首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ion channel expression was studied in THP-1 human monocytic leukemia cells induced to differentiate into macrophage-like cells by exposure to the phorbol ester, phorbol 12-myristate 13-acetate (PMA). Inactivating delayed rectifier K+ currents, I DR, present in almost all undifferentiated THP-1 monocytes, were absent from PMA-differentiated macrophages. Two K+ channels were observed in THP-1 cells only after differentiation into macrophages, an inwardly rectifying K+ channel (I IR) and a Ca2+-activated maxi-K channel (I BK). I IR was a classical inward rectifier, conducting large inward currents negative to E K and very small outward currents. I IR was blocked in a voltage-dependent manner by Cs+, Na+, and Ba2+, block increasing with hyperpolarization. Block by Na+ and Ba2+ was time-dependent, whereas Cs+ block was too fast to resolve. Rb+ was sparingly permeant. In cell-attached patches with high [K+] in the pipette, the single I IR channel conductance was ∼30 pS and no outward current could be detected. I BK channels were observed in cell-attached or inside-out patches and in whole-cell configuration. In cell-attached patches the conductance was ∼200–250 pS and at potentials positive to ∼100 mV a negative slope conductance of the unitary current was observed, suggesting block by intracellular Na+. I BK was activated at large positive potentials in cell-attached patches; in inside-out patches the voltage-activation relationship was shifted to more negative potentials by increased [Ca2+]. Macroscopic I BK was blocked by external TEA+ with half block at 0.35 mm. THP-1 cells were found to contain mRNA for Kv1.3 and IRK1. Levels of mRNA coding for these K+ channels were studied by competitive PCR (polymerase chain reaction), and were found to change upon differentiation in the same direction as did channel expression: IRK1 mRNA increased at least 5-fold, and Kv1.3 mRNA decreased on average 7-fold. Possible functional correlates of the changes in ion channel expression during differentiation of THP-1 cells are discussed. Received: 19 September 1995/Revised: 14 March 1996  相似文献   

2.
The voltage-gated potassium channel, Kv1.3, which is highly expressed in a number of immune cells, contains concensus sites for phosphorylation by protein kinase C (PKC). In lymphocytes, this channel is involved in proliferation—through effects on membrane potential, Ca2+ signalling, and interleukin-2 secretion—and in cytotoxic killing and volume regulation. Because PKC activation (as well as increased intracellular Ca2+) is required for T-cell proliferation, we have studied the regulation of Kv1.3 current by PKC in normal (nontransformed) human T lymphocytes. Adding intracellular ATP to support phosphorylation, shifted the voltage dependence of activation by +8 mV and inactivation by +17 mV, resulting in a 230% increase in the window current. Inhibiting ATP production and action with ``death brew' (2-deoxyglucose, adenylylimidodiphosphate, carbonyl cyanide-m-chlorophenyl hydrazone) reduced the K+ conductance (G K ) by 41 ± 2%. PKC activation by 4β-phorbol 12,13-dibutyrate, increased G K by 69 ± 6%, and caused a positive shift in activation (+9 mV) and inactivation (+9 mV), which resulted in a 270% increase in window current. Conversely, several PKC inhibitors reduced the current. Diffusion into the cell of inhibitory pseudosubstrate or substrate peptides reduced G K by 43 ± 5% and 38 ± 8%, respectively. The specific PKC inhibitor, calphostin C, potently inhibited Kv1.3 current in a dose- and light-dependent manner (IC50∼ 250 nm). We conclude that phosphorylation by PKC upregulates Kv1.3 channel activity in human lymphocytes and, as a result of shifts in voltage dependence, this enhancement is especially prevalent at physiologically relevant membrane potentials. This increased Kv1.3 current may help maintain a negative membrane potential and a high driving force for Ca2+ entry in the presence of activating stimuli. Received: 12 July 1996/Revised: 21 October 1996  相似文献   

