首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Effects of seven alkaloids, geissoschizine methyl ether (GM), hirsutine, hirsuteine, rhynchophylline, isorhynchophylline, corynoxeine and isocorynoxeine, in Uncaria hook, a constituent of the kampo medicine yokukansan, on serotonin7 (5-HT7) receptor were investigated using Chinese hamster ovary (CHO) cell membranes and human embryonic kidney 293 (HEK293) cells stably expressing the human recombinant 5-HT7 receptor. A competitive binding assay using CHO membranes showed that GM (IC50 = 0.034 μM) more strongly inhibited the binding of the radioligand [3H] LSD to 5-HT7 receptor than the other alkaloids, suggesting that GM is bound to 5-HT7 receptor. Agonistic/antagonistic effects of GM (1–50 μM) on the receptor were evaluated by measuring intracellular cAMP levels in HEK239 cells. GM (IC50 = 6.0 μM) inhibited 5-HT-induced cAMP production in a concentration-dependent manner, as well as the specific 5-HT7 receptor antagonist SB-269970 (0.1–1 μM). However, GM did not induce intracellular cAMP production as 5-HT did. These results suggest that GM has an antagonistic effect on 5-HT7 receptor.  相似文献   

2.
We evaluated the effects of 6-methoxyflavanone and 6-methoxyflavone on wild-type α1/α2β2γ2L GABAA and ρ1 GABAC receptors and on mutant ρ1I307S, ρ1W328 M, ρ1I307S/W328 M GABAC receptors expressed in Xenopus oocytes using two-electrode voltage clamp and radioligand binding. 6-Methoxyflavanone and 6-methoxyflavone act as a flumazenil-insensitive positive allosteric modulator of GABA responses at human recombinant α1β2γ2L and α2β2γ2L GABAA receptors. However, unlike 6-methoxyflavone, 6-methoxyflavanone was relatively inactive at α1β2 GABAA receptors. 6-Methoxyflavanone inhibited [3H]-flunitrazepam binding to rat brain membranes. Both flavonoids were found to be inactive as modulators at ρ1, ρ1I307S and ρ1W328 M GABA receptors but acted as positive allosteric modulators of GABA at the benzodiazepine sensitive ρ1I307S/W328 M GABA receptors. This double mutant retains ρ1 properties of being insensitive to bicuculline and antagonised by TPMPA and THIP. Additionally, 6-methoxyflavanone was also a partial agonist at ρ1W328 M GABA receptors. The relative inactivity of 6-methoxyflavanone at α1β2 GABAA receptors and it’s partial agonist action at ρ1W328 M GABA receptors suggest that it exhibits a unique profile not matched by other flavonoids.  相似文献   

3.
Midbrain slices containing the dorsal and medial raphe nuclei were prepared from rat brain, loaded with [3H]serotonin ([3H]5-HT), superfused, and the electrically induced efflux of radioactivity was determined. The nonselective 5-HT receptor agonist 5-carboxamido-tryptamine (5-CT; 0.001 to 1 microM) inhibited the electrically stimulated [3H]5-HT overflow from raphe nuclei slices (IC50 of 3.34 +/- 0.37 nM). This effect of 5-CT on [3H]5-HT overflow was antagonized by the 5-HT7 receptor antagonist SB-258719 (10 microM) and the 5-HT(1B/1D) antagonist SB-216641 (1 microM), the IC50 values for 5-CT in the presence of SB-258719 and SB-216641 were 94.23 +/- 4.84 and 47.81 +/- 4.66 nM. The apparent pA2 values for SB-258719 and SB-216641 against 5-CT were 6.43 and 7.12, respectively. The inhibitory effect of 5-CT on [3H]5-HT overflow was weakly antagonized by 10 microM of WAY-100635, a 5-HT1A receptor antagonist (IC50 6.65 +/- 0.56 nM, apparent pA2 4.99). The antagonist effect of SB-258719 (10 microM) on 5-CT-evoked [3H]5-HT overflow inhibition was also determined in the presence of 1 microM SB-216641 or 1 microM SB-216641 and 10 microM WAY-100635, and additive interactions were found between the antagonists of 5-HT7 and 5-HT1 receptor subtypes. Addition of the Na+ channel blocker tetrodotoxin (1 microM) in the presence of SB-216641 (1 microM) and WAY-100635 (10 microM) attenuated the inhibitory effect of 5-CT on KCl-induced [3H]5-HT overflow. These findings indicate that 5-CT inhibits [3H]5-HT overflow from raphe nuclei slices of the rat by stimulation of 5-HT7 and 5-HT(1B/1D receptors, whereas the role of 5-HT1A receptors in this inhibition is less pronounced. They also suggest that 5-HT7 receptors are probably not located on serotonergic neurons and thus may serve as heteroreceptors in regulation of 5-HT release in the raphe nuclei. 5-CT (0.1 microM) also inhibited [3H]glutamate release, and SB-258719 (10 microLM) suspended this effect. We therefore speculated that the axon terminals of the glutamatergic cortico-raphe neurons may possess 5-HT7 receptors that inhibit glutamate release, which consequently leads to decreased activity of serotonergic neurons. The postulated glutamatergic-serotonergic interaction in the raphe nuclei was further evidenced by the finding that N-methyl-D-aspartate and AMPA enhanced [3H]5-HT release.  相似文献   

