首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Introduction

Obesity is a nutritional disorder associated with many health problems such as dyslipidemia, type 2 diabetes and cardiovascular diseases. In the present study, we investigated the anti-metabolic disorder effects of kumquat (Fortunella margarita Swingle) fruit extract (FME) on high-fat diet-induced C57BL/6 obese mice.

Methods

The kumquat fruit was extracted with ethanol and the main flavonoids of this extract were analyzed by HPLC. For the preventive experiment, female C57BL/6 mice were fed with a normal diet (Chow), high-fat diet (HF), and high-fat diet with 1% (w/w) extract of kumquat (HF+FME) for 8 weeks. For the therapeutic experiment, female C57BL/6 mice were fed with high-fat diet for 3 months to induce obesity. Then the obese mice were divided into two groups randomly, and fed with HF or HF+FME for another 2 weeks. Body weight and daily food intake amounts were recorded. Fasting blood glucose, glucose tolerance test, insulin tolerance test, serum and liver lipid levels were assayed and the white adipose tissues were imaged. The gene expression in mice liver and brown adipose tissues were analyzed with a quantitative PCR assay.

Results

In the preventive treatment, FME controlled the body weight gain and the size of white adipocytes, lowered the fasting blood glucose, serum total cholesterol (TC), serum low density lipoprotein cholesterol (LDL-c) levels as well as liver lipid contents in high-fat diet-fed C57BL/6 mice. In the therapeutic treatment, FME decreased the serum triglyceride (TG), serum TC, serum LDL-c, fasting blood glucose levels and liver lipid contents, improved glucose tolerance and insulin tolerance. Compared with the HF group, FME significantly increased the mRNA expression of PPARα and its target genes.

Conclusion

Our study suggests that FME may be a potential dietary supplement for preventing and ameliorating the obesity and obesity-related metabolic disturbances.  相似文献   

3.
In obesity, cardiac insulin resistance is a putative cause of cardiac hypertrophy and dysfunction. In our previous study, we observed that Magnolia extract BL153 attenuated high-fat-diet (HFD)-induced cardiac pathogenic changes. In this study, we further investigated the protective effects of the BL153 bioactive constituent, 4-O-methylhonokiol (MH), against HFD-induced cardiac pathogenesis and its possible mechanisms. C57BL/6J mice were fed a normal diet or a HFD with gavage administration of vehicle, BL153, or MH (low or high dose) daily for 24 weeks. Treatment with MH attenuated HFD-induced obesity, as evidenced by body weight gain, and cardiac pathogenesis, as assessed by the heart weight and echocardiography. Mechanistically, MH treatment significantly reduced HFD-induced impairment of cardiac insulin signaling by preferentially augmenting Akt2 signaling. MH also inhibited cardiac expression of the inflammatory factors tumor necrosis factor-α and plasminogen activator inhibitor-1 and increased the phosphorylation of nuclear factor erythroid-derived 2-like 2 (Nrf2) as well as the expression of a Nrf2 downstream target gene heme oxygenase-1. The increased Nrf2 signaling was associated with decreased oxidative stress and damage, as reflected by lowered malondialdehyde and 3-nitrotyrosine levels. Furthermore, MH reduced HFD-induced cardiac lipid accumulation along with lowering expression of cardiac fatty acid translocase/CD36 protein. These results suggest that MH, a bioactive constituent of Magnolia, prevents HFD-induced cardiac pathogenesis by attenuating the impairment of cardiac insulin signaling, perhaps via activation of Nrf2 and Akt2 signaling to attenuate CD36-mediated lipid accumulation and lipotoxicity.  相似文献   

4.
The fractalkine (CX3CL1-CX3CR1) chemokine system is associated with obesity-related inflammation and type 2 diabetes, but data on effects of Cx3cr1 deficiency on metabolic pathways is contradictory. We examined male C57BL/6 Cx3cr1-/- mice on chow and high-fat diet to determine the metabolic effects of Cx3cr1 deficiency. We found no difference in body weight and fat content or feeding and energy expenditure between Cx3cr1-/- and WT mice. Cx3cr1-/- mice had reduced glucose intolerance assessed by intraperitoneal glucose tolerance tests at chow and high-fat fed states, though there was no difference in glucose-stimulated insulin values. Cx3cr1-/- mice also had improved insulin sensitivity at hyperinsulinemic-euglycemic clamp, with higher glucose infusion rate, rate of disposal, and hepatic glucose production suppression compared to WT mice. Enhanced insulin signaling in response to acute intravenous insulin injection was demonstrated in Cx3cr1-/- by increased liver protein levels of phosphorylated AKT and GSK3β proteins. There were no differences in adipose tissue macrophage populations, circulating inflammatory monocytes, adipokines, lipids, or inflammatory markers. In conclusion, we demonstrate a moderate and reproducible protective effect of Cx3cr1 deficiency on glucose intolerance and insulin resistance.  相似文献   