3.
The resting potassium current (I KI ) in gerbil dissociated type I vestibular hair cells has been characterized under various ionic conditions in whole cell voltage-clamp. When all K+ in the patch electrode solution was replaced with Na+, (Na+) in or Cs+, (Cs+) in , large inward currents were evoked in response to voltage steps between −90 and −50 mV. Activation of these currents could be described by a Hodgkin-Huxley-type kinetic scheme, the order of best fit increasing with depolarization. Above ∼−40 mV currents became outward and inactivated with a monoexponential time course. Membrane resistance was inversely correlated with external K+ concentration. With (Na+) in , currents were eliminated when K+ was removed from the external solution or following extracellular perfusion of 4-aminopyridine, indicating that currents flowed through I KI channels. Also, reduction of K+ entry through manipulation of membrane potential reduced the magnitude of the outward current. Under symmetrical Cs+, 0 K+ conditions I KI is highly permeable to Cs+. However, inward currents were reduced when small amounts of external K+ were added. Higher concentrations of K+ resulted in larger currents indicating an anomalous mole fraction effect in mixtures of external Cs+ and K+. Received: 23 June 1999/Revised: 27 September 1999  相似文献   

4.
Cl currents (I Cl) were measured in short fibers (1–2 mm) from the lumbricalis muscle of toads (Bufo arenarum) with two microelectrodes (15°C). Initially the fibers were equilibrated in a high K+-containing solution: (mm) K2SO4 68; Na2SO4 20; KCl 60; CaSO4 8; MgSO4 1; HEPES 2.5. Constant pulses were applied when all the external K+ was replaced by Cs+: Cs2SO4 68; Na2SO4 20; CsCl 60; CaSO4 8; HEPES 2.5 (pH 7.5). Under these conditions about 80–90% of the current is carried by Cl. The current-voltage relation is almost linear implying constant conductance and hence voltage-independent permeability. The voltage dependence of the net Cl current could be fitted by constant field equation with a P Cl of 3.3 × 10−6 cm/sec. In a separate group of experiments a two-pulse technique was used to estimate the availability and the inactivation of the initial I Cl during a test pulse. After returning the potential to the holding potential for various times, test pulses of the same amplitude and duration of the prepulses were applied. The initial current during the test pulse was 70% of the initial current during the prepulse and the recovery was complete in less than 300 msec with a linear relationship between the current during the test pulse and the amplitude of the preceding prepulse. When the test pulses were preceded by a positive prepulse, the initial current for any given test pulse was larger than with a negative prepulse. If we assumed that the initial current during the test pulse is a measure of the number of channels open at the end of the prepulse, these results suggest that hyperpolarizing pulses inactivate and depolarizing prepulses activate the I Cl. Received: 31 March 1995/Revised: 27 October 1995  相似文献   

5.
The THP-1 human monocytic leukemia cell line is a useful model of macrophage differentiation. Patch clamp methods were used to identify five types of ion channels in undifferentiated THP-1 monocytes. (i) Delayed rectifier K+ current, I DR, was activated by depolarization to potentials positive to −50 mV, inactivated with a time constant of several hundred msec, and recovered from inactivation with a time constant ∼21 sec. I DR was inhibited by 4-aminopyridine (4-AP), tetraethylammonium (TEA+), and potently by charybdotoxin (ChTX). (ii) Ca-activated K+ current (I SK) dominated whole-cell currents in cells studied with 3–10 μm [Ca2+] i . I SK was at most weakly voltage-dependent, with reduced conductance at large positive potentials, and was inhibited by ChTX and weakly by TEA+, Cs+, and Ba2+, but not 4-AP or apamin. Block by Cs+ and Ba2+ was enhanced by hyperpolarization. (iii) Nonselective cation current, I cat, appeared at voltages above +20 mV. Little time-dependence was observed, and a panel of channel blockers was without effect. (iv) Chloride current, I Cl, was present early in experiments, but disappeared with time. (v) Voltage-activated H+ selective current is described in detail in a companion paper (DeCoursey & Cherny, 1996. J. Membrane Biol. 152:2). The ion channels in THP-1 cells are compared with channels described in other macrophage-related cells. Profound changes in ion channel expression that occur during differentiation of THP-1 cells are described in a companion paper (DeCoursey et al., 1996. J. Membrane Biol. 152:2). Received: 19 September 1995/Revised: 14 March 1996  相似文献   