4.
Abstract

[35S]-GTPγS binding has been used to study the function of cloned human 5-HT1D receptor subtypes stably expressed in chinese hamster ovary (CHO) cells. 5-HT stimulated [35S]-GTPγS binding to membranes from cells expressing 5-HT1Dα or 5-HT1Dβ receptors. In membranes containing 5-HT1Dβ receptors, 5-CT and sumatriptan stimulated binding to a similar extent as 5-HT while yohimbine, metergoline and 8-OHDPAT were partial agonists. The order of potency for agonists was 5-CT > 5-HT > metergoline > sumatriptan > yohimbine > 8-OHDPAT. The stimulation of binding by 5-HT in membranes containing 5-HT1Dβ receptors was potently antagonised by methiothepin (pA2 8.9 ± 0.1). The overall pharmacological profile for the human 5-HT1Dβ receptor, defined using [35S]-GTPγS binding, agreed well with that reported for inhibition of forskolin-stimulated adenylyl cyclase. In addition, methiothepin and ketanserin inhibited basal [35S]-GTPγS binding to membranes containing 5-HT1Dα or 5-HT1Dβ receptors, suggesting that these compounds show negative efficacy at 5-HT1D receptor subtypes. The data show that [35S]-GTPγS binding is a suitable method for studying the interaction between cloned human 5-HT1D receptors and G-proteins.  相似文献   

5.
ABSTRACT

The role of the serotonin 7 receptor (5-HT7 receptor) subtype in a number of domains has been widely recognized, but its role in the regulation of changes of the circadian rhythm after anesthesia is still unclear. We used intraperitoneal injection of 5-HT7 receptor agonist LP-211 or antagonist SB-269970 in mice to influence the level of 5-HT7 receptor protein in the SCN and to observe the role of this receptor on circadian rhythm changes after isoflurane anesthesia. Our results show the appropriate dose of SB-269970 significantly alleviated the circadian rhythm disorder induced by isoflurane anesthesia, while LP-211 significantly aggravated it after anesthesia, which is different from the phase shift that can be caused by the administration of LP-211 before anesthesia. These findings may indicate the 5-HT7 receptor plays a complex role in the regulation of circadian rhythm after anesthesia. Our findings may provide some positive significance for alleviating circadian rhythm disorder in patients after anesthesia and ultimately promoting rapid postoperative recovery.  相似文献   

