首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anticancer chemotherapy is strongly hampered by the low therapeutic index of most anticancer drugs and the development of chemoresistance. Therefore, there is a continued need for the identification of new molecular targets in order to selectively hit cancer cells. RNA has been recently validated as a cancer target by the use of different specific ligands and/or by different agents able to destroy its diverse forms. The ability of synthetic polyamines to interact and to alter the RNA structure has been already reported. In the present paper the interaction and the ability to damage RNA structure by several synthetic polyamines were evaluated and quantified by microfluid capillary electrophoresis. This technique allowed us to visualize both the RNA impairment through different electropherograms and to assess the RNA integrity number. Finally, the ability to discriminate between RNA and DNA by these synthetic polyamines was also evaluated.  相似文献   

2.
3.
The ability of metal surfaces and nanostructures to localize and enhance optical fields is the primary reason for their application in biosensing and imaging. Local field enhancement boosts the signal-to-noise ratio in measurements and provides the possibility of imaging with resolutions significantly better than the diffraction limit. In fluorescence imaging, local field enhancement leads to improved brightness of molecular emission and to higher detection sensitivity and better discrimination. We review the principles of plasmonic fluorescence enhancement and discuss applications ranging from biosensing to bioimaging.  相似文献   

4.
5.
Estrofan (0.1 to 5 mg/kg) administered to rats and mice 5 min prior to gamma irradiation with doses of 8.5 to 9.5 Gy (LD90/30) increases the survival rate up to 30-40 per cent. The drug is ineffective when administered 30 and 60 min before irradiation.  相似文献   

6.
The cyclopentenone prostaglandin (cyPG) PGA1 displays potent anti-proliferative and anti-inflammatory effects. Therefore, PGA1 derivatives are being studied as therapeutic agents. One major mechanism for cyPG action is the modification of protein cysteine residues, the nature of the modified proteins being highly dependent on the structure of the cyPG. Biotinylated cyPGs may aid in the proteomic identification of cyPG targets of therapeutic interest. However, for the identified targets to be relevant it is critical to assess whether biotinylated cyPGs retain the desired biological activity. Here we have explored the anti-inflammatory, anti-proliferative and cell stress-inducing effects of a biotinylated analog of PGA1 (PGA1-biotinamide, PGA1-B), to establish its validity to identify cyPG–protein interactions of potential therapeutic interest. PGA1 and PGA1-B displayed similar effects on cell viability, Hsp70 and heme oxygenase-1 induction and pro-inflammatory gene inhibition. Remarkably, PGA1-B did not activate PPAR. Therefore, this biotinylated analog can be useful to identify PPAR-independent effects of cyPGs. Protein modification and subcellular distribution of PGA1-B targets were cell-type-dependent. Through proteomic and biochemical approaches we have identified a novel set of PGA1-B targets including proteins involved in stress response, protein synthesis, cytoskeletal regulation and carbohydrate metabolism. Moreover, the modification of several of the targets identified could be reproduced in vitro. These results unveil novel interactions of PGA1 that will contribute to delineate the mechanisms for the anti-proliferative and metabolic actions of this cyPG.  相似文献   

7.
While many processes have been developed to modify the surface of glass and other oxides for biomolecule attachment, they rely primarily upon wet chemistry and are costly and time-consuming. We describe a process that uses a cold plasma and a subsequent in vacuo vapor-phase reaction to terminate a variety of oxide surfaces with epoxide chemical groups. These epoxide groups can react with amine-containing biomolecules, such as proteins and modified oligonucleotides, to form strong covalent linkages between the biomolecules and the treated surface. The use of a plasma activation step followed by an in vacuo vapor-phase reaction allows for the precise control of surface functional groups, rather than the mixture of functionalities normally produced. By maintaining the samples under vacuum throughout the process, adsorption of contaminants is effectively eliminated. This process modifies a range of different oxide surfaces, is fast, consumes a minimal amount of reagents, and produces attachment densities for bound biomolecules that are comparable to or better than commercially available substrates.  相似文献   