6.
A member of the family of Ca++-independent large conductance K+ channels (termed BK channels) was identified in patch clamp experiments with cultured neonatal rat hippocampal neurons. Permeation was characterized (at 5 mmol/l external, 140 mmol/l internal K+; 135 mmol/l external Na+) by a conductance of 107 pS, a ratio PNa/PK∼ 0.01, and outward rectification near the reversal potential. Channel activity was not voltage-dependent, could not be reduced by internal TEA or by a shift of internal pH from 7.4 to 6.8, i.e., discriminating features within the Ca++-independent BK channel family. Cytosolic proteolysis abolished the functional state of hippocampal Ca++-independent BK channels, in contrast to the pronase resistance of hippocampal Ca++-activated BK channels which suggests structural dissimilarities between these related channels. Cytoskeletal alterations had an activating influence on Ca++-independent BK channels and caused a 3–4-fold rise in P o , but patch excision and channel isolation from the natural environment provoked the strongest increase in P o , from 0.07 ± 0.03 to 0.73 ± 0.04. This activation process operated slowly, on a minute time scale and can be most easily explained with the loss of a membrane-associated inhibitory particle. Once activated, Ca++-independent BK channels reacted sensitively to a Mg-ATP supplemented brain tissue extract with a P o decline, from 0.60 ± 0.06 to 0.10 ± 0.05. Heated extracts failed to induce significant channel inhibition, providing evidence for a heat-unstable molecule with reassociates with the internal channel surface to reestablish channel inhibition. A dualistic channel control, by this membrane-associated molecule and by the cytoskeleton seems possible. Received: 16 July 1997/Revised: 3 November 1997  相似文献   

7.
Voltage-gated Ca2+ currents in early-passage rat dental pulp cells were studied using whole-cell patch-clamp techniques. With Ba2+ as the charge carrier, two prominent inwardly-directed currents, I f and I s , were identified in these cells that could be distinguished on the basis of both kinetics and pharmacology. I f was activated by membrane depolarizations more positive than −30 mV, and displayed fast inactivation kinetics, while I s was activated by steeper depolarizations and inactivated more slowly. At peak current, time constants of inactivation for I f and I s were ∼17 vs.∼631 msec. Both I f and I s could be blocked by lanthanum. By contrast, only I s was sensitive to either Bay-K or nifedipine, a specific agonist and antagonist, respectively, of L-type Ca2+ channels. I s was also blocked by the peptide omega-Conotoxin GVIA. Taken together, results suggested that I f was mediated by divalent cation flow through voltage-gated T-type Ca2+ channels, whereas I s was mediated by L- and N-type Ca2+ channels in the pulp cell membrane. The expression of these prominent, voltage-gated Ca2+ channels in a presumptive mineral-inductive phenotype suggests a functional significance vis a vis differentiation of dental pulp cells for the expression and secretion of matrix proteins, and/or formation of reparative dentin itself. Received: 29 November 1999/Revised: 24 April 2000  相似文献   

8.
Primary cultures containing a high percentage of lactotrophs were obtained by dissociating the pituitary of rats following 14–18 days of lactation. Lactotrophs with a distinctive appearance were recorded after 1–35 days in vitro and identified by immunocytochemical staining for prolactin. Whole-cell voltage clamp measurements in isotonic KCl solution from a holding potential of −40 mV revealed the presence of inward-rectifying K currents with a time-dependent, Na+-independent inactivation at potentials negative to −60 mV. The time for complete inactivation was strikingly different between lactotrophs, varying between 1 sec and more than 5 sec at −120 mV, and was not related to time in culture. The reversal potential shifted 59 mV (25°C) for a tenfold change in external K+ concentration, demonstrating the selectivity of the channel for K+ over Na+. The inward-rectifying K current was blocked by 5 mm Ba2+ and partially blocked by 10 mm TEA. Chloramine-T (1 and 2 mm) produced a total block of the inward-rectifying K current in lactotrophs. Thyrotropin-releasing hormone (500 nm) significantly reduced the inward-rectifying K current in about half of the lactotrophs. This current is similar to the inward-rectifying K current previously characterized in clonal somatomammotrophic pituitary cells (GH3B6). The variability of the rate of inactivation of this current in lactotrophs and its responsiveness to TRH is discussed. Received: 28 September 1995/Revised: 11 December 1995  相似文献   