6.
The role of 5-HT7 receptor has been demonstrated in various animal models of mood disorders; however its function in cognition remains largely speculative. This study evaluates the effects of SB-269970, a selective 5-HT7 antagonist, in a translational model of working memory deficit and investigates whether it modulates cortical glutamate and/or dopamine neurotransmission in rats. The effect of SB-269970 was evaluated in the delayed non-matching to position task alone or in combination with MK-801, a non-competitive NMDA receptor antagonist, and, in separate experiments, with scopolamine, a non-selective muscarinic antagonist. SB-269970 (10 mg/kg) significantly reversed the deficits induced by MK-801 (0.1 mg/kg) but augmented the deficit induced by scopolamine (0.06 mg/kg). The ability of SB-269970 to modulate MK-801-induced glutamate and dopamine extracellular levels was separately evaluated using biosensor technology and microdialysis in the prefrontal cortex of freely moving rats. SB-269970 normalized MK-801 -induced glutamate but not dopamine extracellular levels in the prefrontal cortex. Rat plasma and brain concentrations of MK-801 were not affected by co-administration of SB-269970, arguing for a pharmacodynamic rather than a pharmacokinetic mechanism. These results indicate that 5-HT7 receptor antagonists might reverse cognitive deficits associated with NMDA receptor hypofunction by selectively normalizing glutamatergic neurotransmission.  相似文献   

7.
Zinc regulates Na+/Cl?-dependent transporters, similar to taurine one, such as those for dopamine, serotonin and norepinephrine. This study examined the ex vivo effect of zinc (ZnSO4), N,N,N,N-tetraquis-(2-piridilmetil)etilendiamino (TPEN) and diethylenetriaminepenta-acetic acid (DTPA), intracellular and extracellular zinc chelators, respectively, on rat retina [3H]taurine transport. Isolated cells were incubated in Locke solution with 100 nM of [3H]taurine for 25 s. Different concentrations of ZnSO4 (0.5–200 μM) were used. Low concentrations of ZnSO4 (30 and 40 μM) increased the transport, while higher concentrations (100, 150 and 200 μM) decreased it. Various concentrations of TPEN (1–200 μM) were added. Intermediate concentrations of TPEN (10–60 μM) significantly decreased [3H]taurine transport. The presence of TPEN, 20 μM, plus ZnSO4 reversed the effect of TPEN alone. Several concentrations of DTPA (1–500 μM) were also investigated. Reduction of transport took place at high concentrations of the chelator (100, 250 and 500 μM). DTPA, 500 μM, plus ZnSO4, did not modify the effect of it. These results indicate that zinc modulates taurine transport in a concentration-dependent manner, directly acting on the transporter or by forming taurine–zinc complexes in cell membranes.  相似文献   

8.
The effects of chronic 5-HT1A receptor activation on the behavior, functional activity of 5-HT1A receptors, and expression of key genes of the brain 5-HT system were studied in mice of the catalepsy-prone CBA strain and the catalepsy-resistant C57BL/6 strain. Chronic treatment with 8-Hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) (1.0 mg/kg i.p., 14 days) led to a significant decrease in the hypothermic response to acute administration of 8-OH-DPAT in CBA and C57BL/6 mice, which indicates the desensitization of 5-HT1A receptors in both strains. Pretreatment with the 5-HT7 receptor agonist SB 269970 did not affect the hypothermic response to the acute administration of 8-OH-DPAT, which suggests an independent functional response of 5-HT1A receptors. The treatment did not induce any changes in the behavior in the open field paradigm in CBA mice, but significantly increased the total path, the time spent in the center, and the number of rearings in C57BL/6 mice, which indicates the enhancement of locomotor and exploratory activity in C57BL/6 mice. The chronic activation of 5-HT1A receptor downregulated 5-HT1A gene expression, as well as the expression of the gene that encodes tryptophan hydroxylase 2, a key enzyme of 5-HT biosynthesis, in the midbrain and the expression of the gene that encodes the 5-HT2A receptor in the frontal cortex of CBA, but not C57BL/6 mice. The obtained data provide a new evidence on the receptor–gene cross talk in the brain 5-HT system that may underlie the loss of pharmacological efficacy of 5-HT1A receptor agonists. In turn, the loss of the behavioral response and compensatory alterations in key genes of the brain 5- HT system in CBA mice suggests that catalepsy-prone and -resistant genotypes demonstrate different sensibility to the effects of drugs.  相似文献   