5.
High-fat diet (HFD) induced obesity and concomitant development of insulin resistance (IR) and type 2 diabetes mellitus have been linked to mitochondrial dysfunction. However, it is not clear whether mitochondrial dysfunction is a direct effect of a HFD, or if mitochondrial function is reduced with increased HFD duration. We hypothesized that the function of mitochondrial oxidative and lipid metabolism functions in skeletal muscle mitochondria for HFD mice are similar, or elevated, relative to standard diet (SD) mice; thereby, IR is neither cause nor consequence of mitochondrial dysfunction. We applied a chemical probe approach to identify functionally reactive ATPases and nucleotide-binding proteins in mitochondria isolated from skeletal muscle of C57Bl/6J mice fed HFD or SD chow for 2-, 8-, or 16-weeks; feeding time points known to induce IR. A total of 293 probe-labeled proteins were identified by mass spectrometry-based proteomics, of which 54 differed in abundance between HFD and SD mice. We found proteins associated with the TCA cycle, oxidative phosphorylation (OXPHOS), and lipid metabolism were altered in function when comparing SD to HFD fed mice at 2-weeks, however by 16-weeks HFD mice had TCA cycle, β-oxidation, and respiratory chain function at levels similar to or higher than SD mice.  相似文献   

6.
This study first investigated the effects of corn gluten hydrolysate (CGH) (1.5 g/day) administration for 7 days on appetite-responsive genes in lean Sprague-Dawley (SD) rats. In a second set of experiments, the metabolic changes occurring at multiple time points over 8 weeks in response to CGH (35.33% wt/wt) were observed in high-fat (HF, 60% of energy as fat) diet-fed SD rats. In lean rats, the hypothalamus neuropeptide-Y and proopiomelanocortin mRNA levels of the CGH group were significantly changed in response to CGH administration. In the second part of the study, CGH treatment was found to reduce body weight and perirenal and epididymal fat weight. CGH also prevented an increase in food intake at 2 weeks and lowered plasma leptin and insulin levels in comparison with the HF group. This reduction in the plasma and hepatic lipid levels was followed by improved insulin resistance, and the beneficial metabolic effects of CGH were also partly related to increases in plasma adiponectin levels. The Homeostasis Model of Assessment - Insulin Resistance (HOMA-IR), an index of insulin resistance, was markedly improved in the HF-CGH group compared with the HF group at 6 weeks. According to the microarray results, adipose tissue mRNA expression related to G-protein coupled receptor protein signaling pathway and sensory perception was significantly improved after 8 weeks of CGH administration. In conclusion, the present findings suggest that dietary CGH may be effective for improving hyperglycemia, dyslipidemia and insulin resistance in diet-induced obese rats as well as appetite control in lean rats.  相似文献   

7.
Insulin resistance and hepatic steatosis are the most common complications of obesity. Pitaya is an important source of phytochemicals such as polyphenols, flavonoid and vitamin C which are related to its antioxidant activity. The present study was conducted to evaluate the influence of white pitaya juice (WPJ) on obesity-related metabolic disorders (e.g. insulin resistance and hepatic steatosis) in high-fat diet-fed mice. Forty-eight male C57BL/6J mice were assigned into four groups and fed low-fat diet with free access to water or WPJ, or fed high-fat diet with free access to water or WPJ for 14 weeks. Our results showed that administration of WPJ improved high-fat diet-induced insulin resistance, hepatic steatosis and adipose hypertrophy, but it exerted no influence on body weight gain in mice. Hepatic gene expression analysis indicated that WPJ supplement not only changed the expression profile of genes involved in lipid and cholesterol metabolism (Srebp1, HMGCoR, Cpt1b, HL, Insig1 and Insig2) but also significantly increased the expression levels of FGF21-related genes (Klb, FGFR2, Egr1 and cFos). In conclusion, WPJ protected from diet-induced hepatic steatosis and insulin resistance, which was associated with the improved FGF21 resistance and lipid metabolism.  相似文献   

