首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phenomenon of trapping of weakly relativistic charged particles (with kinetic energies on the order of mc 2) into a regime of surfatron acceleration by an electromagnetic wave that propagates in plasma across a weak external magnetic field has been studied using nonlinear numerical calculations based on a solution of the relativistic equations of motion. Analysis showed that, for the wave amplitude above a certain threshold value and the initial wave phase outside the interval favorable for the surfing regime, the trajectory of a charged particle initially corresponds to its cyclotron rotation in the external magnetic field. For the initial particle energies studied, the period of this rotation is relatively short. After a certain number (from several dozen to several thousand and above) of periods of rotation, the wave phase takes a value that is favorable for trapping of the charged particle on its trajectory by the electromagnetic wave, provided the Cherenkov resonance conditions are satisfied. As a result, the wave traps the charged particle and imparts it an ultrarelativistic acceleration. In momentum space, the region of trapping into the regime of surfing on an electromagnetic wave turns out to be rather large.  相似文献   

2.
The formation of a spatially localized plasma with a high brightness has been experimentally observed in a dielectric plasma guide under the electron cyclotron resonance discharge at the excitation of a standing ion-acoustic wave. The results obtained show the possibility of designing compact high-intensity radiation sources with a spectrum determined by the working gas or gas mixture type, high-intensity chemically active particle flow sources, and plasma thrusters for correcting orbits of light spacecraft.  相似文献   

3.
A study is made of the problem of electron dynamics in the presence of a plane electrostatic wave in a model in which the Earth’s magnetic field is parabolic. The problem is reduced to a Hamiltonian system with two degrees of freedom, which is investigated by the methods of perturbation theory. The structure of the phase space of the system is described, and the phenomena of capture into the resonance and scattering on the resonance are considered. It is shown that these phenomena lead to breaking of the second (longitudinal) adiabatic invariant and stochastization of the electron dynamics.  相似文献   

4.
A cubically nonlinear multiharmonic theory of two-stream instability in a two-velocity relativistic electron beam is constructed with allowance for parametric resonance between harmonics of longitudinal waves of different types, as well as between wave harmonics of the same type. The effect of these two kinds of parametric resonance interaction on the development of two-stream instability is investigated. It is shown that parametric resonance between different types of longitudinal waves excited in a two-velocity beam can substantially affect the development of physical processes in the system under study. It is proposed to use parametric resonance between longitudinal waves of different types to form waves with a prescribed broad multiharmonic spectrum.  相似文献   

5.
A set of wave equations is derived that describes electromagnetic waves at frequencies on the order of the ion gyrofrequency in a plasma column with an arbitrary electron temperature. This set takes into account, in particular, the resonant interaction of electrons with waves in the transit-time magnetic pumping regime. The effect of the amplification of the electromagnetic fields of current-carrying antennas by the plasma is analyzed. The evolution of the fields with an increase of plasma density from a zero value (vacuum) is considered. The main parameters are determined for minority ion cyclotron resonance heating in the planned EPSILON system.  相似文献   

6.
The possibility is demonstrated of splitting the eigenfrequencies of MHD plasma waves in a stellarator with a weakly rippled helical confining magnetic field. The distribution of the fields of an Alfvén wave in the satellite Alfvén resonance region is investigated when the influence of the helical ripple in a confining magnetic field on the resonance structure is comparable with the effects of the finite ion Larmor radius, electron inertia, and collisions between plasma particles.  相似文献   

7.
The parametric effect of electromagnetically induced transparency (EIT) is studied in the case of quasi-transverse propagation of an extraordinary wave in the vicinity of the upper hybrid resonance in a cold plasma. The question is investigated of whether the waves that propagate in a smoothly inhomogeneous medium (from the transparency region in the vicinity of the upper hybrid resonance into vacuum or in the opposite direction) can reach the EIT region. The features of the quasi-transverse propagation of an extraordinary wave at the electron cyclotron resonance frequency in the quasi-EIT regime are also considered. It is shown that, in this situation, the parametric effects modify the polarization of the wave, with the result that its absorption increases substantially (by one to two orders of magnitude).  相似文献   

8.
Plasma Physics Reports - A study is made of the propagation of a long-wavelength fast magnetosonic wave in a space plasma with a low particle density and high temperature...  相似文献   