9.
Adenosine 3′,5′-cyclic monophosphate (cAMP) is known to stimulate exogenous IsK channel current in the Xenopus oocyte expression system. The present study was performed to determine whether elevation of cytosolic cAMP in a native mammalian epithelium known to secrete K+ through endogenously expressed IsK channels would stimulate K+ secretion through these channels. The equivalent short circuit current (I sc ) across vestibular dark cell epithelium in gerbil was measured in a micro-Ussing chamber and the apical membrane current (I IsK ) and conductance (g IsK ) of IsK channels was recorded with both the on-cell macro-patch and nystatin-perforated whole-cell patch-clamp techniques. It has previously been shown that I sc can be accounted for by transepithelial K+ secretion and that the apical IsK channels constitute a significant pathway for K+ secretion. The identification of the voltage-dependent whole-cell currents in vestibular dark cells was strengthened by the finding that a potent blocker of IsK channels, chromanol 293B, strongly reduced I IsK from 646 ± 200 to 154 ± 22 pA (71%) and g IsK from 7.5 ± 2.6 to 2.8 ± 0.4 nS (53%). Cytoplasmic cAMP was elevated by applying dibutyryl cyclic AMP (dbcAMP), or the phosphodiesterase inhibitors 3-isobutyl-1-methylxanthine (IBMX) and Ro-20-1724. dbcAMP (1 mm) increased I sc and I IsK from 410 ± 38 to 534 ± 40 μA/cm2 and from 4.3 ± 0.8 to 11.4 ± 2.2 pA, respectively. IBMX (1 mm) caused transient increases of I sc from 415 ± 30 to 469 ± 38 μA/cm2 and Ro-20-1724 (0.1 mm) from 565 ± 43 to 773 ± 58 μA/cm2. IBMX increased I IsK from 5.5 ± 1.5 to 16.9 ± 5.8 pA in on-cell experiments and from 191 ± 31 to 426 ± 53 pA in whole-cell experiments. The leak conductance due to all non-IsK channel sources did not change during dbcAMP and IBMX while 293B in the presence of dbcAMP reduced I IsK by 84% and g IsK by 62%, similar to unstimulated conditions. These results demonstrate that the cAMP pathway is constitutively active in vestibular dark cells and that the cAMP pathway stimulates transepithelial K+ secretion by increasing IsK channel current rather than by altering another transport pathway. Received: 9 June 1995/Revised: 17 October 1996  相似文献   

10.
11.
The NMR (nuclear magnetic resonance) method of Conlon and Outhred (1972) was used to measure diffusional water permeability of the nodal cells of the green alga Chara gymnophylla. Two local minima at 15 and 30°C of diffusional water permeability (P d ) were observed delimiting a region of low activation energy (E a around 20 kJ/mol) indicative of an optimal temperature region for membrane transport processes. Above and below this region water transport was of a different type with high E a (about 70 kJ/mol). The triphasic temperature dependence of the water transport suggested a channel-mediated transport at 15–30°C and lipid matrix-mediated transport beyond this region. The K+ channel inhibitor, tetraethylammonium as well as the Cl channel inhibitor, ethacrynic acid, diminished P d in the intermediate temperature region by 54 and 40%, respectively. The sulfhydryl agent p-(chloromercuri-benzensulfonate) the water transport inhibitor in erythrocytes also known to affect K+ transport in Chara, only increased P d below 15°C. In high external potassium (`K-state') water transport minima were pronounced. The role of K+ channels as sensors of the optimal temperature limits was further emphasized by showing a similar triphasic temperature dependence of the conductance of a single K+ channel also known to cotransport water, which originated from cytoplasmic droplets (putatively tonoplast) of C. gymnophylla. The minimum of K+ single channel conductance at around 15°C, unlike the one at 30°C, was sensitive to changes of growth temperature underlining membrane lipid involvement. The additional role of intracellular (membrane?) water in the generation of discontinuities in the above thermal functions was suggested by an Arrhenius plot of the cellular water relaxation rate which showed breaks at 13 and 29°C. Received: 12 August 1998/Revised: 13 November 1998  相似文献   

