentration D = 5-30 microM and DNA phosphate concentration P = 400 microM have been examined from 300 to 500 nm, while collecting the emission above 520 nm. The amounts of free and bound quinacrine in the dye-DNA complexes have been determined by means of equilibrium dialysis experiments. Different affinities have been found for the various DNAs and their values have been examined with a model that assumes that the binding constants associated with alternating purine and pyrimidine sequences are larger than those relative to nonalternating ones. Among the alternating nearest neighbor base sequences, the Pyr(3'-5')Pur sequences, i.e., C-G, T-G, C-A and T-A seem to bind quinacrine stronger than the remaining sequences. In particular the three sites, where a G . C base pair is involved, are found to display higher affinities. Good agreement is found with recent calculations on the energetics of intercalation sites in DNA. The analysis of the equilibrium shows also that the strength of the excitation spectrum of bound dye depends strongly upon the ratio of bound quinacrine to DNA. This effect can be attributed to dye-dye energy transfer along DNA.  相似文献   

20.
The interactions of two positional isomers and one analogue of meso-tetra (4-N-methylpyridyl) porphine, with the synthetic polynucleotides poly[d(A-T)] . poly[d(A-T)] and poly[d(G-C)] . poly[d(G-C)] have been investigated by circular dichroism. All four porphyrins were found to bind to the polynucleotides as shown by the induction of circular dichroism in their Soret bands. Furthermore, the sign of the induced ellipticity reflects selective occupation of binding sites by the porphyrin ligands. The conformational lability of poly[d(A-T)] X poly[d(A-T)] was found to be appreciable as micromolar amounts of meso-substituted 4-N-methylpyridyl, 3-N-methylpyridyl, and p-N-trimethylanilinium porphines induced a CD spectrum similar but not identical to that of DNA in the Z-form, i.e. a negative band at 280 nm and a positive band at 259 nm. The effect of porphyrin binding to poly[d(G-C)] X poly[d(G-C)] was less pronounced and dissimilar to that seen in the AT polymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号