首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
2.
3.
4.
An increase in MMP‐9 gene expression and enzyme activity with stimulating the migration of GBM8401 glioma cells via wound healing assay by 12‐O‐tetradecanoylphorbol‐13‐acetate (TPA) was detected in glioblastoma cells GBM8401. TPA‐induced translocation of protein kinase C (PKC)α from the cytosol to membranes, and migration of GBM8401 elicited by TPA was suppressed by adding the PKCα inhibitors, GF109203X and H7. Activation of extracellular signal‐regulated kinase (ERK) and c‐Jun‐N‐terminal kinase (JNK) by TPA was identified, and TPA‐induced migration and MMP‐9 activity was significantly blocked by ERK inhibitor PD98059 and U0126, but not JNK inhibitor SP600125. Activation of NF‐κB protein p65 nuclear translocation and IκBα protein phosphorylation with increased NF‐κB‐directed luciferase activity by TPA were observed, and these were blocked by the PD98059 and IkB inhibitor BAY117082 accompanied by reducing migration and MMP‐9 activity induced by TPA in GBM8401 cells. Transfection of GBM8401 cells with PKCα siRNA specifically reduced PKCα protein expression with blocking TPA‐induced MMP‐9 activation and migration. Additionally, suppression of TPA‐induced PKCα/ERK/NK‐κB activation, migration, and MMP‐9 activation by flavonoids including kaempferol (Kae; 3,5,7,4′‐tetrahydroxyflavone), luteolin (Lut; 5,7,3′4′‐tetrahydroxyflavone), and wogonin (Wog; 5,7‐dihydroxy‐8‐methoxyflavone) was demonstrated, and structure–activity relationship (SAR) studies showed that hydroxyl (OH) groups at C4′ and C8 are critical for flavonoids' action against MMP‐9 enzyme activation and migration/invasion of glioblastoma cells elicited by TPA. Application of flavonoids to prevent the migration/invasion of glioblastoma cells through blocking PKCα/ERK/NF‐κB activation is first demonstrated herein. J. Cell. Physiol. 225: 472–481, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
Many studies suggest that adenosine modulates cell responses in a wide array of tissues through potent and selective regulation of cytokine production. This study examined the effects of adenosine on interleukin (IL)‐6 expression and its related signal pathways in mouse embryonic stem (ES) cells. In this study, the adenosine analogue 5′‐N‐ethylcarboxamide (NECA) increased IL‐6 protein expression level. Mouse ES cells expressed the A1, A2A, A2B, and A3 adenosine receptors (ARs), whose expression levels were increased by NECA and NECA‐induced increase of IL‐6 mRNA expression or secretion level was inhibited by the non‐specific AR inhibitor, caffeine. NECA increased Akt and protein kinase C (PKC) phosphorylation, intracellular Ca2+ and cyclic adenosine monophosphate (cAMP) levels, which were blocked by caffeine. On the other hand, NECA‐induced IL‐6 secretion was partially inhibited by Akt inhibitor, bisindolylmaleimide I (PKC inhibitor), SQ 22536 (adenylate cyclate inhibitor) and completely blocked by the 3 inhibitor combination treatment. In addition, NECA increased mitogen activated protein kinase' (MAPK) phosphorylation, which were partially inhibited by the Akt inhibitor, bisindolylmaleimide I, and SQ 22536 and completely blocked by the 3 inhibitor combination treatment. NECA‐induced increases of IL‐6 protein expression and secretion levels were inhibited by MAPK inhibition. NECA‐induced increase of nuclear factor (NF)‐κB phosphorylation was inhibited by MAPK inhibitors. NECA also increased cAMP response element‐binding protein (CREB) phosphorylation, which was blocked by MAPK or NF‐κB inhibitors. Indeed, NECA‐induced increase of IL‐6 protein expression and secretion was blocked by NF‐κB inhibitors. In conclusion, NECA stimulated IL‐6 expression via MAPK and NF‐κB activation through Akt, Ca2+/PKC, and cAMP signaling pathways in mouse ES cells. J. Cell. Physiol. 