12.
Inactivation of delayed rectifier K conductance (gK) was studied in squid giant axons and in the somata of giant fiber lobe (GFL) neurons. Axon measurements were made with an axial wire voltage clamp by pulsing to VK (∼−10 mV in 50–70 mM external K) for a variable time and then assaying available gK with a strong, brief test pulse. GFL cells were studied with whole-cell patch clamp using the same prepulse procedure as well as with long depolarizations. Under our experimental conditions (12–18°C, 4 mM internal MgATP) a large fraction of gK inactivates within 250 ms at −10 mV in both cell bodies and axons, although inactivation tends to be more complete in cell bodies. Inactivation in both preparations shows two kinetic components. The faster component is more temperature-sensitive and becomes very prominent above 12°C. Contribution of the fast component to inactivation shows a similar voltage dependence to that of gK, suggesting a strong coupling of this inactivation path to the open state. Omission of internal MgATP or application of internal protease reduces the amount of fast inactivation. High external K decreases the amount of rapidly inactivating IK but does not greatly alter inactivation kinetics. Neither external nor internal tetraethylammonium has a marked effect on inactivation kinetics. Squid delayed rectifier K channels in GFL cell bodies and giant axons thus share complex fast inactivation properties that do not closely resemble those associated with either C-type or N-type inactivation of cloned Kv1 channels studied in heterologous expression systems.  相似文献   

13.
Two mammalian sodium-dependent anion-cotransporters (NaPi-2 for phosphate and NaSi-1 for sulfate) have been expressed in Sf9 insect cells using the baculovirus expression system. A histidine tag was introduced at the C-termini in order to facilitate purification by metal-affinity chromatography. Sf9 cells infected with the histidine-tagged Ni/P i -cotransporter exhibited more than 60-fold higher sodium-dependent transport of phosphate compared to noninfected cells. Expressed Na/P i -cotransport exhibited a K m of P i of 0.21 mm and an apparent K m of sodium of 92 mm. Infected cells expressed a 65 kDa polypeptide as detected by Western blotting and immunoprecipitation. Sf9 cells infected with the histidine-tagged NaSi-1 or untagged NaSi-1 protein expressed sodium-dependent sulfate cotransport up to 60-fold higher compared to noninfected cells. Transport of sulfate was highly dependent on sodium exhibiting a K m of SO2− 4 of about 0.3–0.4 mm and a K m of sodium of 55 mm. By Western blotting and immunoprecipitation expressed NaS i -1 proteins were detected at 55–60 kDa. These studies demonstrate that histidine tagged proximal tubular Na-dependent cotransporters for phosphate and sulfate can be expressed functionally in Sf9 cells and that the kinetic characteristics were not altered by the introduction of a histidine tag at the C-termini. Furthermore, it is demonstrated that after solubilization under denaturing conditions histidine-tagged cotransporter proteins can be purified by metal-chelate affinity chromatography. Received: 24 March 1997/Revised: 8 July 1997  相似文献   

14.
The pharmacological profile of a voltage-independent Ca2+-activated potassium channel of intermediate conductance (IK(Ca2+)) present in bovine aortic endothelial cells (BAEC) was investigated in a series of inside-out and outside-out patch-clamp experiments. Channel inhibition was observed in response to external application of ChTX with a half inhibition concentration of 3.3 ± 0.3 nm (n= 4). This channel was insensitive to IbTX, but channel block was detected following external application of MgTX and StK leading to the rank order toxin potency ChTX > StK > MgTX >>IbTX. A reduction of the channel unitary current amplitude was also measured in the presence of external TEA, with half reduction occurring at 23 ± 3 mm TEA (n= 3). The effect of TEA was voltage insensitive, an indication that TEA may bind to a site located on external side of the pore region of this channel. Similarly, the addition of d-TC to the external medium caused a reduction of the channel unitary current amplitude with half reduction at 4.4 ± 0.3 mm (n= 4). In contrast, application of d-TC to the bathing medium in inside-out experiments led to the appearance of long silent periods, typical of a slow blocking process. Finally, the IK(Ca2+) in BAEC was found to be inhibited by NS1619, an activator of the Ca2+-activated potassium channel of large conductance (Maxi K(Ca2+)), with a half inhibition value of 11 ± 0.8 μm (n= 4). These results provide evidence for a pharmacological profile distinct from that reported for the Maxi K(Ca2+) channel, with some features attributed to the voltage-gated KV1.2 potassium channel. Received: 6 November 1997/Revised: 19 February 1998  相似文献   

