首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Stem cells dwell at the “stem cell niche” to accomplish a series of biological processes. The composition of the niche should be determined because the insufficient understanding of this feature limits the development in the study of stem cells. We showed in our study on mesenchymal stem cells (MSCs) that the MSCs first neighbored to CD31+ cells, which proved to be endothelial progenitor cells (EPCs), and formed a group of cell colony before they exerted their biological functions. It was further proved that EPCs have close interactions with MSCs and promoted the self-renewal of the MSCs in vitro and in vivo. Together with these achievements, we hypothesized that EPCs may be a possible biological component of the MSC stem cell niche and affect the biological processes of MSCs.  相似文献   

2.
Bone marrow stromal cells (MSCs) differentiation and proliferation are controlled by numerous growth factors and hormones. Continuous parathyroid hormone (PTH) treatment has been shown to decrease osteoblast differentiation, whereas pulsatile PTH increases osteoblast differentiation. However, the effects of PTH treatments on MSCs have not been investigated. This study showed continuous PTH treatment in the presence of dexamethasone (DEX) promoted osteogenic differentiation of rat MSCs in vitro, as demonstrated by increased alkaline phosphatase (ALP) activity, number of ALP expressing cells, and up-regulation of PTH receptor-1, ALP, and osteocalcin mRNA expressions. In contrast, pulsatile PTH treatment was found to suppress osteogenesis of rat MSCs, possibly by promoting the maintenance of undifferentiated cells. Additionally, the observed effects of PTH were strongly dependent on the presence of DEX. MSC proliferation however was not influenced by PTH independent of treatment regimen and presence or absence of DEX. Furthermore, our work raised the possibility that PTH treatment may modulate stem/progenitor cell activity within MSC cultures.  相似文献   

3.
Wang  Xiaoyi  Jiang  Huijiao  Guo  Lijiao  Wang  Sibo  Cheng  Wenzhe  Wan  Longfei  Zhang  Zhongzhou  Xing  Lihang  Zhou  Qing  Yang  Xiongfeng  Han  Huanhuan  Chen  Xueling  Wu  Xiangwei 《Journal of molecular histology》2021,52(6):1155-1164

Cell-based therapeutics bring great hope in areas of unmet medical needs. Mesenchymal stem cells (MSCs) have been suggested to facilitate neovascularization mainly by paracrine action. Endothelial progenitor cells (EPCs) can migrate to ischemic sites and participate in angiogenesis. The combination cell therapy that includes MSCs and EPCs has a favorable effect on ischemic limbs. However, the mechanism of combination cell therapy remains unclear. Herein, we investigate whether stromal cell-derived factor (SDF)-1 secreted by MSCs contributes to EPC migration to ischemic sites via CXCR4/Phosphoinositide 3-Kinases (PI3K)/protein kinase B (termed as AKT) signaling pathway. First, by a “dual-administration” approach, intramuscular MSC injections were supplemented with intravenous Qdot® 525 labeled-EPC injections in the mouse model of hind limb ischemia. Then, the mechanism of MSC effect on EPC migration was detected by the transwell system, tube-like structure formation assays, western blot assays in vitro. Results showed that the combination delivery of MSCs and EPCs enhanced the incorporation of EPCs into the vasculature and increased the capillary density in mouse ischemic hind limb. The numbers of CXCR4-positive EPCs increased after incubation with MSC-conditioned medium (CM). MSCs contributed to EPC migration and tube-like structure formation, both of which were suppressed by AMD3100 and wortmannin. Phospho-AKT induced by MSC-CM was attenuated when EPCs were pretreated with AMD3100 and wortmannin. In conclusion, we confirmed that MSCs contributes to EPC migration, which is mediated via CXCR4/PI3K/AKT signaling pathway.