8.
Polygonatum odoratum (Mill.) Druce belongs to the genus Polygonatum family of plants. In traditional Chinese medicine, the root of Polygonatum odoratum, Rhizoma Polygonati Odorati, is used both for food and medicine to prevent and treat metabolic disorders such as hyperlipidemia, hyperglycemia, obesity and cardiovascular disease. However, there is no solid experimental evidence to support these applications, and the underlying mechanism is also needed to be elucidated. Here, we examined the effect of the extract of Rhizoma Polygonati Odorati (ER) on metabolic disorders in diet-induced C57BL/6 obese mice. In the preventive experiment, the ER blocked body weight gain, and lowered serum total cholesterol (TC), triglyceride (TG) and fasting blood glucose, improved glucose tolerance test (GTT) and insulin tolerance test (ITT), reduced the levels of serum insulin and leptin, and increased serum adiponectin levels in mice fed with a high-fat diet significantly. In the therapeutic study, we induced obesity in the mice and treated the obese mice with ER for two weeks. We found that ER treatments reduced serum TG and fasting blood glucose, and improved glucose tolerance in the mice. Gene expression analysis showed that ER increased the mRNA levels of peroxisome proliferator-activated receptors (PPAR) γ and α and their downstream target genes in mice livers, adipose tissues and HepG2 cells. Our data suggest that ER ameliorates metabolic disorders and enhances the mRNA expression of PPARs in obese C57BL/6 mice induced by high-fat diet.  相似文献   

9.
10.
Insulin degrading enzyme (IDE) is a potential drug target in the treatment of type 2 diabetes (T2D). IDE controls circulating insulin through a degradation-dependent clearance mechanism in multiple tissues. However, there is not sufficient information about IDE regulation in obesity. In this study, we test obesity-associated factors and pioglitazone in the regulation of IDE in diet-induced obese (DIO) C57BL/6 mice. The enzyme activity and protein level of IDE were increased in the liver of DIO mice. Pioglitazone (10 mg/kg/day) administration for 2 months significantly enhanced the enzyme activity (75%), protein (180%) and mRNA (100%) of IDE in DIO mice. The pioglitazone-induced changes were coupled with 50% reduction in fasting insulin and 20% reduction in fasting blood glucose. The mechanism of IDE regulation in liver was investigated in the mouse hepatoma cell line (Hepa 1c1c7 cells), in which pioglitazone (5 µM) increased IDE protein and mRNA in a time-dependent manner in an 8 h study. Free fatty acid (palmitate 300 µM) induced IDE protein, but reduced the mRNA. Glucagon induced, and TNF-α decreased IDE protein. Insulin did not exhibit any activity in the same condition. In summary, pioglitazone, FFA and glucagon directly increased, but TNF-α decreased the IDE activity in hepatocytes. The results suggest that IDE activity is regulated in liver by multiple factors in obesity and pioglitazone may induce IDE activity in the control of T2D.  相似文献   

11.
Pharmacological administration of fibroblast growth factor 21 (FGF21) improves metabolic profile in preclinical species and humans. FGF21 exerts its metabolic effects through formation of beta-klotho (KLB)/FGF receptor 1c FGFR1c complex and subsequent signaling. Data from various in vitro systems demonstrate the intact C- and N-terminus of FGF21 is required for binding with KLB, and interaction with FGFR1c, respectively. However the relative roles of the termini for in vivo pharmacological effects are unclear. Here we report PF-05231023, a long-acting FGF21 analogue which is unique in that the half-life and subcutaneous (SC) bioavailability of the intact C-terminus are significantly different from those of the intact N-terminus (2 vs. 22 hr for half-life and 4~7 vs. ~50% SC bioavailability). Therefore, this molecule serves as a valuable tool to evaluate the relative roles of intact C-terminus vs. N-terminus in in vivo pharmacology studies in preclinical species. We determined the effects of PF-05231023 administration on body weight (BW) loss and glucose reduction during an oral glucose tolerance test (OGTT) following SC and intravenous (IV) administration in diet-induced obese (DIO) and leptin-deficient obese (ob/ob) mice, respectively. Our data show that the intact N-terminus of FGF21 in PF-05231023 appears to be sufficient to drive glucose lowering during OGTT and sustain BW loss in DIOs. Further, PK/PD modeling suggests that while the intact FGF21 C-terminus is not strictly required for glucose lowering during OGTT in ob/ob mice or for BW reduction in DIO mice, the higher potency conferred by intact C-terminus contributes to a rapid initiation of pharmacodynamic effects immediately following dosing. These results provide additional insight into the strategy of developing stabilized versions of FGF21 analogs to harness the full spectrum of its metabolic benefits.  相似文献   

