首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
By the virtual screening method we have screened out Dihydrochalcone as a top-lead for the Alzheimer’s disease using the database of about 32364 natural compounds. The binding affinity of this ligand to amyloid beta (A) fibril has been thoroughly studied by computer simulation and experiment. Using the Thioflavin T (ThT) assay we have obtained the inhibition constant IC50 M. This result is in good agreement with the estimation of the binding free energy obtained by the molecular mechanic-Poisson Boltzmann surface area method and all-atom simulation with the force field CHARMM 27 and water model TIP3P. Cell viability assays indicated that Dihydrochalcone could effectively reduce the cytotoxicity induced by A. Thus, both in silico and in vitro studies show that Dihydrochalcone is a potential drug for the Alzheimers disease.  相似文献   

2.
Sirtuin (SIRT) pathway has a crucial role in Alzheimer’s disease (AD). The present study evaluated the alterations in serum sirtuin1 (SIRT1) concentration in healthy individuals (young and old) and patients with AD and mild cognitive impairment (MCI). Blood samples were collected from 40 AD and 9 MCI patients as cases and 22 young healthy adults and 22 healthy elderly individuals as controls. Serum SIRT1 was estimated by Surface Plasmon Resonance (SPR), Western Blot and Enzyme Linked Immunosorbent Assay (ELISA). A significant (p<0.0001) decline in SIRT1 concentration was observed in patients with AD (2.27±0.46 ng/µl) and MCI (3.64±0.15 ng/µl) compared to healthy elderly individuals (4.82±0.4 ng/µl). The serum SIRT1 concentration in healthy elderly was also significantly lower (p<0.0001) compared to young healthy controls (8.16±0.87 ng/µl). This study, first of its kind, has demonstrated, decline in serum concentration of SIRT1 in healthy individuals as they age. In patients with AD and MCI the decline was even more pronounced, which provides an opportunity to develop this protein as a predictive marker of AD in early stages with suitable cut off values.  相似文献   

3.
Shi J  Wang Y  Luo G 《AAPS PharmSciTech》2012,13(2):485-492
In the present study, we have investigated transdermal administration of ligustrazine phosphate (LP), as an antioxidant, for the treatment of Alzheimer's disease (AD). The LP transdermal ethosomal system was designed and characterized. Franz-type diffusion cells and confocal laser scanning microscopy were used for the in vitro permeation studies. Furthermore, the effect of LP transdermal ethosomal system on AD was evaluated in the scopolamine-induced amnesia rats by evaluating the behavioral performance in the Morris water maze test. The activities of the antioxidant enzymes and the levels of the lipid peroxidation product malondialdehyde (MDA) in the brain of rats were also determined. The results showed that both the penetration ability and the drug deposition in skin of the LP ethosomal system were significantly higher than the aqueous one. The LP transdermal ethosomal system could recover the activities of the antioxidant enzymes and the levels of MDA in the brain of the amnesic rats to the similar status of the normal rats, which was also indirectly reflected by the improvement in the behavioral performance. In conclusion, LP might offer a potential alternative therapeutic drug in the fight against AD, and ethosomes could be vesicles of choice for transdermal delivery of LP.  相似文献   

4.

Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the most common neurodegenerative diseases worldwide. They are characterized by the loss of neurons and synapses in special parts of the central nervous system (CNS). There is no definitive treatment for AD and PD, but extensive studies are underway to identify the effective drugs which can slow the progression of these diseases by affecting the factors involved in their pathophysiology (i.e., aggregated proteins, neuroinflammation, and oxidative stress). Icariin, a natural compound isolated from Epimedii herba, is known because of its anti-inflammatory and anti-oxidant properties. In this regard, there are numerous studies indicating its potential as a natural compound against the progression of CNS disorders, such as neurodegenerative diseases. Therefore, this review aims to re-examine findings on the pharmacologic effects of icariin on factors involved in the pathophysiology of AD and PD.

  相似文献   

5.

Background

β-amyloid is regarded as a significant factor in Alzheimer’s disease: but inefficient therapies based on this rationale suggests that additional signalling molecules or intermediary mechanisms must be involved in the actual initiation of the characteristic degeneration of neurons. One clue could be that acetylcholinesterase, also present in amyloid plaques, is aberrant in peripheral tissues such as blood and adrenal medulla that can be implicated in Alzheimer’s disease. The aim of this study was to assess the bioactivity of a fragment of acetylcholinesterase responsible for its non-enzymatic functions, a thirty amino acid peptide (“T30”) which has homologies with β-amyloid.

Methods

Cell viability was measured by sulforhodamine B assay and also lactate dehydrogenase assay: meanwhile, changes in the status of living cells was monitored by measuring release of acetylcholinesterase in cell perfusates using the Ellman reagent.