8.
We report the cocrystal structures of a computationally designed and experimentally optimized retro-aldol enzyme with covalently bound substrate analogs. The structure with a covalently bound mechanism-based inhibitor is similar to, but not identical with, the design model, with an RMSD of 1.4 Å over active-site residues and equivalent substrate atoms. As in the design model, the binding pocket orients the substrate through hydrophobic interactions with the naphthyl moiety such that the oxygen atoms analogous to the carbinolamine and β-hydroxyl oxygens are positioned near a network of bound waters. However, there are differences between the design model and the structure: the orientation of the naphthyl group and the conformation of the catalytic lysine are slightly different; the bound water network appears to be more extensive; and the bound substrate analog exhibits more conformational heterogeneity than typical native enzyme–inhibitor complexes. Alanine scanning of the active-site residues shows that both the catalytic lysine and the residues around the binding pocket for the substrate naphthyl group make critical contributions to catalysis. Mutating the set of water-coordinating residues also significantly reduces catalytic activity. The crystal structure of the enzyme with a smaller substrate analog that lacks naphthyl ring shows the catalytic lysine to be more flexible than in the naphthyl–substrate complex; increased preorganization of the active site would likely improve catalysis. The covalently bound complex structures and mutagenesis data highlight the strengths and weaknesses of the de novo enzyme design strategy.  相似文献   

9.
The nematode Strongyloides ratti has a remarkable life cycle, which has both a parasitic and a free-living phase. The free-living phase includes a choice between two developmental routes. Here, Mark Viney discusses recent advances in understanding the biology of this developmental switch and shows how the life cycle of this nematode can be used to explore the lifestyle transitions common to all parasitic nematodes, as well as to address other basic biological questions.  相似文献   

10.
11.
NMR spectroscopy was used to search for mechanistically significant differences in the local mobility of the main-chain amides of Bacillus circulans xylanase (BCX) in its native and catalytically competent covalent glycosyl-enzyme intermediate states. 15N T1, T2, and 15N[1H] NOE values were measured for approximately 120 out of 178 peptide groups in both the apo form of the protein and in BCX covalently modified at position Glu78 with a mechanism-based 2-deoxy-2-fluoro-beta-xylobioside inactivator. Employing the model-free formalism of Lipari and Szabo, the measured relaxation parameters were used to calculate a global correlation time (tau(m)) for the protein in each form (9.2 +/- 0.2 ns for apo-BCX; 9.8 +/- 0.3 ns for the modified protein), as well as individual order parameters for the main-chain NH bond vectors. Average values of the order parameters for the protein in the apo and complexed forms were S2 = 0.86 +/- 0.04 and S2 = 0.91 +/- 0.04, respectively. No correlation is observed between these order parameters and the secondary structure, solvent accessibility, or hydrogen bonding patterns of amides in either form of the protein. These results demonstrate that the backbone of BCX is well ordered in both states and that formation of the glycosyl-enzyme intermediate leads to little change, in any, in the dynamic properties of BCX on the time scales sampled by 15N-NMR relaxation measurements.  相似文献   

12.
Chemoreceptors in Escherichia coli were studied in situ in chemotactic mutants, deficient in the ability to modify the receptors, by using membrane vesicles prepared from the mutants. The affinity of the receptors for the ligands is related to the level of modification of the receptors. Unmodified serine receptor had a dissociation constant of 0.8 microM, while modified receptor had a dissociation constant that was at least 100-times higher. The results are discussed in relation to the two-state model of the chemoreceptor.  相似文献   

13.
Label-free optical biosensors have been established as proven tools for monitoring specific biomolecular interactions. However, compact and robust embodiments of such instruments have yet to be introduced in order to provide sensitive, quantitative, and high-throughput biosensing for low-cost research and clinical applications. Here we present the Interferometric Reflectance Imaging Sensor (IRIS) using an inexpensive and durable multi-color LED illumination source to monitor protein-protein and DNA-DNA interactions. We demonstrate the capability of this system to dynamically monitor antigen-antibody interactions with a noise floor of 5.2 pg/mm(2) and DNA single mismatch detection under denaturing conditions in an array format. Our experiments show that this platform has comparable sensitivity to high-end label-free biosensors at a much lower cost with the capability to be translated to field-deployable applications.  相似文献   

14.
Evidence is presented for the reversible activation-inactivation of the microsomal ecdysone 20-monooxygenase from fat body of the cotton leafworm, Spodoptera littoralis, in a manner commensurate with reversible changes in its phosphorylation state. The activity of the monooxygenase was higher following preincubation with fluoride (an inhibitor of phosphoprotein phosphatases) than in its absence. Preincubation with alkaline phosphatase or with cAMP-dependent protein kinase resulted in appreciable diminution or enhancement, respectively, in monooxygenase activity. Activation of ecdysone 20-monooxygenase activity could also be effected by incubation with a cytosolic fraction in the presence of cAMP, ATP, and fluoride; this activation was prevented by a cAMP-dependent protein kinase inhibitor. Similarly, inactivation of the monooxygenase was achieved by preincubation with cytosol, the effect being enhanced by Ca2+-calmodulin or by Mg2+ ions. The combined results provide indirect evidence that the microsomal ecdysone 20-monooxygenase exists in an active phosphorylated form and an inactive dephosphorylated form, interconvertible by a cAMP-dependent protein kinase and a phosphoprotein phosphatase.  相似文献   