219: 752–759, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Cytosolic phospholipase A2 (cPLA2) plays a pivotal role in mediating agonist‐induced arachidonic acid (AA) release for prostaglandin (PG) synthesis during inflammation triggered by IL‐1β. However, the mechanisms underlying IL‐1β‐induced cPLA2 expression and PGE2 synthesis in human tracheal smooth muscle cells (HTSMCs) remain unknown. IL‐1β‐induced cPLA2 protein and mRNA expression, PGE2 production, or phosphorylation of p42/p44 MAPK, p38 MAPK, and JNK1/2, which was attenuated by pretreatment with the inhibitors of MEK1/2 (U0126), p38 MAPK (SB202190), and JNK1/2 (SP600125) or transfection with siRNAs of MEK1, p42, p38, and JNK2. IL‐1β‐induced cPLA2 expression was also inhibited by pretreatment with a NF‐κB inhibitor, helenalin or transfection with siRNA of NIK, IKKα, or IKKβ. IL‐β‐induced NF‐κB translocation was blocked by pretreatment with helenalin, but not U0126, SB202190, and SP600125. In addition, transfection with p300 siRNA blocked cPLA2 expression induced by IL‐1β. Moreover, p300 was associated with the cPLA2 promoter, which was dynamically linked to histone H4 acetylation stimulated by IL‐1β. These results suggest that in HTSMCs, activation of MAPKs, NF‐κB, and p300 are essential for IL‐1β‐induced cPLA2 expression and PGE2 secretion. J. Cell. Biochem. 109: 1045–1056, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
The traditional Chinese herb Lonicerae Japonicae Flos has shown significant clinical benefits in the treatment of heart failure, but the mechanism remains unclear. As the main active ingredient found in the plasma after oral administration of Lonicerae Japonicae Flos, chlorogenic acid (CGA) has been reported to possess anti‐inflammatory, anti‐oxidant and anti‐apoptosis function. We firstly confirmed the cardioprotective effects of CGA in transverse aortic constriction (TAC)‐induced heart failure mouse model, through mitigating the TNF‐α–induced toxicity. We further used TNF‐α‐induced cardiac injury in human induced pluripotent stem cell‐derived cardiomyocytes (hiPSC‐CMs) to elucidate the underlying mechanisms. CGA pre‐treatment could reverse TNF‐α–induced cellular injuries, including improved cell viability, increased mitochondrial membrane potential and inhibited cardiomyocytes apoptosis. We then examined the NF‐κB/p65 and major mitogen‐activated protein kinases (MAPKs) signalling pathways involved in TNF‐α–induced apoptosis of hiPSC‐CMs. Importantly, CGA can directly inhibit NF‐κB signal by suppressing the phosphorylation of NF‐κB/p65. As for the MAPKs, CGA suppressed the activity of only c‐Jun N‐terminal kinase (JNK), but enhanced extracellular signal‐regulated kinase1/2 (ERK1/2) and had no effect on p38. In summary, our study revealed that CGA has profound cardioprotective effects through inhibiting the activation of NF‐κB and JNK pathway, providing a novel therapeutic alternative for prevention and treatment of heart failure.  相似文献   

8.
9.
10.
Ultraviolet A (UVA) irradiation is responsible for a variety of changes in cell biology. The purpose of this study was to investigate the effects of UVA irradiation on the stemness properties of human adipose tissue‐derived mesenchymal stem cells (hAMSCs). Furthermore, we examined the UVA‐antagonizing effects of L ‐cysteine ethylester hydrochloride (ethylcysteine) and elucidated its action mechanisms. The results of this study showed that UVA reduced the proliferative potential and stemness of hAMSCs, as evidenced by reduced proliferative activity in the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay and downregulation of OCT4, NANOG, and SOX2, stemness‐related genes. The mRNA level of hypoxia‐inducible factor (HIF)‐1α, but not HIF‐2α was reduced by UVA. Moreover, the knockdown of HIF‐1α using small interfering RNA (siRNA) for HIF‐1α was found to downregulate stemness genes, suggesting that UVA reduces the stemness through downregulation of HIF‐1α. In addition, we examined the mechanisms underlying the UVA‐mediated effects and found that UVA induced production of prostaglandin (PG) E2 and 3′‐5′‐cyclic adenosine monophosphate (cAMP), and that this effect was mediated through activation of activating protein‐1 (AP‐1) and nuclear factor‐κB (NF‐κB). The UVA effects were antagonized by ethylcysteine, and the effects were found to be mediated by reduced production of PGE2 through the inhibition of JNK and p42/44 MAPK. Taken together, these findings show for the first time that UVA regulates the stemness of hAMSCs and its effects are mediated by downregulation of HIF‐1α via the activation of PGE2–cAMP signaling. In addition, ethylcysteine may be used as an antagonizing agent to mitigate the effects of UVA. J. Cell. Biochem. 113: 3681–3691, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
12.
