首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deficiency of protein phosphatase-2A is a key event in Alzheimer’s disease. An endogenous inhibitor of protein phosphatase-2A, inhibitor-1, I1PP2A, which inhibits the phosphatase activity by interacting with its catalytic subunit protein phosphatase-2Ac, is known to be upregulated in Alzheimer’s disease brain. In the present study, we overexpressed I1PP2A by intracerebroventricular injection with adeno-associated virus vector-1-I1PP2A in Wistar rats. The I1PP2A rats showed a decrease in brain protein phosphatase-2A activity, abnormal hyperphosphorylation of tau, neurodegeneration, an increase in the level of activated glycogen synthase kinase-3beta, enhanced expression of intraneuronal amyloid-beta and spatial reference memory deficit; littermates treated identically but with vector only, i.e., adeno-associated virus vector-1-enhanced GFP, served as a control. Treatment with memantine, a noncompetitive NMDA receptor antagonist which is an approved drug for treatment of Alzheimer’s disease, rescued protein phosphatase-2A activity by decreasing its demethylation at Leu309 selectively and attenuated Alzheimer’s disease-like pathology and cognitive impairment in adeno-associated virus vector-1-I1PP2A rats. These findings provide new clues into the possible mechanism of the beneficial therapeutic effect of memantine in Alzheimer’s disease patients.  相似文献   

2.
The endocannabinoid CB2 receptor system has been implicated in the neuropathology of Alzheimer’s disease (AD). In order to investigate the impact of the CB2 receptor system on AD pathology, a colony of mice with a deleted CB2 receptor gene, CNR2, was established on a transgenic human mutant APP background for pathological comparison with CB2 receptor–sufficient transgenic mice. J20 APP (PDGFB-APPSwInd) mice were bred over two generations with CNR2−/− (Cnr2tm1Dgen/J) mice to produce a colony of J20 CNR2+/+ and J20 CNR2−/− mice. Seventeen J20 CNR2+/+ mice (12 females, 5 males) and 16 J20 CNR2−/− mice (11 females, 5 males) were killed at 12 months, and their brains were interrogated for AD-related pathology with both biochemistry and immunocytochemistry (ICC). In addition to amyloid-dependent endpoints such as soluble Aβ production and plaque deposition quantified with 6E10 staining, the effect of CB2 receptor deletion on total soluble mouse tau production was assayed by using a recently developed high-sensitivity assay. Results revealed that soluble Aβ42 and plaque deposition were significantly increased in J20 CNR2−/− mice relative to CNR2+/+ mice. Microgliosis, quantified with ionized calcium-binding adapter molecule 1 (Iba-1) staining, did not differ between groups, whereas plaque associated microglia was more abundant in J20 CNR2−/− mice. Total tau was significantly suppressed in J20 CNR2−/− mice relative to J20 CNR2+/+ mice. The results confirm the constitutive role of the CB2 receptor system both in reducing amyloid plaque pathology in AD and also support tehpotential of cannabinoid therapies targeting CB2 to reduce Aβ; however, the results suggest that interventions may have a divergent effect on tau pathology.  相似文献   

3.
The endocannabinoid CB2 receptor system has been implicated in the neuropathology of Alzheimer’s disease (AD). In order to investigate the impact of the CB2 receptor system on AD pathology, a colony of mice with a deleted CB2 receptor gene, CNR2, was established on a transgenic human mutant APP background for pathological comparison with CB2 receptor–sufficient transgenic mice. J20 APP (PDGFB-APPSwInd) mice were bred over two generations with CNR2−/− (Cnr2tm1Dgen/J) mice to produce a colony of J20 CNR2+/+ and J20 CNR2−/− mice. Seventeen J20 CNR2+/+ mice (12 females, 5 males) and 16 J20 CNR2−/− mice (11 females, 5 males) were killed at 12 months, and their brains were interrogated for AD-related pathology with both biochemistry and immunocytochemistry (ICC). In addition to amyloid-dependent endpoints such as soluble Aβ production and plaque deposition quantified with 6E10 staining, the effect of CB2 receptor deletion on total soluble mouse tau production was assayed by using a recently developed high-sensitivity assay. Results revealed that soluble Aβ42 and plaque deposition were significantly increased in J20 CNR2−/− mice relative to CNR2+/+ mice. Microgliosis, quantified with ionized calcium-binding adapter molecule 1 (Iba-1) staining, did not differ between groups, whereas plaque associated microglia was more abundant in J20 CNR2−/− mice. Total tau was significantly suppressed in J20 CNR2−/− mice relative to J20 CNR2+/+ mice. The results confirm the constitutive role of the CB2 receptor system both in reducing amyloid plaque pathology in AD and also support tehpotential of cannabinoid therapies targeting CB2 to reduce Aβ; however, the results suggest that interventions may have a divergent effect on tau pathology.  相似文献   