Findings

T30 peptide and β-amyloid each have toxic effects on PC12 cells, comparable to hydrogen peroxide. However only the two peptides selectively then evoke a subsequent, enhanced release in acetylcholinesterase that could only be derived from the extant cells. Moreover, unlike hydrogen peroxide, the T30 peptide selectively shifted a sub-threshold dose of β-amyloid to a toxic effect, which also resulted in a comparable enhanced release of acetylcholinesterase.

Interpretation

This is the first study comparing directly the bioactivity of β-amyloid with a peptide derived from acetylcholinesterase: the similarity in action suggests that the sequence homology between the two compounds might have a functional and/or pathological relevance. The subsequent enhanced release of acetylcholinesterase from the extant cells could reflect a primary ‘compensatory’ response of cells prone to degeneration, paradoxically providing further availability of the toxic C-terminal peptide to modulate the potency of β-amyloid. Such a cycle of events may provide new insights into the mechanism of continuing selective cell loss in Alzheimer’s disease and related degenerative disorders.  相似文献   

6.
7.
Patients of Alzheimer’s disease (AD) frequently have lower bone mineral density and higher rate of hip fracture. Tg2576, a well characterized AD animal model that ubiquitously express Swedish mutant amyloid precursor protein (APPswe), displays not only AD-relevant neuropathology, but also age-dependent bone deficits. However, the underlying mechanisms remain poorly understood. As APP is implicated as a regulator of iron export, and the metal chelation is considered as a potential therapeutic strategy for AD, we examined iron chelation’s effect on the osteoporotic deficit in Tg2576 mice. Remarkably, in vivo treatment with iron chelator, clinoquinol (CQ), increased both trabecular and cortical bone-mass, selectively in Tg2576, but not wild type (WT) mice. Further in vitro studies showed that low concentrations of CQ as well as deferoxamine (DFO), another iron chelator, selectively inhibited osteoclast (OC) differentiation, without an obvious effect on osteoblast (OB) differentiation. Intriguingly, both CQ and DFO’s inhibitory effect on OC was more potent in bone marrow macrophages (BMMs) from Tg2576 mice than that of wild type controls. The reduction of intracellular iron levels in BMMs by CQ was also more dramatic in APPswe-expressing BMMs. Taken together, these results demonstrate a potent inhibition on OC formation and activation in APPswe-expressing BMMs by iron chelation, and reveal a potential therapeutic value of CQ in treating AD-associated osteoporotic deficits.  相似文献   

8.
Two major isoprenoids, farnesyl pyrophosphate and geranylgeranyl pyrophosphate, serve as lipid donors for the posttranslational modification (known as prenylation) of proteins that possess a characteristic C-terminal motif. The prenylation reaction is catalyzed by prenyltransferases. The lipid prenyl group facilitates to anchor the proteins in cell membranes and mediates protein-protein interactions. A variety of important intracellular proteins undergo prenylation, including almost all members of small GTPase superfamilies as well as heterotrimeric G protein subunits and nuclear lamins. These prenylated proteins are involved in regulating a wide range of cellular processes and functions, such as cell growth, differentiation, cytoskeletal organization, and vesicle trafficking. Prenylated proteins are also implicated in the pathogenesis of different types of diseases. Consequently, isoprenoids and/or prenyltransferases have emerged as attractive therapeutic targets for combating various disorders. This review attempts to summarize the pharmacological agents currently available or under development that control isoprenoid availability and/or the process of prenylation, mainly focusing on statins, bisphosphonates, and prenyltransferase inhibitors. Whereas statins and bisphosphonates deplete the production of isoprenoids by inhibiting the activity of upstream enzymes, prenyltransferase inhibitors directly block the prenylation of proteins. As the importance of isoprenoids and prenylated proteins in health and disease continues to emerge, the therapeutic potential of these pharmacological agents has expanded across multiple disciplines. This review mainly discusses their potential application in Alzheimer's disease.  相似文献   

9.
Alzheimer’s disease (AD) is a complex multifactorial neurodegenerative disorder believed to be initiated by accumulation of amyloid β (Aβ)-related peptides derived from proteolytic processing of amyloid precursor protein (APP). Research over the past two decades provided a mechanistic link between cholesterol and AD pathogenesis. Genetic polymorphisms in genes regulating the pivotal points in cholesterol metabolism have been suggested to enhance the risk of developing AD. Altered neuronal membrane cholesterol level and/or subcellular distribution have been implicated in aberrant formation, aggregation, toxicity, and degradation of Aβ-related peptides. However, the results are somewhat contradictory and we still do not have a complete understanding on how cholesterol can influence AD pathogenesis. In this review, we summarize our current understanding on the role of cholesterol in regulating the production/function of Aβ-related peptides and also examine the therapeutic potential of regulating cholesterol homeostasis in the treatment of AD pathology.  相似文献   