9.
We aimed to evaluate the gastric relaxant capacity of the 5-HT(1/7)-receptor agonist 5-carboxamidotryptamine (5-CT) in conscious dogs and to clarify the mechanism of action by use of selective antagonists, vagotomy, and in vitro experiments. A barostat enabled us to monitor the intragastric volume in response to different treatments (intravenously administered) before and after supradiaphragmatic vagotomy [results presented as the maximum volume change after treatment (mean; n = 5-11)]. In vitro experiments were performed with isolated muscle strips cut from four different stomach regions of the vagotomized dogs [results were fitted to the operational model of agonism to determine the efficacy parameter tau (n = 5)]. 5-CT (0.5-10 microg/kg) caused a dose-dependent gastric relaxation (29-267 ml) that was completely blocked by the selective 5-HT(7)-receptor antagonist SB-269970 (50 microg/kg). After vagotomy, the relaxation to 10 microg/kg 5-CT was significantly less pronounced (73 vs. 267 ml; P < 0.05) but still blocked by SB-269970, whereas the response to the nitric oxide donor nitroprusside was similar to that before vagotomy (178 vs. 218 ml). In vitro, 5-CT concentration dependently inhibited the PGF(2alpha)-contracted muscle strips before and after vagotomy. Although before and after vagotomy the response in every region was mediated by 5-HT(7) receptors (apparent affinity dissociation constant: SB-269970, 8.2-8.6 vs. 8.3-8.6, respectively), the response after vagotomy was less efficacious (log tau: 1.9 to 0.5 vs. 1.4 to -0.1). The results indicate that the 5-CT-induced proximal stomach relaxation in conscious dogs before and after vagotomy is mediated via 5-HT(7) receptors. The decreased efficacy of 5-CT in vitro after vagotomy is probably related to vagotomy-induced changes in receptor density or coupling efficiency and provides a possible explanation for the decreased in vivo response to 5-CT after vagotomy.  相似文献   

10.
Brain serotonin (5-HT) modulates the neural effects of ethanol. In the present study, we investigated the changes in 5-HT level, 5-HT2A receptor binding and aldehyde dehydrogenase (ALDH) activity in brain stem and liver of ethanol treated rats and 5-HT2A regulation on ALDH in hepatocyte cultures in vitro. The 5-HT content in the brain stem and liver significantly decreased with an increased 5-HIAA/5-HT ratio in the ethanol treated rats compared to control. Scatchard analysis of [3H] (±)2,3-dimethoxyphenyl-1-[2-(-4-piperidine)-methanol] [3H] MDL 100907 against ketanserin in brain stem of ethanol treated rats showed a significant increase in B max without any change in K d compared to control. The competition curve for [3H] MDL 100907 against ketanserin fitted one-site model in both control and ethanol treated rats with unity as Hill slope value. A significant increase in V max of ALDH activity in liver and a significant decrease in K m in liver and brain stem of ethanol treated rats compared to control was observed. In 24 h culture studies, an increase in enzyme activity was observed in cells in medium with 10% ethanol. The elevated ALDH activity in ethanol treated cells was reversed to control level in presence of 10−5 and 10−7 M 5-HT. Ketanserin, an antagonist of 5-HT2A, reversed the effect of 5HT on 10% ethanol induced ALDH activity in hepatocytes. Our results showed that there was a decreased 5-HT content with an enhanced 5-HT2A receptor and aldehyde dehydrogenase activity in the brain stem of alcohol treated rats and in vitro hepatocyte cultures. The enhanced ALDH activity in ethanol supplemented hepatocytes was reversed to control level in presence of 10−5 and 10−7 M 5-HT.  相似文献   

11.
The 5-HTergic system and particularly 5-HT2A receptors have been involved in prefrontal cognitive functions, but the underlying mechanisms by which the serotonin (5-HT) system modulates these processes are still unclear. In this work, the effects of prefrontal 5-HTergic denervation on the density and expression levels of 5-HT2A receptors were evaluated by immunohistochemical and molecular biology studies in the prefrontal cortex (PFC). The [3H]-Ketanserin binding study revealed an increase in the Bmax, along with no change in the binding affinity (KD) for 5-HT2A receptors. The increase in PFC of 5-HT2A receptor density in response to denervation was accompanied by increase in 5-HT2A receptor mRNA and protein levels. This increase in the number of 5-HT2A receptors may be interpreted as an adaptive plastic change, i.e., hypersensitivity; resulting from the selective pharmacological lesion of the raphe-proceeding 5-HTergic fibers to the PFC. Based on previous evidence, this could be strongly related to the abnormal expression of short-term memory.  相似文献   