15.
In frog red blood cells, K-Cl cotransport (i.e., the difference between ouabain-resistant K fluxes in Cl and NO3) has been shown to mediate a large fraction of the total K+ transport. In the present study, Cl-dependent and Cl-independent K+ fluxes via frog erythrocyte membranes were investigated as a function of external and internal K+ ([K+] e and [K+] i ) concentration. The dependence of ouabain-resistant Cl-dependent K+ (86Rb) influx on [K+] e over the range 0–20 mm fitted the Michaelis-Menten equation, with an apparent affinity (K m ) of 8.2 ± 1.3 mm and maximal velocity (V max ) of 10.4 ± 1.6 mmol/l cells/hr under isotonic conditions. Hypotonic stimulation of the Cl-dependent K+ influx increased both K m (12.8 ± 1.7 mm, P < 0.05) and V max (20.2 ± 2.9 mmol/l/hr, P < 0.001). Raising [K+] e above 20 mm in isotonic media significantly reduced the Cl-dependent K+ influx due to a reciprocal decrease of the external Na+ ([Na+] e ) concentration below 50 mm. Replacing [Na+] e by NMDG+ markedly decreased V max (3.2 ± 0.7 mmol/l/hr, P < 0.001) and increased K m (15.7 ± 2.1 mm, P < 0.03) of Cl-dependent K+ influx. Moreover, NMDG+ Cl substitution for NaCl in isotonic and hypotonic media containing 10 mm RbCl significantly reduced both Rb+ uptake and K+ loss from red cells. Cell swelling did not affect the Na+-dependent changes in Rb+ uptake and K+ loss. In a nominally K+(Rb+)-free medium, net K+ loss was reduced after lowering [Na+] e below 50 mm. These results indicate that over 50 mm [Na+] e is required for complete activation of the K-Cl cotransporter. In nystatin-pretreated cells with various intracellular K+, Cl-dependent K+ loss in K+-free media was a linear function of [K+] i , with a rate constant of 0.11 ± 0.01 and 0.18 ± 0.008 hr−1 (P < 0.001) in isotonic and hypotonic media, respectively. Thus K-Cl cotransport in frog erythrocytes exhibits a strong asymmetry with respect to transported K+ ions. The residual, ouabain-resistant K+ fluxes in NO3 were only 5–10% of the total and were well fitted to linear regressions. The rate constants for the residual influxes were not different from those for K+ effluxes in isotonic (∼0.014 hr−1) and hypotonic (∼0.022 hr−1) media, but cell swelling resulted in a significant increase in the rate constants. Received: 19 November 1998/Revised: 23 August 1999  相似文献   