12.
Y Tang  G Ho  Y Li  MA Hall  RL Hills  SC Black  Y Liang  KT Demarest 《PloS one》2012,7(8):e42134
An increasing amount of evidence supports pleiotropic metabolic roles of the cannibinoid-1 receptor (CB1R) in peripheral tissues such as adipose, liver, skeletal muscle and pancreas. To further understand the metabolic consequences of specific blockade of CB1R function in peripheral tissues, we performed a 10-week-study with an anti-sense oligonucleotide directed against the CB1R in diet-induced obese (DIO) AKR/J mice. DIO AKR/J mice were treated with CB1R ASO Isis-414930 (6.25, 12.5 and 25 mg/kg/week) or control ASO Isis-141923 (25 mg/kg/week) via intraperitoneal injection for 10 weeks. At the end of the treatment, CB1R mRNA from the 25 mg/kg/week CB1R ASO group in the epididymal fat and kidney was decreased by 81% and 63%, respectively. Body weight gain was decreased in a dose-dependent fashion, significantly different in the 25 mg/kg/week CB1R ASO group (46.1±1.0 g vs veh, 51.2±0.9 g, p<0.05). Body fat mass was reduced in parallel with attenuated body weight gain. CB1R ASO treatment led to decreased fed glucose level (at week 8, 25 mg/kg/week group, 145±4 mg/dL vs veh, 195±10 mg/dL, p<0.05). Moreover, CB1R ASO treatment dose-dependently improved glucose excursion during an oral glucose tolerance test, whereas control ASO exerted no effect. Liver steatosis was also decreased upon CB1R ASO treatment. At the end of the study, plasma insulin and leptin levels were significantly reduced by 25 mg/kg/week CB1R ASO treatment. SREBP1 mRNA expression was decreased in both epididymal fat and liver. G6PC and fatty acid translocase/CD36 mRNA levels were also reduced in the liver. In summary, CB1R ASO treatment in DIO AKR/J mice led to improved insulin sensitivity and glucose homeostasis. The beneficial effects of CB1R ASO treatment strongly support the notion that selective inhibition of the peripheral CB1R, without blockade of central CB1R, may serve as an effective approach for treating type II diabetes, obesity and the metabolic syndrome.  相似文献   

13.
Obesity is a primary risk factor for multiple metabolic disorders. Many drugs for the treatment of obesity, which mainly act through CNS as appetite suppressants, have failed during development or been removed from the market due to unacceptable adverse effects. Thus, there are very few efficacious drugs available and remains a great unmet medical need for anti-obesity drugs that increase energy expenditure by acting on peripheral tissues without severe side effects. Here, we report a novel approach involving antisense inhibition of fibroblast growth factor receptor 4 (FGFR4) in peripheral tissues. Treatment of diet-induce obese (DIO) mice with FGFR4 antisense oligonucleotides (ASO) specifically reduced liver FGFR4 expression that not only resulted in decrease in body weight (BW) and adiposity in free-feeding conditions, but also lowered BW and adiposity under caloric restriction. In addition, combination treatment with FGFR4 ASO and rimonabant showed additive reduction in BW and adiposity. FGFR4 ASO treatment increased basal metabolic rate during free-feeding conditions and, more importantly, prevented adaptive decreases of metabolic rate induced by caloric restriction. The treatment increased fatty acid oxidation while decreased lipogenesis in both liver and fat. Mechanistic studies indicated that anti-obesity effect of FGFR4 ASO was mediated at least in part through an induction of plasma FGF15 level resulted from reduction of hepatic FGFR4 expression. The anti-obesity effect was accompanied by improvement in plasma glycemia, whole body insulin sensitivity, plasma lipid levels and liver steatosis. Therefore, FGFR4 could be a potential novel target and antisense reduction of hepatic FGFR4 expression could be an efficacious therapy as an adjunct to diet restriction or to an appetite suppressant for the treatment of obesity and related metabolic disorders.  相似文献   