9.
A theoretical model of intra-axonal transport is proposed that presupposes a carrier system moving down the axon in a distal direction. Protein and particle transport is achieved by their reversible association with the distally moving carriers. Mathematical equations representing the concentrations of moving carriers and proteins and/or particles within the axon at any position and time are proposed. Analysis of the equations demonstrates that a traveling wave solution for the particle concentration (an experimental fact) is possible provided the chemical interaction between particles and carriers exhibits positive cooperativity. The phase velocity of the wave solution is interpreted as the observed velocity of the intra-axonal transport, known to be independent of position of observation. In addition, the theory predicts a spectrum of transport velocities for different proteins, in agreement with observations. The velocity of a given protein is dependent on its affinity to the carrier.  相似文献   

10.
Thalamic neurons exhibit subthreshold resonance when stimulated with small sine wave signals of varying frequency and stochastic resonance when noise is added to these signals. We study a stochastic Hindmarsh-Rose model using Monte-Carlo simulations to investigate how noise, in conjunction with subthreshold resonance, leads to a preferred frequency in the firing pattern. The resulting stochastic resonance (SR) exhibits a preferred firing frequency that is approximately exponential in its dependence on the noise amplitude. In similar experiments, frequency dependent SR is found in the reliability of detection of alpha-function inputs under noise, which are more realistic inputs for neurons. A mathematical analysis of the equations reveals that the frequency preference arises from the dynamics of the slow variable. Noise can then transfer the resonance over the firing threshold because of the proximity of the fast subsystem to a Hopf bifurcation point. Our results may have implications for the behavior of thalamic neurons in a network, with noise switching the membrane potential between different resonance modes.  相似文献   

11.
A study is made of the excitation of wake waves by a one-dimensional bunch of charged particles in an electron plasma in the presence of an intense monochromatic pump wave with circular polarization. In the main state (in the absence of a bunch), the interaction between a pump wave and a plasma is described by the Maxwell equations and the nonlinear relativistic hydrodynamic equations for a cold plasma. The excitation of linear waves by a one-dimensional bunch is investigated against a cold plasma background. It is shown that, in a certain range of the parameter values of the bunch, pump wave, and plasma, the amplitude of the excited transverse waves grows as the energy of the bunch particles increases until the relativistic factor of the bunch reaches a certain threshold value above which the transverse wave amplitude becomes essentially independent of the bunch particle energy and grows as the intensity and frequency of the pump wave increase. The amplitude and wavelength of the longitudinal field, which is shown to depend weakly on the energy of the bunch particles, grows with increasing the pump wave intensity.  相似文献   

12.
A study is made of the formation of the frequency spectrum of an extraordinary wave during its multiple small-angle scatterings along the path to the upper hybrid resonance, in the upper hybrid resonance region, and behind the conversion point. The formation of the spectrum is investigated both approximately (by the eikonal method) and exactly (in the limit of large-scale plasma density fluctuations responsible for small-angle scattering). It is demonstrated that these two approaches yield the same results in the common range of their applicability. It is shown that, in the vicinity of the upper hybrid resonance, the broadening of the frequency spectrum of a probing wave is proportional to its wavenumber. This circumstance and the predicted amount by which the spectrum broadens make it possible to consider small-angle scattering as one of the main effects responsible for a very large spectrum broadening observed in experiments.  相似文献   

13.
Scattering field interactions and surface plasmon resonance (SPR) in coupled silver nanospheres are simulated by using the finite-element method, which includes the influences of near-field enhancements of electric field by the particle sizes, separation distances, propagation directions, as well as the polarizations of the incident wave. The proposed structures exhibit a red- and blue-shifted that can be tuned by varying the particle sizes and the separation distances, respectively. Implications for surface-enhance Raman scattering and nano-optics are discussed in three-dimensional models. The evolution of SPR and nano-photonic device with the structural variations can be designed in a controlled manner.  相似文献   

14.
Results are presented from the experimental study of conditions for the formation of a plasma ring by a microwave discharge in a narrow coaxial cavity in an axisymmetric magnetic field the magnitude of which is below the electron-cyclotron resonance value. It is established that the necessary condition for this process is the presence of an electrostatic wave propagating in the azimuthal direction, the circumference of the plasma ring being a multiple of the wave half-length.  相似文献   