4.
The 5-lipoxygenase (5LO) enzyme is widely distributed within the central nervous system. Previous works showed that this protein is up-regulated in Alzheimer’s disease (AD), and plays an active role in the development of brain amyloidosis in the APP transgenic mice. In the present paper, we studied the effect of its pharmacological inhibition on the entire AD-like phenotype of a mouse model with plaques and tangles, the 3×Tg mice. Compared with mice receiving placebo, the group treated with zileuton, a specific 5LO inhibitor, manifested a significant improvement of their memory impairments. The same animals had a significant reduction in Aβ levels and deposition, which was secondary to a down-regulation of the γ-secretase pathway. Additionally, while total tau levels were unchanged for both groups, zileuton-treated mice had a significant reduction in its phosphorylation state and insoluble forms, secondary to a decreased activation of the cdk5 kinase. These data establish a functional role for 5LO in the pathogenesis of the full spectrum of the AD-like phenotype and represent the successful completion of the initial step for the preclinical development of 5LO inhibitors as viable therapeutic agents for AD.  相似文献   

5.
Brain-derived neurotrophic factor (BDNF) importantly regulates learning and memory and supports the survival of injured neurons. Reduced BDNF levels have been detected in the brains of Alzheimer’s disease (AD) patients but the exact role of BDNF in the pathophysiology of the disorder remains obscure. We have recently shown that reduced signaling of BDNF receptor TrkB aggravates memory impairment in APPswe/PS1dE9 (APdE9) mice, a model of AD. The present study examined the influence of Bdnf gene deficiency (heterozygous knockout) on spatial learning, spontaneous exploratory activity and motor coordination/balance in middle-aged male and female APdE9 mice. We also studied brain BDNF protein levels in APdE9 mice in different ages showing progressive amyloid pathology. Both APdE9 and Bdnf mutations impaired spatial learning in males and showed a similar trend in females. Importantly, the effect was additive, so that double mutant mice performed the worst. However, APdE9 and Bdnf mutations influenced spontaneous locomotion in contrasting ways, such that locomotor hyperactivity observed in APdE9 mice was normalized by Bdnf deficiency. Obesity associated with Bdnf deficiency did not account for the reduced hyperactivity in double mutant mice. Bdnf deficiency did not alter amyloid plaque formation in APdE9 mice. Before plaque formation (3 months), BDNF protein levels where either reduced (female) or unaltered (male) in the APdE9 mouse cortex. Unexpectedly, this was followed by an age-dependent increase in mature BDNF protein. Bdnf mRNA and phospho-TrkB levels remained unaltered in the cortical tissue samples of middle-aged APdE9 mice. Immunohistological studies revealed increased BDNF immunoreactivity around amyloid plaques indicating that the plaques may sequester BDNF protein and prevent it from activating TrkB. If similar BDNF accumulation happens in human AD brains, it would suggest that functional BDNF levels in the AD brains are even lower than reported, which could partially contribute to learning and memory problems of AD patients.  相似文献   

6.
Neurochemical Research - Oxytocin is a neuropeptide hormone that plays an important role in social bonding and behavior. Recent studies indicate that oxytocin could be involved in the regulation of...  相似文献   

7.
8.
Mechanical loading is known to promote osteocyte survival, whereas glucocorticoid treatment results in osteocyte apoptosis. Here, we report that BMP-7, which was secreted by osteocyte in response to mechanical loading, exerts anti-apoptotic effect against dexamethasone-induced apoptosis of osteocytes. We further show that the anti-apoptotic effect of BMP-7 is mainly mediated through receptor BMPR2 and is associated with the activation of PI3K/AKT/GSK3β pathway.  相似文献   