  相似文献   

4.
It is known that umbilical cord blood (UCB) is a rich source of stem cells with practical and ethical advantages. Three important types of stem cells which can be harvested from umbilical cord blood and used in disease treatment are hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs). Since these stem cells have shown enormous potential in regenerative medicine, numerous umbilical cord blood banks have been established. In this study, we examined the ability of banked UCB collected to produce three types of stem cells from the same samples with characteristics of HSCs, MSCs and EPCs. We were able to obtain homogeneous plastic rapidly-adherent cells (with characteristics of MSCs), slowly-adherent (with characteristics of EPCs) and non-adherent cells (with characteristics of HSCs) from the mononuclear cell fractions of cryopreserved UCB. Using a protocol of 48?h supernatant transferring, we successfully isolated MSCs which expressed CD13, CD44 and CD90 while CD34, CD45 and CD133 negative, had typical fibroblast-like shape, and was able to differentiate into adipocytes; EPCs which were CD34, and CD90 positive, CD13, CD44, CD45 and CD133 negative, adherent with cobble-like shape; HSCs which formed colonies when cultured in MethoCult medium.  相似文献   

5.
Sexual dimorphism definitely exists in the pathogenesis of a variety of cardiovascular,neurodegenerative and bone metabolism disorders.Estrogen affects the healing of ischemic myocardium partially through paracrine growth hormone production by bone marrow mesenchymal stem cells(MSCs) and facilitation on mobilization of endothelial progenitors cells(EPCs) to the ischemic myocardium.Estrogen can also inhibit the proliferation of the cardiac fibroblasts.Therefore,estrogen effectively enhances the neovasculariz...  相似文献   

6.
This study aimed to investigate the significance of cytokine expression in supernatant from hematopoietic stem/progenitor cells (HSCs/HPCs) co-cultured with mesenchymal stem cells (MSCs) or endothelial progenitor cells (EPCs). Mononuclear cells (MNCs) were isolated from normal human umbilical cord blood and then cultured solely or co-cultured with MSCs or EPCs. Changes in the number of MNCs and HSCs/HPCs were observed, and MNC proliferation was tested by carboxyfluorescein diacetate succinimidyl ester. The cultured supernatants of the treated MSCs and EPCs were collected at 24 h after co-culture and used to determine the concentrations of IL-3, IL-6, stem cell factor (SCF), TPO, Flt3l, and VEGF. The total number and proliferation of MNCs increased significantly when co-cultured with MSCs or EPCs than when cultured alone, particularly when MNCs were co-cultured with EPCs. The differences in IL-3 and Flt3l concentrations between groups were not significant. However, IL-6 in the MSC group was significantly higher than that in the two other groups. The SCF and TPO concentrations were highly expressed in the EPC group. The VEGF concentrations in the MSC group and the EPC group were higher than those in the control group. These results indicated that MSCs and EPCs possibly favor the proliferation of MNCs and HSCs/HPCs. IL-6 and VEGF may be related to hematopoietic reconstitution and homing ability of HSCs/HPCs. TPO may have a specific relationship with the promotion of HSCs/HPCs differentiation.  相似文献   

7.
The adult bone marrow, situated within the bone cavity, comprises three distinct stem cell populations: hematopoietic stem cells (HSCs), mesenchymal stromal/stem cells (MSCs) and endothelial progenitor/stem cells (EPCs). HSCs are a well-characterized population of self-renewing cells that give rise to all blood cells. The definition of MSCs is more complex due to the limited understanding of MSC properties. In general, MSCs are considered multipotent stromal cells that are able to differentiate into various cell types, including osteoblasts, chondrocytes and adipocytes. Compared to HSCs and MSCs, EPCs are a newly discovered population of stem/progenitor cells with the capacity to differentiate into endothelial cells, the cells forming the inner lining of a blood vessel.  相似文献   

