首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inflammatory hypothesis is one of the most important mechanisms of depression. Fucoidan is a bioactive sulfated polysaccharide abundant in brown seaweeds with anti-inflammatory activity. However, the antidepressant effects of fucoidan on chronic stress-induced depressive-like behaviors have not been well elucidated. Here, we used two different depressive-like mouse models, lipopolysaccharide (LPS) and chronic restraint stress (CRS) models, to explore the detailed molecular mechanism underlying its antidepressant-like effects in C57BL/6J mice by combining multiple behavioral, molecular and immunofluorescence experiments. Adenovirus-mediated overexpression of caspase-1 and pharmacological inhibitors were also used to clarify the antidepressant mechanisms of fucoidan. We found that acute administration of fucoidan did not produce antidepressant effects in the tail suspension test (TST) and forced swim test (FST). Interestingly, chronic fucoidan administration not only dose-dependently reduced stress-induced depressive-like behaviors in the TST, FST, sucrose preference test (SPT), and novelty-suppressed feeding test (NSFT), but also alleviated the downregulation of brain-derived neurotrophic factor (BDNF)-dependent synaptic plasticity via inhibiting caspase-1-mediated inflammation in the hippocampus of mice. Moreover, fucoidan significantly ameliorated behavioral and synaptic plasticity abnormalities in the overexpression of caspase-1 in the hippocampus of mice. Furthermore, blocking BDNF abolished the antidepressant-like effects of fucoidan in mice. Therefore, our findings clearly indicate that fucoidan provides a potential supplementary noninvasive treatment for depression by inhibition of hippocampal inflammation.  相似文献   

2.
In the present study, we investigated the concentration-dependent effect of zinc (Zn) supplementation on the adult hippocampus in a high-fat diet (HFD)-fed obese mouse model. Four-weeks after HFD- and control diet (CD)-feeding, mice were provided with low (15 ppm) or high (60 ppm) doses of Zn in their drinking water for additional 4 more weeks along with their respective diets. Compared to the CD-fed mice, HFD-feeding elicited the reduction of neurogenic markers such as nestin, Ki67, doublecortin (DCX), and 5-bromo-2′-deoxyuridine (BrdU) in the dentate gyrus. Additionally, HFD-feeding reduced the levels of synaptic markers (synaptophysin and N-methyl-d-aspartate receptor) and brain-derived neurotrophic factor (BDNF), while lipid peroxidation was significantly increased in the hippocampus of HFD-fed mice. Against detrimental effects of high-dose Zn, low-dose Zn supplementation in CD-fed mice did not yield any remarkable changes in these parameters. Interestingly, administration of low doses of Zn to HFD-induced obese mice prominently ameliorated HFD-induced changes in neurogenic, synaptic plasticity markers and BDNF levels as well as lipid peroxidation in the hippocampus. In contrast, high-dose Zn supplementation in HFD-fed mice exacerbated the reduction of markers for neurogenesis and synaptic plasticity as well as BDNF levels, but not 4-HNE levels, in the hippocampus. These results suggest that low-dose Zn supplementation in obese mice could reverse the HFD-induced reduction in neurogenic and synaptic marker proteins in the hippocampus by reducing lipid peroxidation and improving BDNF expression, while high-dose Zn supplementation exacerbates the reduction of neurogenesis by affecting synaptic markers and BDNF levels in the hippocampus.  相似文献   

3.
A large body of evidence has established a link between stressful life events and development or exacerbation of depression. At the cellular level, evidence has emerged indicating neuronal atrophy and cell loss in response to stress and in depression. At the molecular level, it has been suggested that these cellular deficiencies, mostly detected in the hippocampus, result from a decrease in the expression of brain-derived neurotrophic factor (BDNF) associated with elevation of glucocorticoids. Thus, an increase in expression of BDNF, facilitating both neuronal survival and neurogenesis, is thought to represent a converging mechanism of action of various types of antidepressant treatments (e.g., antidepressant drugs and transcranial magnetic stimulation). However, as also revealed by converging lines of evidence, high levels of glucocorticoids down-regulate hippocampal synaptic connectivity ('negative' metaplasticity), whereas an increase in expression of BDNF up-regulates connectivity in the hippocampus ('positive' metaplasticity). Therefore, antidepressant treatments might not only restore cell density but also regulate higher-order synaptic plasticity in the hippocampus by abolishing 'negative' metaplasticity, and thus restore hippocampal cognitive processes that are altered by stress and in depressed patients. This antidepressant regulatory effect on hippocampal synaptic plasticity function, which may, in turn, suppress 'negative' metaplasticity in other limbic structures, is discussed.  相似文献   