Sauchinone is one of the active lignan isolated from Saururus chinensis, which has been considered to possess various pharmacological activities, such as antitumor, hepatoprotective, antioxidant, and anti‐inflammatory effects. However, the functional roles of sauchinone in interleukin‐1 beta (IL‐1β)‐stimulated human osteoarthritis (OA) chondrocytes are still unknown. Thus, in this study, we investigated the anti‐inflammatory effects of sauchinone in IL‐1β‐stimulated chondrocytes. Our results demonstrated that sauchinone significantly attenuated NO and PGE2 production, as well as inhibited iNOS and COX‐2 expression in IL‐1β‐stimulated OA chondrocytes. In addition, sauchinone efficiently inhibited IL‐1β‐induced MMP‐3 and MMP‐13 release in human OA chondrocytes. Furthermore, sauchinone significantly attenuated the activation of NF‐κB in human OA chondrocytes. In conclusion, we showed for the first time that sauchinone inhibited inflammatory response in IL‐1β‐stimulated human chondrocytes probably through inhibiting the activation of NF‐κB signaling pathway. These data suggest that sauchinone may be a potential agent in the treatment of OA.  相似文献   

13.
Gypenoside (GP), the main active ingredient of Gynostemma pentaphyllum, possesses a variety of pharmacological capacities including anti‐inflammation, anti‐oxidation, and anti‐tumor. However, the effects of GP on IL‐1β‐stimulated human osteoarthritis (OA) chondrocytes are still unknown. Therefore, this study aimed to investigate the anti‐inflammatory effects of GP on IL‐1β‐stimulated human OA chondrocytes and explore the possible mechanism. Our results showed that GP dose‐dependently inhibited IL‐1β‐induced NO and PGE2 production in human OA chondrocytes. In addition, treatment of GP inhibited the expression of MMP3 and MMP13, which was increased by IL‐1β. Finally, we found that pretreatment of GP obviously suppressed NF‐κB activation in IL‐1β‐stimulated human OA chondrocytes. Taken together, the results demonstrated that GP has chondro‐protective effects, at least in part, through inhibiting the activation of NF‐κB signaling pathway in human OA chondrocytes. Thus, these findings suggest that GP may be considered as an alternative therapeutic agent for the management of OA patients.  相似文献   

14.
Dioscorealide B (DB), a naphthofuranoxepin has been purified from an ethanolic extract of the rhizome of Dioscorea membranacea Pierre ex Prain & Burkill which has been used to treat inflammation and cancer in Thai Traditional Medicine. Previously, DB has been reported to have anti‐inflammatory activities through reducing nitric oxide (NO) and tumor necrosis factor‐α (TNF‐α) production in lipopolysaccharides (LPS)‐induced RAW 264.7 macrophage cells. In this study, the mechanisms of DB on LPS‐induced NO production and cytokine expression through the activation of nuclear factor‐κB (NF‐κB) and ERK1/2 are demonstrated in RAW 264.7 cells. Through measurement with Griess's reagent, DB reduced NO level with an IC50 value of 2.85 ± 0.62 µM that was due to the significant suppression of LPS‐induced iNOS mRNA expression as well as IL‐1β, IL‐6, and IL‐10 mRNA at a concentration of 6 µM. At the signal transduction level, DB significantly inhibited NF‐κB binding activity, as determined using pNFκB‐Luciferase reporter system, which action resulted from the prevention of IκBα degradation. In addition, DB in the range of 1.5–6 µM significantly suppressed the activation of the ERK1/2 protein. In conclusion, the molecular mechanisms of DB on the inhibition of NO production and mRNA expression of iNOS, IL‐1β, IL‐6, and IL‐10 were due to the inhibition of the upstream kinases activation, which further alleviated the NF‐κB and MAPK/ERK signaling pathway in LPS‐induced RAW264.7 macrophage cells. J. Cell. Biochem. 109: 1057–1063, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
16.