8.
Successful fracture healing requires the simultaneous regeneration of both the bone and vasculature; mesenchymal stem cells(MSCs) are directed to replace the bone tissue, while endothelial progenitor cells(EPCs) form the new vasculature that supplies blood to the fracture site. In the elderly, the healing process is slowed, partly due to decreased regenerative function of these stem and progenitor cells. MSCs from older individuals are impaired with regard to cell number, proliferative capacity, ability to migrate, and osteochondrogenic differentiation potential. The proliferation, migration and function of EPCs are also compromised with advanced age. Although the reasons for cellular dysfunction with age are complex and multidimensional, reduced expression of growth factors, accumulation of oxidative damage from reactive oxygen species,and altered signaling of the Sirtuin-1 pathway are contributing factors to aging at the cellular level of both MSCs and EPCs. Because of these geriatric-specific issues, effective treatment for fracture repair may require new therapeutic techniques to restore cellular function. Some suggested directions for potential treatments include cellular therapies, pharmacological agents, treatments targeting age-related molecular mechanisms, and physical therapeutics.Advanced age is the primary risk factor for a fracture, due to the low bone mass and inferior bone quality associated with aging; a better understanding of the dysfunctional behavior of the aging cell will provide a foundation for new treatments to decrease healing time and reduce the development of complications during the extended recovery from fracture healing in the elderly.  相似文献   

9.
Fracture healing is a complex physiological process. Local vascularity at the site of the fracture has been established as one of the most important factors influencing the healing process, and lack of vascularity has been implicated in atrophic non unions. Existing research has primarily involved utilising Mesenchymal Stem Cells (MSCs) to augment bone healing but there remains much scope to explore the role of stem cells in the vascularisation process. Endothelial Progenitor Cells (EPCs) and other Endothelial Cellular populations (ECs) could constitute a valid alternative to MSCs. This systematic review is examining the importance of co-implantation of MSCs and EPCs/ECs for bone healing. A literature search was performed using the Cochrane Library, OVID Medline, OVID EMBASE and Google Scholar, searching for combinations of the terms EPCs, Endothelial progenitor cells, angiogenesis, fracture, bone and healing. Finally 18 articles that fulfilled our criteria were included in this review. ECs could be of value for the treatment of critical size bone defects as they are known to be capable of forming ectopic, vascularised bone. The co-implantation of ECs with MSCs is more intriguing when we take into account the vast array of complex reciprocal interactions between ECs and MSCs.  相似文献   

10.
脐带血干细胞的基础与应用研究   总被引:13,自引:0,他引:13  
顾东生  刘斌  韩忠朝 《生命科学》2006,18(4):323-327
作为造血干/祖细胞(hematopoieticstemcells/hematopoieticprogenitorcells,HSCs/HPCs)的另一来源,脐带血已经应用于临床治疗多种恶性和非恶性疾病。脐带血中HSCs/HPCs的质与量是决定其临床应用效果的最重要因素。同时,脐带血中还存在多种非造血的干细胞和前体细胞,如间充质干细胞(mesenchymalstemcells,MSCs)、内皮前体细胞(endothelialprogenitorcells,EPCs)和非限制性体干细胞(unrestrictedsomaticstemcells,USSCs)等,这些细胞可能会在未来的细胞治疗和再生医学中发挥重要作用。本综述还讨论了脐带血的临床应用及HSCs/HPCs的体外扩增、增加HSCs归巢和再植能力等提高其临床应用能力的相关研究。  相似文献   

11.
Current clinical therapies for critical-sized bone defects (CSBDs) remain far from ideal. Previous studies have demonstrated that engineering bone tissue using mesenchymal stem cells (MSCs) is feasible. However, this approach is not effective for CSBDs due to inadequate vascularization. In our previous study, we have developed an injectable and porous nano calcium sulfate/alginate (nCS/A) scaffold and demonstrated that nCS/A composition is biocompatible and has proper biodegradability for bone regeneration. Here, we hypothesized that the combination of an injectable and porous nCS/A with bone morphogenetic protein 2 (BMP2) gene-modified MSCs and endothelial progenitor cells (EPCs) could significantly enhance vascularized bone regeneration. Our results demonstrated that delivery of MSCs and EPCs with the injectable nCS/A scaffold did not affect cell viability. Moreover, co-culture of BMP2 gene-modified MSCs and EPCs dramatically increased osteoblast differentiation of MSCs and endothelial differentiation of EPCs in vitro. We further tested the multifunctional bone reconstruction system consisting of an injectable and porous nCS/A scaffold (mimicking the nano-calcium matrix of bone) and BMP2 genetically-engineered MSCs and EPCs in a rat critical-sized (8 mm) caviarial bone defect model. Our in vivo results showed that, compared to the groups of nCS/A, nCS/A+MSCs, nCS/A+MSCs+EPCs and nCS/A+BMP2 gene-modified MSCs, the combination of BMP2 gene -modified MSCs and EPCs in nCS/A dramatically increased the new bone and vascular formation. These results demonstrated that EPCs increase new vascular growth, and that BMP2 gene modification for MSCs and EPCs dramatically promotes bone regeneration. This system could ultimately enable clinicians to better reconstruct the craniofacial bone and avoid donor site morbidity for CSBDs.  相似文献   