4.
Rosmarinic acid (RA), a primary constituent of a Chinese herbal medicine, has been shown to have some therapeutic effects in an animal model of depression, but its underlying mechanisms are poorly understood. Sprague–Dawley rats were exposed to chronic unpredictable stress (CUS) for 21 days, and received RA for 14 days from the last week of CUS, then the behavioral changes, hippocampal pERK1/2 and BDNF levels were observed. Rats were further treated with U0126 (an ERK1/2 phosphorylation inhibitor) 30 min before RA treatment to assess the effects of RA and ERK1/2 signaling in depressive-like behavior and hippocampal BDNF levels. In addition, brains of newly born Sprague–Dawley rats were used to harvest and expand hippocampal astrocytes. Cells were exposed to different concentrations of RA (sham, 1, 5, 10, 20, and 40 μg/mL) or U0126 (2 μM as a final concentration) + RA (sham, 1, 5, 10, 20, and 40 μg/mL) for 48 h, and the pERK1/2 and BDNF levels were assessed by western and ELISA assays. RA administration (10 mg/kg daily) reversed depressive-like behaviors in rats exposed to a chronic unpredictable stress paradigm and restored pERK1/2 protein expression and hippocampal brain-derived neurotrophic factor (BDNF). Moreover, in vitro experiments revealed that 20 μg/mL RA increased pERK1/2 and BDNF levels in cultured astrocytes. Interestingly, the effects of RA were inhibited by U0126. RA might be a useful treatment for depression and the changes in ERK1/2 signaling and BDNF levels may play a critical role in the pharmacological action of RA.  相似文献   

5.
Mounting studies show that hippocampal synaptic transmission and plasticity are abnormal in depression. It has been suggested that impairment of synaptic mitochondrial functions potentially occurs in the hippocampus. Thus, the synaptic mitochondria may be a crucial therapeutic target in the course of depression. Here, we investigated the potential dysregulation of synaptic mitochondrial proteins in the hippocampus of a chronic mild stress (CMS) rat model. Proteomic changes of hippocampal synaptosomes containing synaptic mitochondria were quantitatively examined using the isobaric tag for relative and absolute quantitation labeling combined with tandem mass spectrometry. 45 Proteins were identified to be differentially expressed, of which 21 were found to be putative synaptic mitochondrial proteins based on gene ontology component and SynaptomeDB analyses. Detailed investigations of protein functions and disease relevance support the importance of hippocampal synaptic mitochondria as a key substrate contributing to impairment in synaptic plasticity of stress-related disorders. Interestingly, eight synaptic mitochondrial proteins were specifically associated to the susceptible group, and might represent part of molecular basis of depression. Further analysis indicated that the synaptic mitochondrial oxidative phosphorylation (OXPHOS) system was heavily affected by CMS in the susceptible rats. The present results provide novel insights into the disease mechanism underlying the abnormal OXPHOS that is responsible for energy-demanding synaptic plasticity, and thereby increase our understanding of the role of hippocampal synaptic mitochondrial dysfunction in depression.  相似文献   

6.
A single exposure of rats to the forced-swimming stress decreased BDNF mRNA levels in the cortex and increased Bcl-xl gene expression in the hippocampus and amygdala 24 h after the stress. The animals demonstrated a depressive-like behavior and elevated blood corticosterone level. There was a significant negative correlation between BDNF mRNA level in the cortex and immobility time during swimming. Repeated exposure to swimming stress caused the elevation of the hippocampal BDNF mRNA level assessed 24 h after the second swimming session. The data suggest that stress-induced down-regulation of cortical BDNF gene expression and behavioral despair in the forced-swimming test may be interrelated. The increase in the BDNF and Bcl-xl mRNA levels may contribute to the mechanisms protecting the brain against negative effects of stress.  相似文献   