Obesity is associated with a chronic low‐grade inflammation and increased macrophage infiltration in adipose tissue. Matrix metalloproteinases (MMPs) are involved in adipose tissue remodeling and inflammatory responses in obesity. This study investigated whether macrophage‐derived factors modulate expression and secretion of MMP1 and MMP3 in human preadipocytes. The potential mediators and signaling pathways were also explored. MMP1 and MMP3 were primarily expressed and secreted by preadipocytes and dramatically reduced post‐differentiation. Preadipocytes were incubated with RPMI 1640 medium (control) or THP‐1 macrophage‐conditioned (MC) medium (25% and 100%) for 24 h. MC medium markedly increased mRNA levels of MMP1 (up to 122‐fold) and MMP3 (up to 59‐fold), as well as protein release of MMP1 (up to 378‐fold) and MMP3 (up to 10‐fold) in a dose‐dependent manner. Treatment with IL‐1β or TNFα, the major products of macrophages, also induced MMP1 and MMP3 secretion by preadipocytes. Neutralizing IL‐1β abolished the induction of MMP1 and MMP3 in preadipocytes by MC medium while the effects of TNFα neutralization were modest. Furthermore, MC medium or IL‐1β led to the phosphorylation of p38, ERK and JNK MAPKs. Inhibition of p38, ERK and JNK reversed the stimulatory effects of MC or IL‐1β on MMP1 and MMP3 production. MC medium and IL‐1β also activated NF‐κB p65 whereas reduced IκBα protein expression in preadipocytes. These results suggest that macrophage accumulation in adipose tissue has a central role in stimulating MMP1 and MMP3 production by preadipocytes, and this is partially mediated by IL‐1β via activation of the MAPK and NF‐κB signaling pathways. J. Cell. Physiol. 226: 2869–2880, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

17.
Gangliosides are known to specifically inhibit vascular leukocyte recruitment and consequent interaction with the injured endothelium, the basic inflammatory process. In this study, we have found that the production of nitric oxide (NO), a main regulator of inflammation, is suppressed by GM3 on murine macrophage RAW 264.7 cells, when induced by LPS. In addition, GM3 attenuated the increase in cyclooxyenase‐2 (COX‐2) protein and mRNA levels in lipopolysaccharide (LPS)‐activated RAW 264.7 cells in a dose‐dependent manner. Moreover, GM3 inhibited the expression and release of pro‐inflammatory cytokines of tumor necrosis factor‐alpha (TNF‐α), interleukin‐6 (IL‐6), and interleukin‐1β (IL‐1β) in RAW 264.7 macrophages. At the intracellular level, GM3 inhibited LPS‐induced nuclear translocation of nuclear factor kappa‐light‐chain‐enhancer of activated B cells (NF‐κB) and activator protein (AP)‐1 in RAW 264.7 macrophages. We, therefore, investigated whether GM3 affects mitogen‐activated protein kinase (MAPK) phosphorylation, a process known as the upstream signaling regulator. GM3 dramatically reduced the expression levels of the phosphorylated forms of ERK, JNK, and p38 in LPS‐activated RAW 264.7 cells. These results indicate that GM3 is a promising suppressor of the vascular inflammatory responses and ganglioside GM3 suppresses the LPS‐induced inflammatory response in RAW 264.7 macrophages by suppression of NF‐κB, AP‐1, and MAPKs signaling. Accordingly, GM3 is suggested as a beneficial agent for the treatment of diseases that are associated with inflammation.  相似文献   

18.
19.
20.
Cullin‐RING‐ubiquitin‐ligase (CRL)‐dependent ubiquitination of the nuclear factor kappa B (NF‐κB) inhibitor IκBα and its subsequent degradation by the proteasome usually precede NF‐κB/RelA nuclear activity. Through removal of the CRL‐activating modification of their cullin subunit with the ubiquitin (Ub)‐like modifier NEDD8, the COP9 signalosome (CSN) opposes CRL Ub‐ligase activity. While RelA phosphorylation was observed to mediate NF‐κB activation independent of Ub‐proteasome‐pathway (UPP)‐dependent turnover of IκBα in some studies, a strict requirement of the p97/VCP ATPase for both, IκBα degradation and NF‐κB activation, was reported in others. In this study, we thus aimed to reconcile the mechanism for tumour necrosis factor (TNF)‐induced NF‐κB activation. We found that inducible phosphorylation of RelA is accomplished in an IKK‐complex‐dependent manner within the NF‐κB/RelA‐IκBα‐complex contemporaneous with the phosphorylation of IκBα, and that RelA phosphorylation is not sufficient to dissociate NF‐κB/RelA from IκBα. Subsequent to CRL‐dependent IκBα ubiquitination functional p97/VCP is essentially required for efficient liberation of (phosphorylated) RelA from IκBα, preceding p97/VCP‐promoted timely and efficient degradation of IκBα as well as simultaneous NF‐κB/RelA nuclear translocation. Collectively, our data add new facets to the knowledge about maintenance of IκBα and RelA expression, likely depending on p97/VCP‐supported scheduled basal NF‐κB activity, and the mechanism of TNF‐induced NF‐κB activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号