12.
The tissue kallikrein-kinin system exerts a wide spectrum of biological activities in the cardiovascular, renal and central nervous systems. Tissue kallikrein-kinin modulates the proliferation, viability, mobility and functional activity of certain stem cell populations, namely mesenchymal stem cells(MSCs), endothelial progenitor cells(EPCs), mononuclear cell subsets and neural stem cells. Stimulation of these stem cells by tissue kallikrein-kinin may lead to protection against renal, cardiovascular and neural damage by inhibiting apoptosis, inflammation, fibrosis and oxidative stress and promoting neovascularization. Moreover, MSCs and EPCs genetically modified with tissue kallikrein are resistant to hypoxia- and oxidative stress-induced apoptosis, and offer enhanced protective actions in animal models of heart and kidney injury and hindlimb ischemia. In addition, activation of the plasma kallikrein-kinin system promotes EPC recruitment to the inflamed synovium of arthritic rats. Conversely, cleaved high molecular weight kininogen, a product of plasma kallikrein, reduces the viability and vasculogenic activity of EPCs. Therefore, kallikrein-kinin provides a new approach in enhancing the efficacy of stem cell therapy for human diseases.  相似文献   

13.
目的探讨甲状旁腺素(PTH)对小鼠软骨细胞成软骨性的促进作用和终末期分化的抑制作用。方法分离和培养新生小鼠胸骨软骨细胞,经PTH处理,倒置显微镜观察细胞形态的变化;Alcian蓝染色和碱性磷酸酶(ALP)染色方法检测软骨细胞蛋白多糖和ALP的分泌;RT-PCT法和Western blot方法检测细胞内成软骨因子和病理性肥大分化因子基因和蛋白的表达。结果新生小鼠胸骨软骨细胞具有自发成熟分化的特征,与对照组相比,经PTH处理的细胞更接近于软骨细胞形态;PTH明显提高软骨细胞Alcian蓝染色的强度,降低ALP染色的强度;PTH显著提高细胞内Sox9和Aggrecan基因和蛋白的表达,明显降低ALP和Runx2基因和蛋白的表达。结论 PTH具有促进小鼠软骨细胞成软骨和抑制其终末期分化的作用。  相似文献   

14.
Bone marrow (BM) is a source of mesenchymal stromal cells (MSCs) and endothelial progenitor cells (EPCs). MSCs provide a specific niche in the BM and biological features of EPCs may be changed with this niche. Stromal cell-derived factor 1 (SDF-1) secreted from primary BM-MSCs and biological features of this niche on EPC development are still yet to be understood. The aim of this study was to evaluate the role of SDF-1 produced by MSCs on EPC development. We applied the CRISPR/Cas9 system for the knock-out of the SDF-1 gene in BM-derived MSCs. BM-derived EPCs were then cocultured with MSCsSDF-1−/− or MSCsSDF-1+/+ to identify the role of MSC-derived SDF-1α on proliferation, migration and angiogenic activity of EPCs. Next, pre-expanded EPCs were harvested and co-transplanted with MSCsSDF-1−/− or MSCsSDF-1+/+ into sublethally irradiated mice to analyze the potency of these cells for marrow reconstitution. Our results revealed that proliferation, colony formation, migration and angiogenic activity of EPCs was significantly increased after coculture with MSCsSDF-1+/+. We also found that co-transplantation of EPCs with MSCsSDF-1+/+, in contrast to MSCsSDF-1−/−, into irradiated mice resulted in marrow repopulation and hematologic recovery, leading to improved survival of transplanted mice. In conclusions, MSC-derived SDF-1 niche plays an important role in the development of EPCs and this niche is essential for bone marrow repopulation by these cells and can enhance the efficiency of EPC therapy for ischemic diseases.  相似文献   