7.
Chronic stress and stress-related disorders, such as major depression (MD), have been shown to increase the risk for developing Alzheimer's disease (AD). Brain-derived neurotrophic factor (BDNF) has been postulated as a neurophysiological link between these illnesses. Our previous research has indicated that exposing the APPswe/PS1dE9 mouse model of AD to prenatal maternal stress (PS) induced a depressive-like phenotype, specifically in female mice. Considering the role of BDNF in depressive-like behavior and its interactions with amyloid-β (Aβ), our aim was to explore whether these mice would also exhibit alterations in soluble Aβ, mature BDNF (mBDNF), proBDNF, and the receptors TrkB and p75(NTR) in comparison to non-stressed animals. Our results demonstrate that female APPswe/PS1dE9 mice have higher levels of hippocampal proBDNF and soluble Aβ as compared to their male littermates. Additionally, a tendency was observed for PS to lower mBDNF protein levels in the hippocampus, but only in female mice, while receptor levels remained unaltered by sex or PS exposure. Given that female mice both have higher proBDNF and Aβ levels, these findings suggest an underlying role for BDNF signaling and Aβ production in the selective vulnerability of women for MD and AD development.  相似文献   

8.
Chronic oxidative stress plays an important role in depression. The aim of present study was to examine the stress-induced changes in serum corticosterone (CORT) levels, cytosolic protein carbonyl groups, malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NO) and total superoxide dismutase (SOD) activity in the prefrontal cortex versus hippocampus of male Wistar rats exposed to acute (2 h of immobilization or cold), chronic (21d of social isolation) stress, and their combination (chronic + acute stress). The subcellular distribution of nuclear factor-κB (NF-κB) and cytosolic cyclooxygenase 2 (COX-2) protein expressions were also examined. Depressive- and anxiety-like behaviors were assessed via the forced swim, sucrose preference, and marble burying tests in chronically isolated rats. Although both acute stressors resulted in elevated CORT, increased MDA in the prefrontal cortex and NF-κB activation accompanied by increased NO in the hippocampus were detected only following acute cold stress. Chronic isolation resulted in no change in CORT levels, but disabled appropriate response to novel acute stress and led to depressive- and anxiety-like behaviors. Increased oxidative/nitrosative stress markers, likely by NF-κB nuclear translocation and concomitant COX-2 upregulation, associated with decreased SOD activity and GSH levels, suggested the existence of oxidative stress in the prefrontal cortex. In contrast, hippocampus was less susceptible to oxidative damage showing only increase in protein carbonyl groups and depleted GSH. Taken together, the prefrontal cortex seems to be more sensitive to oxidative stress than the hippocampus following chronic isolation stress, which may be relevant for further research related to stress-induced depressive-like behavior.  相似文献   

9.
Diverse factors such as changes in neurotrophins and brain plasticity have been proposed to be involved in the actions of antidepressant drugs (ADs). However, in mouse models of depression based on chronic stress, it is still unclear whether simultaneous changes in behavior and neurotrophin expression occur and whether these changes can be corrected or prevented comparably by chronic administration of ADs or genetic manipulations that produce antidepressant-like effects such as the knockout of the norepinephrine transporter (NET) gene. Here we show that chronic restraint or social defeat stress induce comparable effects on behavior and changes in the expression of neurotrophins in depression-related brain regions. Chronic stress caused down-regulation of BDNF, nerve growth factor, and neurotrophin-3 in hippocampus and cerebral cortex and up-regulation of these targets in striatal regions. In wild-type mice, these effects could be prevented by concomitant chronic administration of five pharmacologically diverse ADs. In contrast, NET knock out (NETKO) mice were resistant to stress-induced depressive-like changes in behavior and brain neurotrophin expression. Thus, the resistance of the NETKO mice to the stress-induced depression-associated behaviors and biochemical changes highlight the importance of noradrenergic pathways in the maintenance of mood. In addition, these mice represent a useful model to study depression-resistant behaviors, and they might help to provide deeper insights into the identification of downstream targets involved in the mechanisms of antidepressants.  相似文献   

10.
Yu Zheng  Weidong Fan 《Epigenetics》2016,11(2):150-162
Exposure to stressful life events during pregnancy exerts profound effects on neurodevelopment and increases the risk for several neurodevelopmental disorders including major depression. The mechanisms underlying the consequences of gestational stress are complex and remain to be elucidated. This study investigated the effects of gestational stress on depressive-like behavior and epigenetic modifications in young adult offspring. Gestational stress was induced by a combination of restraint and 24-hour light disturbance to pregnant dams throughout gestation. Depressive-like and anxiety-like behaviors of young adult offspring were examined. The expression and promoter methylation of brain derived neurotrophic factor (BDNF) were measured using RT-qPCR, Western blot, methylated DNA immunoprecipitation (MeDIP) and chromatin immunoprecipitation (ChIP). In addition, the expressions of histone deacetylases (HDACs) and acetylated histone H3 lysine 14 (AcH3K14) were also analyzed. Our results show that offspring from gestational stress dams exhibited depressive-like and anxiety-like behaviors. Biochemically, stress-offspring showed decreased expression of BDNF, increased expression of DNMT1, HDAC1, and HDAC2, and decreased expression of AcH3K14 in the hippocampus as compared to non-stress offspring. Data from MeDIP and ChIP assays revealed an increased methylation as well as decreased binding of AcH3K14 on specific BDNF promoters. Pearson analyses indicated that epigenetic changes induced by gestational stress were correlated with depressive-like and anxiety-like behaviors. These data suggest that gestational stress may be a suitable model for understanding the behavioral and molecular epigenetic changes observed in patients with depression.  相似文献   