15.
Dendritic cells (DCs) are pivotal regulators of immune reactivity and immune tolerance. The observation that DCs can recruit naive T cells has invigorated cancer immunology and led to the proposal of DCs as the basis for vaccines designed for the treatment of cancer. Designing effective strategies to load DCs with antigens is a challenging field of research. The successful realization of gene transfer to DCs will be highly dependent on the employed vector system. Here, we review various viral and non-viral gene transfer systems, and discuss their distinct characteristics and possible advantages and disadvantages in respect to their use in DC-based immunotherapy.  相似文献   

16.
Phytohemagglutinin (PHA) isolated from Phaseolus vulgaris has been modified by treatment with various chemical reagents and the modified proteins have been tested for their ability to stimulate peripheral lymphocytes from two healthy human donors, in vitro. Reaction of PHA with citraconic anhydride, S-methyl isothiourea, or 2-hydroxy-5-nitrobenzyl bromide produced derivatives which retained the ability to stimulate lymphocytes, at low concentrations. Acylation of the lectin with acetic anhydride or masking of the carboxyl side chains by reaction with glycinamide-carbodiimide impaired stimulation. When PHA was treated with N-bromosuccinimide or with tetranitromethane, the derivatives were ineffective as lymphocyte stimulants. Chemical modifications affected, in some cases, the quaternary structure of the lectin. Glycinamide-, homoarginine-, and nitro-PHA were tetramers whereas acetyl-, citraconyl-, and N-bromosuccinimide-treated lectin were dimers. Antinative lectin antiserum cross-reacted with all the modified proteins, except in the case of the N-bromosuccinimide derivative. The results show that, in the human lymphocyte transformation assay, the mitogenic property of PHA may depend on intact aspartic, glutamic, and tyrosine residues whereas lysine residues do not appear to be essential.  相似文献   

17.
Tuning the responsiveness of a sensory receptor via covalent modification.   总被引:6,自引:0,他引:6  
Down-regulation or adaptation of receptors is an essential part of the chemotaxis mechanism to sense gradients. Using localized mutagenesis it is shown that the covalent modification of the receptors makes a slight change in the binding constant (factor of 2) which is far too small to explain the adaptation. The modification does, however, alter the signaling dramatically, an increasing tumbling signal being correlated with increased covalent modification. Responses in the two extreme cases, namely, completely unmodified and completely modified receptor, occur at attractant concentrations separated by 2 orders of magnitude. Amidation of the regulatory glutamate residues causes essentially the same signaling change as methylation. Thus, adaptation in chemotaxis is due to modulation of the receptor's signaling properties, not its affinity for the chemoeffector.  相似文献   

18.
Regulation by reversible, covalent modification of proteins requires a continuous expenditure of energy, even in a steady-state situation. The cost of this energy drain is evaluated for the case of an effector controlling the modifying enzyme and an effector controlling the demodifying enzyme and for the case of dual control in which an effector activates one of these enzymes and inhibits the other. Energy consumption is determined when the converter enzymes are functioning in the first-order and zero-order domains. The profile of energy expenditure versus fractional protein modification at steady state varies both as a function of the mechanism of control of the converter enzymes and of the kinetic domain in which they operate. This theory allows one to predict the strategies that would minimize energy costs. Dual control appears to provide maximum sensitivity with minimal energy expenditure. The analysis is applied to two experimental systems. Comparison of ATP turnover rates with rates for individual modification enzymes in living systems shows that a significant fraction of the total energy expenditure of an organism is required for the large number of reactions which involve covalent modification of proteins. It is concluded that there will be selection pressure for energy-efficient control of covalent regulation.  相似文献   

19.
20.
Sugar recognition in an aqueous system has been achieved using a boronic acid-diol interaction. Combination with an intramolecular amino group has enabled us to read out the binding process as a change in the fluorescence intensity. The novel interaction has been extended to dynamic sugar sensing utilizing an allosteric effect, molecular imprinting, and control of molecular assemblies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号