15.
Recently, parathyroid hormone (PTH) was shown to support survival of progenitor cells in bone marrow. The release of progenitor cells occurs in physiological and pathological conditions and was shown to contribute to neovascularization in tumors and ischemic tissues. In the present study we sought to investigate prospectively the effect of primary hyperparathyroidism (PHPT) on mobilization of bone marrow-derived progenitor cells. In 22 patients with PHPT and 10 controls, defined subpopulations of circulating bone marrow-derived progenitor cells (BMCs) were analyzed by flow cytometry (CD45(+)/CD34(+)/CD31(+) cells indicating endothelial progenitor cells, CD45(+)/CD34(+)/c-kit(+) cells indicating hematopoietic stem cells, and CD45(+)/CD34(+)/CXCR4(+) cells indicating progenitor cells with the homing receptor CXCR4). Cytokine serum levels (SCF, SDF-1, VEGF, EPO, and G-CSF) were assessed using ELISA. Levels of PTH and thyroid hormone as well as serum electrolytes, renal and liver parameters, and blood count were analyzed. Our data show for the first time a significant increase of circulating BMCs and an upregulation of SDF-1 and VEGF serum levels in patients with PHPT. The number of circulating BMCs returned to control levels measured 16.7 +/- 2.3 mo after surgery. There was a positive correlation of PTH levels with the number of CD45(+)/CD34(+)/CD31(+), CD45(+)/CD34(+)/c-kit(+), and CD45(+)/CD34(+)/CXCR4(+) cells. However, there was no correlation between cytokine serum concentrations (SDF-1, VEGF) and circulating BMCs. Serum levels of G-CSF, EPO, and SCF known to mobilize BMCs were even decreased or remained unchanged, suggesting a direct effect of PTH on stem cell mobilization. Our data suggest a new function of PTH mobilizing BMCs into peripheral blood.  相似文献   

16.
Literature data indicate that glioma stem cells may give rise to both tumor cells and endothelial progenitor cells (EPCs). Malignant glioma patients usually have increased levels of circulating (EPCs) and these cells are known to contribute to the glioma neovasculature. In this study we compared the intratumoral and circulating EPCs of glioma patients for a set of common glioma genotypical aberrations (amplification of EGFR; deletion of PTEN and aneusomy of chromosomes 7 and 10). We found that the EPCs present in the tumor tissues, not the circulating EPCs, share genetic aberrations with the tumor cells. EPCs with EGFR amplification were found in 46% and with PTEN deletion in 36% of the cases. EPCs with polysomy 7 and monosomy 10 were detected in 56% and 38% of the cases while centrosomal abnormalities in EPCs were found in 68% of the cases. The presence of genetic aberrations of glioma cells in intratumoral EPCs may point to transdifferentiation of glioma stem cells into EPCs. However, the tissue specific CD133 splice variant of blood EPCs was detected in the glioma tissues but not in control brains, suggestive of a blood origin of at least part of the intratumoral EPCs. The findings highlight the complexity of the cellular constituents of glioma neovascularization which should be taken into account when developing anti‐angiogenic strategies for gliomas. J. Cell. Physiol. 228: 1383–1390, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
Wei B  Han XY  Qi CL  Zhang S  Zheng ZH  Huang Y  Chen TF  Wei HB 《PloS one》2012,7(6):e39069
Although some studies described the characteristics of colon cancer stem cells (CSCs) and the role of endothelial progenitor cells (EPCs) in neovascularization, it is still controversial whether an interaction exists or not between CSCs and EPCs. In the present study, HCT116 and HT29 sphere models, which are known to be the cells enriching CSCs, were established to investigate the roles of this interaction in development and metastasis of colon cancer. Compared with their parental counterparts, spheroid cells demonstrated higher capacity of invasion, higher tumorigenic and metastatic potential. Then the in vitro and in vivo relationship between CSCs and EPCs were studied by using capillary tube formation assay and xenograft models. Our results showed that spheroid cells could promote the proliferation, migration and tube formation of EPCs through secretion of vascular endothelial growth factor (VEGF). Meanwhile, the EPCs could increase tumorigenic capacity of spheroid cells through angiogenesis. Furthermore, higher microvessel density was detected in the area enriching cancer stem cells in human colon cancer tissue. Our findings indicate that spheroid cells possess the characteristics of cancer stem cells, and the coaction of CSCs and EPCs may play an important role in the development of colon cancer.  相似文献   