11.
Obesity is a potential risk factor for cognitive deficits in the elder humans. Using a high‐fat diet (HFD)–induced obese mouse model, we investigated the impacts of HFD on obesity, metabolic and stress hormones, learning performance, and hippocampal synaptic plasticity. Both male and female C57BL/6J mice fed with HFD (3 weeks to 9–12 months) gained significantly more weights than the sex‐specific control groups. Compared with the obese female mice, the obese males had similar energy intake but developed more weight gains. The obese male mice developed hyperglycemia, hyperinsulinemia, hypercholesterolemia, and hyperleptinemia, but not hypertriglyceridemia. The obese females had less hyperinsulinemia and hypercholesterolemia than the obese males, and no hyperglycemia and hypertriglyceridemia. In the contextual fear conditioning and step‐down passive avoidance tasks, the obese male, but not female, mice showed poorer learning performance than their normal counterparts. These learning deficits were not due to sensorimotor impairment as verified by the open‐field and hot‐plate tests. Although, basal synaptic transmission characteristics (input–output transfer and paired‐pulse facilitation (PPF) ratio) were not significantly different between normal and HFD groups, the magnitudes of synaptic plasticity (long‐term potentiation (LTP) and long‐term depression (LTD)) were lower at the Schaffer collateral‐CA1 synapses of the hippocampal slices isolated from the obese male, but not female, mice, as compared with their sex‐specific controls. Our results suggest that male mice are more vulnerable than the females to the impacts of HFD on weight gains, metabolic alterations and deficits of learning, and hippocampal synaptic plasticity.  相似文献   

12.
Bipolar disorder is a devastating illness that is marked by recurrent episodes of mania and depression. There is growing evidence that the disease is correlated with disruptions in synaptic plasticity cascades involved in cognition and mood regulation. Alleviating the symptoms of bipolar disorder involves chronic treatment with mood stabilizers like lithium or valproate. These two structurally dissimilar drugs are known to alter prominent signaling cascades in the hippocampus, but their effects on the post-synaptic density complex remain undefined. In this work, we utilized mass spectrometry for quantitative profiling of the rat hippocampal post-synaptic proteome to investigate the effects of chronic mood stabilizer treatment. Our data show that in response to chronic treatment of mood stabilizers there were not gross qualitative changes but rather subtle quantitative perturbations in post-synaptic density proteome linked to several key signaling pathways. Our data specifically support the changes in actin dynamics on valproate treatment. Using label-free quantification methods, we report that lithium and valproate significantly altered the abundance of 21 and 43 proteins, respectively. Seven proteins were affected similarly by both lithium and valproate: Ank3, glutamate receptor 3, dynein heavy chain 1, and four isoforms of the 14-3-3 family. Immunoblotting the same samples confirmed the changes in Ank3 and glutamate receptor 3 abundance. Our findings support the hypotheses that BPD is a synaptic disorder and that mood stabilizers modulate the protein signaling complex in the hippocampal post-synaptic density.  相似文献   

13.
Estrogen is an important modulator of hippocampal synaptic plasticity and memory consolidation through its rapid action on membrane-associated receptors. Here, we found that both estradiol and the G-protein–coupled estrogen receptor 1 (GPER1) specific agonist G1 rapidly induce brain-derived neurotrophic factor (BDNF) release, leading to transient stimulation of activity-regulated cytoskeleton-associated (Arc) protein translation and GluA1-containing AMPA receptor internalization in field CA3 of hippocampus. We also show that type-I metabotropic glutamate receptor (mGluR) activation does not induce Arc translation nor long-term depression (LTD) at the mossy fiber pathway, as opposed to its effects in CA1, and it only triggers LTD after GPER1 stimulation. Furthermore, this form of mGluR-dependent LTD is associated with ubiquitination and proteasome-mediated degradation of GluA1, and is prevented by proteasome inhibition. Overall, our study identifies a novel mechanism by which estrogen and BDNF regulate hippocampal synaptic plasticity in the adult brain.  相似文献   