16.
One of the main effects of abscisic acid (ABA) is to induce net loss of potassium salts from guard cells enabling the stomata to close. K+ is released from the vacuole into the cytosol and then to the extracellular space. The effects of increasing cytosolic K+ on the voltage- and time-dependence of the outwardly rectifying K+-current (I K,out) in guard cell protoplasts (GCP) was examined in the whole-cell configuration of the patch-clamp technique. The same quantitative analysis was performed in the presence of ABA at different internal K+ concentrations ([K+] i ). Varying [K+] i in the patch pipette from 100 to 270 mm increased the magnitude of I K,out in a nonlinear manner and caused a negative shift in the midpoint (V 0.5) of its steady-state activation curve. External addition of ABA (10–20 μm) also increased the magnitude of I K,out at all [K+] i , but caused a shift in V 0.5 of the steady-state activation curve only in those GCP loaded with 150 mm internal K+ or less. Indeed, V 0.5 did not shift upon addition of ABA when the [K+] i was above 150 mm and up to 270 mm, i.e., the shift in V 0.5 caused by ABA depended on the [K+] i . Both increase in [K+] i and external addition of ABA, decreased (by ≈ 20%) the activation time constant (τ n ) of I K,out. The small decrease in τ n , in both cases, was found to be independent of the membrane voltage. The results indicate that ABA mimics the effect of increasing cytoplasmic K+, and suggest that ABA may increase I K,out and alter V 0.5 of its steady-state activation curve via an enhancement in cytosolic K+. This report describes for the first time the effects of [K+] i on the voltage- and time-dependence of I K,out in guard cells. It also provides an explanation for the quantitative (total membrane current) and qualitative (current kinetics) differences found between intact guard cells and their protoplasts. Received: 1 December 1995/Revised: 8 May 1996  相似文献   

17.
Mammalian voltage-gated K+ channels are oligomeric proteins, some of which may be composed in vivo of subunits derived from several similar genes. We have studied N-type inactivation in the rapidly inactivating Kv1.4 channel and, in specific, heteromultimers of this gene product with Kv1.5 noninactivating subunits. Heteromultimeric channels were analyzed for the stoichiometry of Kv1.4:Kv1.5 subunits by observing shifts in the midpoints of steady-state availability from that of homomultimeric channels. This analysis was employed to examine inactivation of heteromultimeric channels expressed in Xenopus oocytes using two model systems: by expression of a Kv1.4–Kv1.5 tandem fusion construct and by coexpression of native Kv1.4 and Kv1.5 channels across a wide relative concentration range of microinjected mRNA. Additionally, inactivation was examined in coexpression experiments of N-terminal deletion mutants of Kv1.4. We found that (i) a single inactivating subunit conferred inactivation in all hetero-multimers studied; (ii) the rate of inactivation could not be distinguished in channels containing two inactivating subunits from those containing one inactivating subunit; and (iii) large deletions in the linker region between the N-terminal inactivation region and the first membrane-spanning domain had no effect on the rate of inactivation. These data confirm the importance of the proximal N-terminal region in the inactivation of mammalian Kv1.4 channels, and suggest that the inactivation particle remains in close proximity to the permeation pathway even when the channel is in the open state. Received: 24 August 1995/Revised: 7 February 1996  相似文献   

18.
We have measured the kinetic and pharmacological properties of volume-activated Cl currents (I Cl,vol) in endothelial cells, and tried to correlate them with those of the already described volume-activated current I Cln. Both conductances show a similar permeability sequence for monovalent anions, and they are blocked by extracellular ATP. In the present report, we demonstrate by Western blot and RT-PCR that cultured endothelial cells from bovine pulmonary artery (CPAE) contain pI Cln. The expression of this protein has been shown to be closely associated with the I Cln current. I Cl,vol showed however, in contrast with I Cln, no striking inactivation at positive potentials. This property is also at variance with that of the volume-activated current related to MDR-1. Activation of I Cl,vol at potentials more negative than −80 mV was not time dependent, which excludes a major contribution of a ClC-2 related current. The antiviral nucleoside analogue AZT (3′-azido-3′-deoxythymidine) inhibited I Cl,vol by 21 ± 2.7% (n = 10), at a concentration of 100 μm. Another antiviral drug, acyclovir (ACV, 9-[(2-hydroxyethoxy)methyl]guanine) blocked I Cl,vol by 27 ± 6.2% at 100 μm (n = 11). Both blocking effects are much smaller than those reported for I Cln. The phenol derivative gossypol, which blocks I Cln-related currents, efficiently inhibited I Cl,vol in CPAE cells (67 ± 2.1% at 1 μm, n = 7, K I = 0.4 μm). The presence of pI Cln in CPAE cells and the similar qualitative pharmacological profile of I Cl,vol and I Cln support the hypothesis that pI Cln is a good molecular candidate for I Cl,vol in endothelial cells. The discrepant kinetic properties may indicate that these time-dependent currents at high positive or negative potentials are not intrinsic properties of the channels, but are caused by time-dependent depletion/accumulation phenomena due to the large amplitudes of these currents. Received: 8 May 1995/Revised: 12 October 1995  相似文献   