9.
The critical pathological feature of Alzheimer’s disease (AD) is the accumulation of β-amyloid (Aβ), the main constituent of amyloid plaques. β-amyloid precursor protein (APP) undergoes amyloidogenic cleavage by β- and γ-secretase generating Aβ at endosomes or non-amyloidogenic processing by α-secretase precluding the production of Aβ at the plasma membrane. Recently, several natural products have been widely researched on the prevention of Aβ accumulation for AD treatment. We previously reported that Lycoris chejuensis K. Tae et S. Ko (CJ), which originated from Jeju Island in Korea, improved the disrupted memory functions and reduced Aβ production in vivo. Here, we further explored the effect of its active component, 7-deoxy-trans-dihydronarciclasine (coded as E144), on Aβ generation and the underlying mechanism. Our results showed that E144 reduced the level of APP, especially its mature form, in HeLa cells overexpressing human APP with the Swedish mutation. Concomitantly, E144 decreased the levels of Aβ, sAPPβ, sAPPα, and C-terminal fragment. In addition, administration of E144 normalized the behavioral deficits in Tg2576 mice, an APP transgenic mouse model of AD. E144 also decreased the Aβ and APP levels in the cerebral cortex of Tg2576 mice. Thus, we propose that E144 could be a potential drug candidate for an anti-amyloid disease-modifying AD therapy.  相似文献   

10.

Background

Alzheimer’s disease (AD) is a devastating public health problem that affects over 5.4 million Americans. Depression increases the risk of Mild Cognitive Impairment (MCI) and AD. By understanding the influence of depression on cognition, the potential exists to identify subgroups of depressed elders at greater risk for cognitive decline and AD. The current study sought to: 1) clinically identify a sub group of geriatric patients who suffer from depression related cognitive impairment; 2) cross validate this depressive endophenotype of MCI/AD in an independent cohort.

Methods and Findings

Data was analyzed from 519 participants of Project FRONTIER. Depression was assessed with the GDS30 and cognition was assessed using the EXIT 25 and RBANS. Five GDS items were used to create the Depressive endophenotype of MCI and AD (DepE). DepE was significantly negatively related to RBANS index scores of Immediate Memory (B=-2.22, SE=.37, p<0.001), visuospatial skills (B=-1.11, SE=0.26, p<0.001), Language (B=-1.03, SE=0.21, p<0.001), Attention (B=-2.56, SE=0.49, p<0.001), and Delayed Memory (B=-1.54, SE = 037, p<0.001), and higher DepE scores were related to poorer executive functioning (EXIT25; B=0.65, SE=0.19, p=0.001). DepE scores significantly increased risk for MCI diagnosis (odds ratio [OR] = 2.04; 95% CI=1.54-2.69). Data from 235 participants in the TARCC (Texas Alzheimer’s Research & Care Consortium) were analyzed for cross-validation of findings in an independent cohort. The DepE was significantly related to poorer scores on all measures, and a significantly predicted of cognitive change over 12- and 24-months.

Conclusion

The current findings suggest that a depressive endophenotype of MCI and AD exists and can be clinically identified using the GDS-30. Higher scores increased risk for MCI and was cross-validated by predicting AD in the TARCC. A key purpose for the search for distinct subgroups of individuals at risk for AD and MCI is to identify novel treatment and preventative opportunities.  相似文献   

11.
Ding  Yuanting  Liu  Heng  Cen  Mofei  Tao  Yuxiang  Lai  Chencen  Tang  Zhi 《Neurochemical research》2021,46(2):265-275
Neurochemical Research - Alzheimer’s disease (AD) and diabetes mellitus (DM) share common pathophysiological findings, in particular, the mammalian target of rapamycin (mTOR) has been...  相似文献   