15.
A novel integrated bio-sensor technology based on thin-film bulk acoustic wave resonators on silicon is presented and the feasibility of detecting DNA and protein molecules proofed. The detection principle of these sensors is label-free and relies on a resonance frequency shift caused by mass loading of an acoustic resonator, a principle very well known from quartz crystal micro balances. Integrated ZnO bulk acoustic wave resonators with resonance frequencies around 2 GHz have been fabricated, employing an acoustic mirror for isolation from the silicon substrate. DNA oligos have been thiol-coupled to the gold electrode by on-wafer dispensing. In a further step, samples have either been hybridised or alternatively a protein has been coupled to the receptor. The measurement results show the new bio-sensor being capable of both, detecting proteins as well as the DNA hybridisation without using a label. Due to the substantially higher oscillation frequency, these sensors already show much higher sensitivity and resolution comparable to quartz crystal micro balances. The potential for these sensors and sensors arrays as well as technological challenges will be discussed in detail.  相似文献   

16.
The interaction between charged plasma particles and an electromagnetic wave with a stochastic jumping phase is analyzed by numerical simulations. It is demonstrated that, in the course of interaction, the particle energy can increase by more than one order of magnitude. Optimal conditions for efficient interaction of charged plasma particles with a wave having a stochastically jumping phase are determined. According to the simulation results, substantial acceleration of charged plasma particles by a wave with a stochastically jumping phase takes place both at fixed time intervals between phase jumps and when these intervals are random. The influence of the wave parameters, such as the wave amplitude, the characteristic time interval between phase jumps, and the characteristic magnitude of these jumps, on the acceleration dynamics is analyzed.  相似文献   

17.
A complete self-consistent electrodynamic model of a pulsed gas discharge excited by surface waves is developed. The model allows one to calculate both the initial phase of the discharge front propagation and the parameters of the produced plasma. The spatiotemporal evolution of the electromagnetic field and plasma parameters at the discharge front is investigated for the first time. It is shown that discharge propagation is mainly governed by a breakdown wave in an inhomogeneous electric field at the leading edge of the ionization front. It is found that the effect of the electric field enhancement in the plasma resonance region significantly affects the velocity of the breakdown wave. The results of calculations agree well with experimental data.  相似文献   

18.
Conditions for the propagation of a slow extraordinary wave in dense magnetized plasma are found. A solution to the set of relativistic hydrodynamic equations and Maxwell’s equations under the plasma resonance conditions, when the phase velocity of the nonlinear wave is equal to the speed of light, is obtained. The deviation of the wave frequency from the resonance frequency is accompanied by nonlinear longitudinal-transverse oscillations. It is shown that, in this case, the solution to the set of self-consistent equations obtained by averaging the initial equations over the period of high-frequency oscillations has the form of an envelope soliton. The possibility of excitation of a nonlinear wave in plasma by an external electromagnetic pulse is confirmed by numerical simulations.  相似文献   

19.

Background

How does the cochlea analyse sound into its component frequencies? In the 1850s Helmholtz thought it occurred by resonance, whereas a century later Békésy''s work indicated a travelling wave. The latter answer seemed to settle the question, but with the discovery in 1978 that the cochlea emits sound, the mechanics of the cochlea was back on the drawing board. Recent studies have raised questions about whether the travelling wave, as currently understood, is adequate to explain observations.

Approach

Applying basic resonance principles, this paper revisits the question. A graded bank of harmonic oscillators with cochlear-like frequencies and quality factors is simultaneously excited, and it is found that resonance gives rise to similar frequency responses, group delays, and travelling wave velocities as observed by experiment. The overall effect of the group delay gradient is to produce a decelerating wave of peak displacement moving from base to apex at characteristic travelling wave speeds. The extensive literature on chains of coupled oscillators is considered, and the occurrence of travelling waves, pseudowaves, phase plateaus, and forced resonance in such systems is noted.

Conclusion and significance

This alternative approach to cochlear mechanics shows that a travelling wave can simply arise as an apparently moving amplitude peak which passes along a bank of resonators without carrying energy. This highlights the possible role of the fast pressure wave and indicates how phase delays and group delays of a set of driven harmonic oscillators can generate an apparent travelling wave. It is possible to view the cochlea as a chain of globally forced coupled oscillators, and this model incorporates fundamental aspects of both the resonance and travelling wave theories.  相似文献   

20.
A study is made of the influence of large-scale plasma turbulence on the results from a diagnostic method that is based on enhanced scattering of microwaves near the upper hybrid resonance and is highly sensitive to small-scale fluctuations. The resolution in radial wavenumbers that is provided by an enhanced-scattering correlation analysis of small-scale fluctuations with allowance for multiple small-angle scatterings of the probing and scattered waves along their paths is determined. The frequency spectrum of a wave that is backscattered by the small-scale fluctuations involved in large-scale turbulent motion and undergoes multiple smallangle scatterings is analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号