12.
A novel series of arylsulfonamide derivatives of (aryloxy)propyl piperidines was designed to obtain potent 5-HT7R antagonists. Among the compounds evaluated herein, 3-chloro-N-{1-[3-(1,1-biphenyl-2-yloxy)2-hydroxypropyl]piperidin-4-yl}benzenesulfonamide (25) exhibited antagonistic properties at 5-HT7R and showed selectivity over selected serotoninergic and dopaminergic receptors, as well as over serotonin, noradrenaline and dopamine transporters. Compound 25 demonstrated significant antidepressant-like activity in the forced swim test (0.625–2.5 mg/kg, i.p.) and in the tail suspension test (1.25 mg/kg, i.p.), augmented the antidepressant effect of inactive doses of escitalopram (selective serotonin reuptake inhibitor) and bupropion (dopamine reuptake inhibitor) in the FST in mice, and similarly to SB-269970, exerted pro-cognitive properties in the novel object recognition task in cognitively unimpaired conditions in rats (0.3 mg/kg, i.p.). Such an extended pharmacological profile, especially the augmentation effect of the identified 5-HT7R antagonist on SSRI activity, seems promising regarding the complexity of affective disorders and potentially improved outcomes, including mnemonic performance.  相似文献   

13.
Abstract

5-carboxamidotryptamine (5-CT)-insensitive binding sites labelled by [3H]5-hydroxytryptamine (5-HT) in the presence of 100 nM 5-CT and 100 nM mesulergine, were examined by semi-quantitative autoradiography in rat brain. Under these conditions most of the labelled sites correspond to 5-HT1E and 5-HT1F sites. The 5-CT-insensitive binding is located mainly in cortical layer V, caudate-putamen, interpeduncular nucleus and claustrum. In cortex and caudate-putamen, a large proportion of 5-CT-insensitive sites is displaced by 250 nM sumatriptan and can be attributed to the presence of 5-HT1F receptors. A low, but significant, level of displacement by sumatriptan was observed in the choroid plexus. Lesions of serotonergic neurones by intracerebroventricular 5,7-dihydroxytryptamine injection does not significantly modify the densities of 5-HT1E or 5-HT1F binding sites. Our findings suggest that the 5-HT1F receptor has a limited distribution in rat brain, mainly located on non-serotonergic neurones.  相似文献   

14.
The first effects of 3,4-methylen-dioxy-metamphetamine (MDMA, “ecstasy”), on serotonin 1A (5-HT1A) receptors in rat hippocampus were determined by means of [3H]-8-hydroxy-dipropylamino-tetralin ([3H]-8-OH-DPAT) and 5′guanosine-(γ-[35S]-thio)triphosphate ([35S]-GTPγS) binding as well as inhibition of forskolin (FK)-stimulated adenylyl cyclase (AC) activity. The study was completed by [35S]-GTPγS functional autoradiography experiments carried out in frontal sections of rat brain, including the hippocampal region. Results showed that MDMA was either able to displace [3H]-8-OH-DPAT binding (Ki  500 nM) or to reduce the number of specific sites (Bmax) without affecting Kd. The drug also failed to change the [35S]-GTPγS binding or to inhibit AC velocity, underlying its behavior as a non-competitive 5-HT1A receptor antagonist. Further, MDMA (1 or 100 μM), partially antagonized either [35S]-GTPγS binding stimulation of the agonists 5CT and 8-OH-DPAT or the AC inhibition induced by 5CT and DP-5CT. However, in contrast to binding studies, in AC assays the amphetamine displayed an effect also on EC50, always being less potent than the reference antagonist WAY100,635. In functional autoradiography, MDMA behaved either as a partial 5-HT1A antagonist in limbic areas or, added alone, as an agonist, increasing the coupling signal presumably through 5-HT release from synapses. Interestingly, the selective 5-HT re-uptake inhibitor (SSRI) fluoxetine had no effect on MDMA [35S]-GTPγS binding activation. This latter finding indicates that the amphetamine can release 5-HT via alternative mechanisms to 5-HT transporter binding, probably via membrane synaptic receptors or vesicular transporters. The release of other transmitters is not excluded. Therefore, our results encourage at extending the study of MDMA biochemical profiles, in the attempt to elucidate those amphetamine-induced pathways with a potential for neurotoxicity or psycho-stimulant activity.  相似文献   