12.
13.
Emerging evidence suggests that dysregulated translation through phosphorylation of eukaryotic initiation factor-2α (eIF2α) may contribute to Alzheimer’s disease (AD) and related memory impairments. However, the underlying mechanisms remain unclear. Here, we crossed knockout mice for an eIF2α kinase (GCN2: general control nonderepressible-2 kinase) with 5XFAD transgenic mice, and investigated whether GCN2 deletion affects AD-like traits in this model. As observed in AD brains, 5XFAD mice recapitulated significant elevations in the β-secretase enzyme BACE1 and the CREB repressor ATF4 concomitant with a dramatic increase of eIF2α phosphorylation. Contrary to expectation, we found that GCN2−/− and GCN2+/− deficiencies aggravate rather than suppress hippocampal BACE1 and ATF4 elevations in 5XFAD mice, failing to rescue memory deficits as tested by the contextual fear conditioning. The facilitation of these deleterious events resulted in exacerbated β-amyloid accumulation, plaque pathology and CREB dysfunction in 5XFAD mice with GCN2 mutations. Notably, GCN2 deletion caused overactivation of the PKR-endoplasmic reticulum-related kinase (PERK)-dependent eIF2α phosphorylation pathway in 5XFAD mice in the absence of changes in the PKR pathway. Moreover, PERK activation in response to GCN2 deficiency was specific to 5XFAD mice, since phosphorylated PERK levels were equivalent between GCN2−/− and wild-type control mice. Our findings suggest that GCN2 may be an important eIF2α kinase under the physiological condition, whereas blocking the GCN2 pathway under exposure to significant β-amyloidosis rather aggravates eIF2α phosphorylation leading to BACE1 and ATF4 elevations in AD.  相似文献   

14.
Cerebral spinal fluid (CSF) Aβ42, tau and p181tau are widely accepted biomarkers of Alzheimer’s disease (AD). Numerous studies show that CSF tau and p181tau levels are elevated in mild-to-moderate AD compared to age-matched controls. In addition, these increases might predict preclinical AD in cognitively normal elderly. Despite their importance as biomarkers, the molecular nature of CSF tau and ptau is not known. In the current study, reverse-phase high performance liquid chromatography was used to enrich and concentrate tau prior to western-blot analysis. Multiple N-terminal and mid-domain fragments of tau were detected in pooled CSF with apparent sizes ranging from <20 kDa to ~40 kDa. The pattern of tau fragments in AD and control samples were similar. In contrast, full-length tau and C-terminal-containing fragments were not detected. To quantify levels, five tau ELISAs and three ptau ELISAs were developed to detect different overlapping regions of the protein. The discriminatory potential of each assay was determined using 20 AD and 20 age-matched control CSF samples. Of the tau ELISAs, the two assays specific for tau containing N-terminal sequences, amino acids 9-198 (numbering based on tau 441) and 9-163, exhibited the most significant differences between AD and control samples. In contrast, CSF tau was not detected with an ELISA specific for a more C-terminal region (amino acids 159-335). Significant discrimination was also observed with ptau assays measuring amino acids 159-p181 and 159-p231. Interestingly, the discriminatory potential of p181 was reduced when measured in the context of tau species containing amino acids 9-p181. Taken together, these results demonstrate that tau in CSF occurs as a series of fragments and that discrimination of AD from control is dependent on the subset of tau species measured. These assays provide novel tools to investigate CSF tau and ptau as biomarkers for other neurodegenerative diseases.  相似文献   

15.
Mitochondrial dysfunction has been implicated in the pathogenesis of Alzheimer’s disease (AD). However, it is obscure how amyloid-beta (Aβ) can impair mitochondria in the early stage of AD pathology. Using PrP-hAPP/hPS1 double-transgenic AD mouse model, we find that abnormal mitochondrial morphology and damaged mitochondrial structure in hippocampal neurons appear in the early stage of AD-like disease development. We also find consistent mitochondrial abnormalities in the SH-SY5Y cells, which express amyloid precursor protein (APP) Swedish mutation (APPsw) and have been used as a cell model of the early-onset AD. Significant changes of mitofusin GTPases (Mfn1 and Mfn2) were detected both in the PrP-hAPP/hPS1 brains and SH-SY5Y cells. Moreover, our results show that Aβ accumulation in neurons of PrP-hAPP/hPS1 mice can affect the neurogenesis prior to plaque formation. These findings suggest that mitochondrial impairment is a very early event in AD pathogenesis and abnormal expression of Mfn1 and Mfn2 caused by excessive intracellular Aβ is the possible molecular mechanism. Interestingly, l-theanine has significant effects on regulating mitochondrial fusion proteins in SH-SY5Y (APPsw) cells. Overall, our results not only suggest a new early mechanism of AD pathogenesis but also propose a preventive candidate, l-theanine, for the treatment of AD.  相似文献   

16.