14.
15.
16.
  相似文献   

17.
Deficiency of protein phosphatase-2A is a key event in Alzheimer’s disease. An endogenous inhibitor of protein phosphatase-2A, inhibitor-1, I1 PP2A, which inhibits the phosphatase activity by interacting with its catalytic subunit protein phosphatase-2Ac, is known to be upregulated in Alzheimer’s disease brain. In the present study, we overexpressed I1 PP2A by intracerebroventricular injection with adeno-associated virus vector-1-I1 PP2A in Wistar rats. The I1 PP2A rats showed a decrease in brain protein phosphatase-2A activity, abnormal hyperphosphorylation of tau, neurodegeneration, an increase in the level of activated glycogen synthase kinase-3beta, enhanced expression of intraneuronal amyloid-beta and spatial reference memory deficit; littermates treated identically but with vector only, i.e., adeno-associated virus vector-1-enhanced GFP, served as a control. Treatment with memantine, a noncompetitive NMDA receptor antagonist which is an approved drug for treatment of Alzheimer’s disease, rescued protein phosphatase-2A activity by decreasing its demethylation at Leu309 selectively and attenuated Alzheimer’s disease-like pathology and cognitive impairment in adeno-associated virus vector-1-I1 PP2A rats. These findings provide new clues into the possible mechanism of the beneficial therapeutic effect of memantine in Alzheimer’s disease patients.  相似文献   

18.
Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disorder characterized by an enhanced accumulation of lipids, which affects around 40% of the world’s population. The T. fuciformis fungus possesses immunomodulatory activity and other beneficial properties that may alleviate steatosis through a different mechanism. The present study was designed to evaluate the effect T. fuciformis crude polysaccharides (TFCP) on inflammatory and lipid metabolism gene expression, oxidative stress, and lipid profile. Mice were divided into groups receiving (a) a normal chow diet (NCD), (b) a methionine–choline-deficient (MCD) diet, and (c) a MCD diet with TFCP. Liver histopathology was performed, and the hepatic gene expression levels were estimated using qRT-PCR. The lipid profiles, ALT, AST, and efficient oxidative enzymes were analyzed using ELISA. The TFCP administration in the MCD-fed mice suppressed hepatic lipid accumulation, lipid metabolism-associated genes (HMGCR, FABP, SREBP, ACC, and FAS), and inflammation-associated genes (IL-1β, TLR4, TNF-α, and IL-6) whilst enhancing the expression of HNF4α genes. TFCP mitigated against oxidative stress and normalized healthy lipid profiles. These results highlighted that TFCP prevents NAFLD through the inhibition of oxidative stress and inflammation, suggesting TFCP would potentially be an effective therapeutic agent against NAFLD progression.  相似文献   

19.
成纤维细胞生长因子21(fibroblast growth factor 21,FGF21)作为一种不依赖胰岛素的血糖调节因子,目前已被看做是治疗2型糖尿病的一个潜在的新型治疗因素.大量鼠类及灵长类动物模型的实验结果显示:FGF21可通过作用于脂肪组织及胰腺来降低血糖和甘油三酯含量,从而预防饮食诱导的肥胖及胰岛素抵抗.此外,FGF21也被证明可作为一种主要的内源性调控子,在禁食和酮症时起着关键的调控作用.然而,一些临床观察实验的结果表明,临床观察实验与动物模型实验之间虽然具有一定的相似性,但也存在很多不同,因而目前FGF21在人体中的生理学作用仍不明确.  相似文献   

20.
The casitas b-lineage lymphoma (c-Cbl) is an important adaptor protein with an intrinsic E3 ubiquitin ligase activity that interacts with E2 proteins such as UbCH7. c-Cbl plays a vital role in regulating receptor tyrosine kinase signaling. c-Cbl involves in whole-body energy homeostasis, which makes it a potential target for the treatment of type 2 diabetes and obesity. In the present study, we have designed two parental peptides and 55 modified peptides based on the structure of UbCH7 loop L1 and L2. Thirteen of the modified peptides showed increased inhibitory activity in a fluorescence polarization-based assay. In the in vivo proof of study principle, mice treated with peptides 10, 34, 49 and 51 were protected against high-fat diet-induced obesity and insulin resistant. These inhibitors may potentially lead to new therapeutic alternatives for obesity and type 2 diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号