18.
Immune modulation by mesenchymal stem cells   总被引:18,自引:0,他引:18  
Mesenchymal stem cells (MSCs) have been shown to suppress activation of T cells both in vivo and in vitro. In vivo, this may be a way for the body to maintain homeostasis and inhibit immune activation in distinct compartments, such as the bone marrow and the interface between mother and fetus. MSCs modulate the immune function of the major cell populations involved in alloantigen recognition and elimination, including antigen presenting cells, T cells, and natural killer cells. The molecular mechanism that mediates the immunosuppressive effect of MSCs is not completely understood.  相似文献   

19.
Mesenchymal stem cells (MSCs) accelerate regeneration of ischemic or injured tissues by stimulation of angiogenesis through a paracrine mechanism. Tumor necrosis factor-α (TNF-α)-activated MSCs secrete pro-angiogenic cytokines, including IL-6 and IL-8. In the present study, using an ischemic hindlimb animal model, we explored the role of IL-6 and IL-8 in the paracrine stimulation of angiogenesis and tissue regeneration by TNF-α-activated MSCs. Intramuscular injection of conditioned medium derived from TNF-α-treated MSCs (TNF-α CM) into the ischemic hindlimb resulted in attenuated severe limb loss and stimulated blood perfusion and angiogenesis in the ischemic limb. Immunodepletion of IL-6 and IL-8 resulted in attenuated TNF-α CM-stimulated tissue repair, blood perfusion, and angiogenesis. In addition, TNF-α CM induced migration of human cord blood-derived endothelial progenitor cells (EPCs) through IL-6- and IL-8-dependent mechanisms in vitro. Intramuscular injection of TNF-α CM into the ischemic limb led to augmented homing of tail vein-injected EPCs into the ischemic limb in vivo and immunodepletion of IL-6 or IL-8 from TNF-α CM attenuated TNF-α CM-stimulated homing of EPCs. In addition, intramuscular injection of recombinant IL-6 and IL-8 proteins resulted in increased homing of intravenously transplanted EPCs into the ischemic limb and improved blood perfusion in vivo. These results suggest that TNF-α CM stimulates angiogenesis and tissue repair through an increase in homing of EPCs through paracrine mechanisms involving IL-6 and IL-8.  相似文献   

20.
The specialized microenvironment or niche where stem cells reside provides regulatory input governing stem cell function. We tested the hypothesis that targeting the niche might improve stem cell-based therapies using three mouse models that are relevant to clinical uses of hematopoietic stem (HS) cells. We and others previously identified the osteoblast as a component of the adult HS cell niche and established that activation of the parathyroid hormone (PTH) receptor on osteoblasts increases stem cell number. Here we show that pharmacologic use of PTH increases the number of HS cells mobilized into the peripheral blood for stem cell harvests, protects stem cells from repeated exposure to cytotoxic chemotherapy and expands stem cells in transplant recipients. These data provide evidence that the niche may be an attractive target for drug-based stem cell therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号