Background

Resveratrol is emerging as a novel anticancer agent. However, the mechanism(s) by which resveratrol exerts its effects on endometrial cancer (EC) are unknown. We previously reported that β-arrestin 2 plays a critical role in cell apoptosis. The role of β-arrestin 2 in resveratrol modulation of endometrial cancer cell apoptosis remains to be established.

Scope of Review

EC cells HEC1B and Ishikawa were transfected with either β-arrestin 2 RNA interfering (RNAi) plasmid or β-arrestin 2 full-length plasmid and control vector. The cells were then exposed to differing concentrations of resveratrol. Apoptotic cells were detected by TUNEL assay. Expression of total and phosphorylated Akt (p-Akt), total and phosphorylated glycogen synthase kinase 3 beta (p-GSK3β), and caspase-3 were determined by Western blot analysis. Our data demonstrate that inhibition of β-arrestin 2 increases the number of apoptotic cells and caspase-3 activation. Additionally β-arrestin 2 exerted an additive effect on resveratrol-reduced levels of p-Akt and p-GSK3β. Overexpression of β-arrestin 2 decreased the percentage of apoptosis and caspase-3 activation and attenuated resveratrol-reduced levels of p-Akt and p-GSK3β. Taken together, our studies demonstrate for the first time that β-arrestin 2 mediated signaling plays a critical role in resveratrol-induced apoptosis in EC cells.

Major Conclusions

Resveratrol primes EC cells to undergo apoptosis by modulating β-arrestin 2 mediated Akt/GSK3β signaling pathways.

General significance

These inspiring findings would provide a new molecular basis for further understanding of cell apoptotic mechanisms mediated by β-arrestin 2 and may provide insights into a potential clinical relevance in EC.  相似文献   

17.

Background

Alzheimer’s disease (AD), the most common cause of dementia in the elderly, has two pathological hallmarks: Aβ plaques and aggregation of hyperphosphorylated tau (p-tau). Aβ is a cleavage product of Amyloid Precursor Protein (APP). Presenilin 1 (PS1) and presenilin 2 (PS2) are the catalytic subunit of γ-secretase, which cleaves APP and mediates Aβ production. Genetic mutations in APP, PSEN1 or PSEN2 can lead to early onset of familial AD (FAD). Although mutations in the tau encoding gene MAPT leads to a subtype of frontotemporal dementia and these mutations have been used to model AD tauopathy, no MAPT mutations have been found to be associated with AD.

Results

To model AD pathophysiology in mice without the gross overexpression of mutant transgenes, we created a humanized AD mouse model by crossing the APP and PSEN1 FAD knock-in mice with the htau mice which express wildtype human MAPT genomic DNA on mouse MAPT null background (APP/PS1/htau). The APP/PS1/htau mice displayed mild, age-dependent, Aβ plaques and tau hyperphosphorylation, thus successfully recapitulating the late-onset AD pathological hallmarks. Selected biochemical analyses, including p-tau western blot, γ-secretase activity assay, and Aβ ELISA, were performed to study the interaction between Aβ and p-tau. Subsequent behavioral studies revealed that the APP/PS1/htau mice showed reduced mobility in old ages and exaggerated fear response. Genetic analysis suggested that the fear phenotype is due to a synergic interaction between Aβ and p-tau, and it can be completely abolished by tau deletion.

Conclusion

The APP/PS1/htau model represents a valuable and disease-relevant late-onset pre-clinical AD animal model because it incorporates human AD genetics without mutant protein overexpression. Analysis of the mice revealed both cooperative and independent effects of Aβ and p-tau.  相似文献   

18.
International Journal of Peptide Research and Therapeutics - In addition to its roles in regulating energy balance and glucose homeostasis, leptin greatly influences hippocampal learning and...  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号