14.
Depression is a serious mental disorder that affects a person’s mood, thoughts, behavior, physical health, and life in general. Despite our continuous efforts to understand the disease, the etiology of depressive behavior remains perplexing. Recently, aberrant early life or postnatal neurogenesis has been linked to adult depressive behavior; however, genetic evidence for this is still lacking. Here we genetically depleted the expression of huntingtin-associated protein 1 (Hap1) in mice at various ages or in selective brain regions. Depletion of Hap1 in the early postnatal period, but not later life, led to a depressive-like phenotype when the mice reached adulthood. Deletion of Hap1 in adult mice rendered the mice more susceptible to stress-induced depressive-like behavior. Furthermore, early Hap1 depletion impaired postnatal neurogenesis in the dentate gyrus (DG) of the hippocampus and reduced the level of c-kit, a protein expressed in neuroproliferative zones of the rodent brain and that is stabilized by Hap1. Importantly, stereotaxically injected adeno-associated virus (AAV) that directs the expression of c-kit in the hippocampus promoted postnatal hippocampal neurogenesis and ameliorated the depressive-like phenotype in conditional Hap1 KO mice, indicating a link between postnatal-born hippocampal neurons and adult depression. Our results demonstrate critical roles for Hap1 and c-kit in postnatal neurogenesis and adult depressive behavior, and also suggest that genetic variations affecting postnatal neurogenesis may lead to adult depression.  相似文献   

15.
《Hormones and behavior》2012,61(5):520-528
Many psychological disorders comprise a seasonal component. For instance, seasonal affective disorder (SAD) is characterized by depression during autumn and winter. Because hippocampal atrophy may underlie the symptoms of depression and depressive-like behaviors, one goal of this study was to determine whether short days also induce structural changes in the hippocampus using photoperiod responsive rodents — Siberian hamsters. Exposure to short days increases depressive-like responses (increased immobility in the forced swim test) in hamsters. Male hamsters were housed in either short (LD 8:16) or long days (LD 16:8) for 10 weeks and tested in the forced swim test. Brains were removed and processed for Golgi impregnation. HPA axis function may account for photoperiod-related changes in depressive-like responses. Thus, stress reactivity was assessed in another cohort of photoperiod-manipulated animals. Short days reduced soma size and dendritic complexity in the CA1 region. Photoperiod did not induce gross changes in stress reactivity, but an acute stressor disrupted the typical nocturnal peak in cortisol concentrations. These data reveal that immobility induced by exposure to short days is correlated with reduced CA1 cell complexity (and perhaps connectivity). This study is the first to investigate hippocampal changes in the context of short-day induced immobility and may be relevant for understanding psychological disorders with a seasonal component.  相似文献   

16.
Tan T  Zhang BL  Tian X 《生理学报》2011,63(3):225-232
突触传递的长时程抑制(long-term depression,LTD)和长时程增强(longterm-potentiation,LTP)是突触可塑性的两种重要形式,并且与学习记忆密切相关.本文探讨Sprague-Dawley(SD)大鼠在海马齿状回区(dentate gyrus,DG)注射36 h孵育形成的寡聚体Aβ...  相似文献   

17.
Brain-derived neurotrophic factor (BDNF) signaling has been implicated in the onset of depression and in antidepressant efficacy, although the exact role of this neurotrophin in the pathophysiology of depression remains to be elucidated. Also, the interaction between chronic stress, which may precede depression, corticosteroids and BDNF is not fully understood. The present study aimed at investigating whether long-lasting, recurrent tethering of sows during a period of 1.5 or 4.5 years leads to enduring effects on measures that may be indicative of chronic stress, compared with animals kept in a group housing system ('loose' sows). Immediately after slaughter, the frontal cortex, dorsal and ventral hippocampus were dissected and protein levels of BDNF and its receptors were analyzed and compared with plasma cortisol levels and adrenal weights. Results indicate that tethering stress reduced BDNF protein levels in the dorsal hippocampus and the frontal cortex, but not in the ventral hippocampus. In addition, levels of TrkB, the high affinity receptor for BDNF, were increased in the dorsal hippocampus. Plasma cortisol levels and adrenal weight were increased after tethering. These stress effects on BDNF levels were more pronounced after 4.5 years of recurrent tethering and negatively correlated in particular in the frontal cortex with cortisol levels and adrenal weight. This suggests that the stress effect of tethered housing on neurotrophin levels may be mediated via cortisol. Taken together, these data indicate that recurrent tethering stress in sows over 4.5 years results in a loss of neurotrophic support by BDNF, mediated by an overactive neuroendocrine system.  相似文献   

18.