15.
Abstract: G protein activation mediated by serotonin 5-HT1A and 5-HT1B/D receptors in guinea pig brain was investigated by using quantitative autoradiography of agonist-stimulated [35S]GTPγS binding to brain sections. [35S]GTPγS binding was stimulated by the mixed 5-HT1A/5-HT1B/D agonist L694247 in brain structures enriched in 5-HT1A binding sites, i.e., hippocampus (+140 ± 14%), dorsal raphe (+70 ± 8%), lateral septum (+52 ± 12%), cingulate (+36 ± 8%), and entorhinal cortex (+34 ± 5%). L694247 caused little or no stimulation of [35S]GTPγS binding in brain regions with high densities of 5-HT1B/D binding sites (e.g., substantia nigra, striatum, central gray, and dorsal subiculum). The [35S]GTPγS binding response was antagonized by WAY100635 (10 µM) and methiothepin (10 µM). In contrast, the 5-HT1B inverse agonist SB224289 (10 µM) did not affect the L694247-mediated [35S]GTPγS binding response, and the mixed 5-HT1B/D antagonist GR127935 (10 µM) yielded a partial blockade. The distribution pattern of the [35S]GTPγS binding response and the antagonist profile suggest the L694247-mediated response in guinea pig brain to be mediated by 5-HT1A receptors. In addition to L694247, 8-hydroxy-2-(di-n-propylamino)tetralin, and flesinoxan also stimulated [35S]GTPγS binding; their maximal responses varied between 46 and 52% compared with L694247, irrespective of the brain structure being considered. Sumatriptan, rizatriptan, and zolmitriptan (10 µM) stimulated [35S]GTPγS binding in the hippocampus by 20–50%. Naratriptan, CP122638, and dihydroergotamine stimulated [35S]GTPγS binding to a similar level as L694247 in hippocampus, lateral septum, and dorsal raphe. It appears that under the present experimental conditions, G protein activation through 5-HT1A but not 5-HT1B/D receptors can be measured in guinea pig brain sections.  相似文献   

16.
The family of 5-HT4 receptors comprises 16 putative splice variants. We have previously shown that there are differences in signal transduction of the h5-HT4a and h5-HT4b receptors. In the present study, the internalization of these two splice variants following receptor stimulation was investigated with confocal microscopy on living cells. Chimeric receptors, h5-HT4a-GFP and h5-HT4b-GFP were generated by fusing the coding sequence of the 5-HT4 receptor with the coding sequence of the GFP. The agonist stimulation of fluorescent receptors resulted in a time-dependent internalization of the h5-HT4b-GFP receptor, but not of the h5-HT4a-GFP receptor. The h5-HT4b receptor displays a dual coupling to Gαi,o and Gαs proteins, in contrast to the h5-HT4a receptor, which couples to Gαs proteins only. We investigated whether the difference in internalization of the two splice variant receptors was related to their differential coupling. Therefore, we performed agonist-stimulation of the receptor following inhibition of the Gαi,o protein coupling using PTX. The h5-HT4b receptor internalization is PTX insensitive. We co-transfected the fluorescent chimeric receptors with other wild-type variants, which did not produce an alteration of the receptor trafficking. These findings provide the first evidence of differential internalization between the two splice variants, 5-HT4a and 5-HT4b receptors.  相似文献   