19.
Unidirectional, ouabain-insensitive K+ influx rose steeply with warming at temperatures above 37°C in guinea pig erythrocytes incubated in isotonic medium. The only component of ouabain-insensitive K+ influx to show the same steep rise was K-Cl cotransport (Q10 of 10 between 37 and 41°C); Na-K-Cl cotransport remained constant or declined and residual K+ influx in hypertonic medium with ouabain and bumetanide rose only gradually. Similar results were obtained for unidirectional K+ efflux. Thermal activation of K-Cl cotransport-mediated K+ influx was fully dependent on the presence of chloride in the medium; none occurred with nitrate replacing chloride. The increase of K+ influx through K-Cl cotransport from 37 to 41°C was blocked by calyculin A, a phosphatase inhibitor. The Q10 of K-Cl cotransport fully activated by hydroxylamine and hypotonicity was about 2. The time course of K+ entry showed an immediate transition to a higher rate when cells were instantly warmed from 37 to 41°C, but there was a 7-min time lag in returning to a lower rate when cells were cooled from 41 to 37°C. These results indicate that the steepness of the response of K-Cl cotransport to mild warming is due to altered regulation of the transporter. Total unidirectional K+ influx was equal to total unidirectional K+ efflux at 37–45°C, but K+ influx exceeded K+ efflux at 41°C when K-Cl cotransport was inhibited by calyculin or prevented by hypertonic incubation. The net loss of K+ that results from the thermal activation of isosomotic K-Cl cotransport reported here would offset a tendency for cell swelling that could arise with warming through an imbalance of pump and leak for Na+ or for K+. Received: 1 November 1997/Revised: 5 March 1998  相似文献   

20.
The outer sulcus epithelium was recently shown to absorb cations from the lumen of the gerbil cochlea. Patch clamp recordings of excised apical membrane were made to investigate ion channels that participate in this reabsorptive flux. Three types of channel were observed: (i) a nonselective cation (NSC) channel, (ii) a BK (large conductance, maxi K or K Ca ) channel and (iii) a small K+ channel which could not be fully characterized. The NSC channel found in excised insideout patch recordings displayed a linear current-voltage (I-V) relationship (27 pS) and was equally conductive for Na+ and K+, but not permeable to Cl or N-methyl-d-glucamine. Channel activity required the presence of Ca2+ at the cytosolic face, but was detected at Ca2+ concentrations as low as 10−7 m (open probability (P o ) = 0.11 ± 0.03, n= 8). Gadolinium decreased P o of the NSC channel from both the external and cytosolic side (IC50∼ 0.6 μm). NSC currents were decreased by amiloride (10 μm− 1 mm) and flufenamic acid (0.1 mm). The BK channel was also frequently (38%) observed in excised patches. In symmetrical 150 mm KCl conditions, the I-V relationship was linear with a conductance of 268 pS. The Goldman-Hodgkin-Katz equation for current carried solely by K+ could be fitted to the I-V relationship in asymmetrical K+ and Na+ solutions. The channel was impermeable to Cl and N-methyl-d-glucamine. P o of the BK channel increased with depolarization of the membrane potential and with increasing cytosolic Ca2+. TEA (20 mm), charybdotoxin (100 nm) and Ba2+ (1 mm) but not amiloride (1 mm) reduced P o from the extracellular side. In contrast, external flufenamic acid (100 μm) increased P o and this effect was inhibited by charybdotoxin (100 nm). Flufenamic acid inhibited the inward short-circuit current measured by the vibrating probe and caused a transient outward current. We conclude that the NSC channel is Ca2+ activated, voltage-insensitive and involved in both constitutive K+ and Na+ reabsorption from endolymph while the BK channel might participate in the K+ pathway under stimulated conditions that produce an elevated intracellular Ca2+ or depolarized membrane potential. Received: 14 October 1999/Revised: 10 December 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号