[Purpose]

Mood disorders such as anxiety and depression are prevalent psychiatric illness, but the role of 5HT1A in the anti-depressive effects of exercise has been rarely known yet. We investigated whether long-term exercise affected a depressive-like behavior and a hippocampal 5HT1A receptor-mediated cAMP/PKA/CREB signaling in depression mice model.

[Methods]

To induce depressive behaviors, mice were subjected to 14 consecutive days of restraint stress (2 hours/day). Depression-like behaviors were measured by forced swimming test (TST), and anxiety-like behavior was assessed by elevated plus maze (EPM). Treadmill exercise was performed with 19 m/min for 60 min/day, 5 days/week from weeks 0 to 8. Restraint stress was started at week 6 week and ended at week 8. To elucidate the role of 5HT1A in depression, the immunoreactivities of 5HT1A were detected in hippocampus using immunohistochemical technique.

[Results]

Chronic/repeated restraint stress induced behavioral anxiety and depression, such as reduced time and entries in open arms in EPM and enhanced immobility time in FST. These anxiety and depressive behaviors were ameliorated by chronic exercise. Also, these behavioral changes were concurrent with the deficit of 5HT1A and cAMP/PKA/CREB cascade in hippocampus, which was coped with chronic exercise.

[Conclusion]

These results suggest that chronic exercise may improve the disturbance of hippocampal 5HT1A-regulated cAMP/PKA/CREB signaling in a depressed brain, thereby exerting an antidepressive action.  相似文献   

19.
Many psychological disorders comprise a seasonal component. For instance, seasonal affective disorder (SAD) is characterized by depression during autumn and winter. Because hippocampal atrophy may underlie the symptoms of depression and depressive-like behaviors, one goal of this study was to determine whether short days also induce structural changes in the hippocampus using photoperiod responsive rodents — Siberian hamsters. Exposure to short days increases depressive-like responses (increased immobility in the forced swim test) in hamsters. Male hamsters were housed in either short (LD 8:16) or long days (LD 16:8) for 10 weeks and tested in the forced swim test. Brains were removed and processed for Golgi impregnation. HPA axis function may account for photoperiod-related changes in depressive-like responses. Thus, stress reactivity was assessed in another cohort of photoperiod-manipulated animals. Short days reduced soma size and dendritic complexity in the CA1 region. Photoperiod did not induce gross changes in stress reactivity, but an acute stressor disrupted the typical nocturnal peak in cortisol concentrations. These data reveal that immobility induced by exposure to short days is correlated with reduced CA1 cell complexity (and perhaps connectivity). This study is the first to investigate hippocampal changes in the context of short-day induced immobility and may be relevant for understanding psychological disorders with a seasonal component.  相似文献   

20.
While the spatiotemporal development of Tau pathology has been correlated with occurrence of cognitive deficits in Alzheimer's patients, mechanisms underlying these deficits remain unclear. Both brain‐derived neurotrophic factor (BDNF) and its tyrosine kinase receptor TrkB play a critical role in hippocampus‐dependent synaptic plasticity and memory. When applied on hippocampal slices, BDNF is able to enhance AMPA receptor‐dependent hippocampal basal synaptic transmission through a mechanism involving TrkB and N‐methyl‐d‐Aspartate receptors (NMDAR). Using THY‐Tau22 transgenic mice, we demonstrated that hippocampal Tau pathology is associated with loss of synaptic enhancement normally induced by exogenous BDNF. This defective response was concomitant to significant memory impairments. We show here that loss of BDNF response was due to impaired NMDAR function. Indeed, we observed a significant reduction of NMDA‐induced field excitatory postsynaptic potential depression in the hippocampus of Tau mice together with a reduced phosphorylation of NR2B at the Y1472, known to be critical for NMDAR function. Interestingly, we found that both NR2B and Src, one of the NR2B main kinases, interact with Tau and are mislocalized to the insoluble protein fraction rich in pathological Tau species. Defective response to BDNF was thus likely related to abnormal interaction of Src and NR2B with Tau in THY‐Tau22 animals. These are the first data demonstrating a relationship between Tau pathology and synaptic effects of BDNF and supporting a contribution of defective BDNF response and impaired NMDAR function to the cognitive deficits associated with Tauopathies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号