17.
The indolealkylamine 5-hydroxytryptamine (5-HT, 0.1 nM-1 μM) caused dose-dependent increases in the number of contractions observed in guts isolated from the caterpillar Spodoptera frugiperda. Of the 5-HT analogues tested for agonist action, 2-methyl-5-HT (0.1-10 μM) was a full agonist with reduced potency while α-methyl-5-HT (0.1-100 μM), 5-carboxamidotryptamine (0.1-100 μM), 5-methoxytryptamine (5-MeOT) (10 nM-10 μM), and tryptamine (1-100 μM) were partial agonists. Incubation of isolated guts with proven mammalian 5-HT receptor antagonists showed that cyproheptadine (10 nM-1 μM), MDL 72222 (1-10 μM), tropisetron (1-10 μM) and 5-benzoyloxygramine (1-10 μM) were potent non-competitive antagonists of 5-HT-induced tissue contraction. In comparison, ketanserin (0.1-1 μM) was a competitive antagonist. The mammalian selective serotonin reuptake inhibitors, clomipramine (10 nM-10 μM) and fluoxetine (10 nM-10 μM) also caused non-competitive inhibition of 5-HT-induced contraction while fluvoxamine (10 nM-10 μM) was a weak competitive antagonist. Low doses of clomipramine (0.1 μM) caused potentiation of 5-HT-induced gut contraction thereby suggesting the presence of 5-HT reuptake systems in this tissue. The contractile effects of 5-HT were inhibited by verapamil, Li+ and H7 and potentiated by theophylline thereby indicating that L-type Ca2+ channels, phosphatidylinositol second messengers and cAMP, respectively, are involved in 5-HT-induced tissue contraction. The 5-HT receptors mediating contractility in the gut of S. frugiperda have properties in common with mammalian 5-HT2 and Drosophila 5-HTdro2A/2B receptors. In addition, these data suggest that the tissue also contains receptors that are similar to mammalian 5-ht6 and 5-HT7 as well as Drosophiladro1 receptors. However, the primary amino acid sequence of these lepidopteran 5-HT receptors will have to be elucidated before full comparisons can be made.  相似文献   

18.
Abstract

Two complementary approaches, covalent labelling and solubilization, have been used to study the biochemical properties of the central 5-HT1A receptor binding site. We have first designed a photoaffinity ligand containing the structure of 8-OH-DPAT, a potent and specific agonist of 5-HT1A sites. Thus, 8-methoxy-2[N-n-propyl,N-3-(2-nitro-4-azido-phenyl)- aminopropyl]aminotetralin or 8-methoxy-3'-NAP-amino-PAT, was found to displace, in the dark, [3H]8-OH-DPAT from 5-HT1A sites in rat hippocampal membranes with an IC50 of 6.6 nM. Under two cumulative UV irradiations (366 nm, for 20 min at 4°C), 8-methoxy-3-'-NAP-amino-PAT (30 nM) blocked irreversibly 55-60% of 5-HT1A binding sites. This blockade was specific of 5-HT1A sites since the other serotoninergic sites, 5-HT1B, 5-HT2 and also the presynaptic 5-HT3 sites were not affected by the treatment. In addition, the binding of [3H]Spiperone and [3H]7-OH-DPAT to striatal dopamine sites remained unchanged under similar photolysis conditions. The tritiated derivative of the photoaffinity ligand (92 Ci/mmol) was then synthesized for the identification of the covalently bound protein(s). SDS-PAGE of solubilized membranes irradiated in the presence of 20 nM 3H-8-methoxy-3'-NAP-amino-PAT allowed the detection of a 63 kD protein whose labelling appeared specific. Thus, 3H-incorporation into the 63 kD band could be prevented by uM concentrations of 5-HT, 8-OH-DPAT and other selective 5-HT1A ligands such as isapirone. In contrast, the 5-HT2 antagonist ketanserin, norepinephrine and dopamine-related ligands (including 7-OH-DPAT) were ineffective. Direct solubilization of 5-HT1A receptor binding sites was also attempted from rat hippocampal membranes. The best results were obtained using CHAPS (10 mM) plus NaCl (0.2 M), which led to 50 % recovery of 5-HT1A sites in the 100,000 g supernatant. The pharmacological properties and sensitivity to N-ethyl-maleimide and GppNHp of soluble sites appeared near identical to those of membrane-bound 5-HT1A sites.  相似文献   

19.
Adipose tissue contains self-renewing multipotent cells termed mesenchymal stromal cells. In situ, these cells serve to expand adipose tissue by adipogenesis, but their multipotency has gained interest for use in tissue regeneration. Little is known regarding the repertoire of receptors expressed by adipose-derived mesenchymal stromal cells (AD-MSCs). The purpose of this study was to undertake a comprehensive analysis of purinergic receptor expression. Mesenchymal stromal cells were isolated from human subcutaneous adipose tissue and confirmed by flow cytometry. The expression profile of purinergic receptors was determined by quantitative real-time PCR and immunocytochemistry. The molecular basis for adenine and uracil nucleotide-evoked intracellular calcium responses was determined using Fura-2 measurements. All the known subtypes of P2X and P2Y receptors, excluding P2X2, P2X3 and P2Y12 receptors, were detected at the mRNA and protein level. ATP, ADP and UTP elicited concentration-dependent calcium responses in mesenchymal cells (N?=?7–9 donors), with a potency ranking ADP (EC50 1.3 ± 1.0 μM)?>?ATP (EC50 2.2 ± 1.1 μM)?=?UTP (3.2 ± 2.8 μM). Cells were unresponsive to UDP (<?30 μM) and UDP-glucose (<?30 μM). ATP responses were attenuated by selective P2Y2 receptor antagonism (AR-C118925XX; IC50 1.1 ± 0.8 μM, 73.0?±?8.5% max inhibition; N?=?7 donors), and UTP responses were abolished. ADP responses were attenuated by the selective P2Y6 receptor antagonist, MRS2587 (IC50 437 ± 133nM, 81.0?±?8.4% max inhibition; N?=?6 donors). These data demonstrate that adenine and uracil nucleotides elicit intracellular calcium responses in human AD-MSCs with a predominant role for P2Y2 and P2Y6 receptor activation. This study furthers understanding about how human adipose-derived mesenchymal stromal cells can respond to external signalling cues.  相似文献   

20.
Subtypes of purinergic receptors involved in modulation of cytoplasmic calcium ion concentration ([Ca2+]i) and insulin release in mouse pancreatic β-cells were examined in two systems, pancreatic islets in primary culture and beta-TC6 insulinoma cells. Both systems exhibited some physiological responses such as acetylcholine-stimulated [Ca2+]i rise via cytoplasmic Ca2+ mobilization. Addition of ATP, ADP, and 2-MeSADP (each 100 μM) transiently increased [Ca2+]i in single islets cultured in the presence of 5.5 mM (normal) glucose. The potent P2Y1 receptor agonist 2-MeSADP reduced insulin secretion significantly in islets cultured in the presence of high glucose (16.7 mM), whereas a slight stimulation occurred at 5.5 mM glucose. The selective P2Y6 receptor agonist UDP (200 μM) transiently increased [Ca2+]i and reduced insulin secretion at high glucose, whereas the P2Y2/4 receptor agonist UTP and adenosine receptor agonist NECA were inactive. [Ca2+]i transients induced by 2-MeSADP and UDP were antagonized by suramin (100 μM), U73122 (2 μM, PLC inhibitor), and 2-APB (10 or 30 μM, IP3 receptor antagonist), but neither by staurosporine (1 μM, PKC inhibitor) nor depletion of extracellular Ca2+. The effect of 2-MeSADP on [Ca2+]i was also significantly inhibited by MRS2500, a P2Y1 receptor antagonist. These results suggested that P2Y1 and P2Y6 receptor subtypes are involved in Ca2+ mobilization from intracellular stores and insulin release in mouse islets. In beta-TC6 cells, ATP, ADP, 2-MeSADP, and UDP transiently elevated [Ca2+]i and slightly decreased insulin secretion at normal glucose, while UTP and NECA were inactive. RT-PCR analysis detected mRNAs of P2Y1 and P2Y6, but not P2Y2 and P2Y4 receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号