10.
11.
Late onset Alzheimer’s disease (LOAD) etiology is influenced by complex interactions between genetic and environmental risk factors. Large-scale genome wide association studies (GWAS) for LOAD have identified 10 novel risk genes: ABCA7, BIN1, CD2AP, CD33, CLU, CR1, EPHA1, MS4A6A, MS4A6E, and PICALM. We sought to measure the influence of GWAS single nucleotide polymorphisms (SNPs) and gene expression levels on clinical and pathological measures of AD in brain tissue from the parietal lobe of AD cases and age-matched, cognitively normal controls. We found that ABCA7, CD33, and CR1 expression levels were associated with clinical dementia rating (CDR), with higher expression being associated with more advanced cognitive decline. BIN1 expression levels were associated with disease progression, where higher expression was associated with a delayed age at onset. CD33, CLU, and CR1 expression levels were associated with disease status, where elevated expression levels were associated with AD. Additionally, MS4A6A expression levels were associated with Braak tangle and Braak plaque scores, with elevated expression levels being associated with more advanced brain pathology. We failed to detect an association between GWAS SNPs and gene expression levels in our brain series. The minor allele of rs3764650 in ABCA7 is associated with age at onset and disease duration, and the minor allele of rs670139 in MS4A6E was associated with Braak tangle and Braak plaque score. These findings suggest that expression of some GWAS genes, namely ABCA7, BIN1, CD33, CLU, CR1 and the MS4A family, are altered in AD brains.  相似文献   

12.
Within the central nervous system, tetrahydrobiopterin (BH4) is an essential cofactor for dopamine and serotonin synthesis. In addition, BH4 is now established to be an essential cofactor for all isoforms of nitric oxide synthase (NOS). Inborn errors of metabolism affecting BH4 availability are well documented and the clinical presentation can be attributed to a paucity of dopamine, serotonin, and nitric oxide (NO) generation. In this article, we have focussed upon the sensitivity of BH4 to oxidative catabolism and the observation that when BH4 is limiting some cellular sources of NOS may generate superoxide whilst other BH4 saturated NOS enzymes may be generating NO. Such a scenario could favor peroxynitrite generation. If peroxynitrite is not scavenged, e.g., by antioxidants such as reduced glutathione, irreversible damage to critical cellular enzymes could ensue. Such targets include components of the mitochondrial electron transport chain, alpha ketoglutarate dehydrogenase and possibly pyruvate dehydrogenase. Such a cascade of events is hypothesized, in this article, to occur in neurodegerative conditions such as Parkinson’s and Alzheimer’s disease.  相似文献   

13.
14.
There are several systemic and intracerebral pathologic conditions, which limit provision and utilization of energy precursor metabolites in neuronal cells. Energy deficits cause excessive depolarization of neuronal cells triggering glutamate-zinc evoked excitotoxic cascade. The intracellular zinc excess hits several intraneuronal targets yielding collapse of energy balance and impairment functional and structural impairments cholinergic neurons. Disturbances in metabolism of acetyl-CoA, which is a direct precursor for energy, acetylcholine, N-acetyl-l-aspartate and acetylated proteins synthesis, play an important role in these pathomechanisms. Disruption of brain homeostasis activates slow accumulation of amyloid-β 1?42 , which extra and intracellular oligomeric deposits disrupt diverse transporting and signaling processes in all membrane structures of the cell. Both neurotoxic signals may combine aggravating detrimental effects on neuronal cell. Different neuroglial and neuronal cell types may display differential susceptibility to similar pathogenic insults depending on specific features of their energy and functional parameters. This review, basing on findings gained from cellular and animal models of Alzheimer’s disease, discusses putative energy/acetyl-CoA dependent mechanism in early and late stages of neurodegeneration.  相似文献   

15.
Immunotherapy holds great promise for Alzheimer’s disease (AD), but meningoencephalitis observed in the first AD vaccination trial, which accompanied T-lymphocytic infiltration, needs to be overcome. This study was aimed to investigate alternative approaches for a safer vaccine to treat AD. We used intramembranous fragment of amyloid-β (IF-Aβ) to immunize Kunming mice for up to 2.5 months and then evaluated the immunization efficacy and potential adverse effects. Immunization of mice with IF-Aβ plus Freund’s adjuvant resulted in moderate levels of Aβ antibodies (IgG), and the anti-sera were able to neutralize Aβ1-42-neurotoxicity in cultured primary cortical neurons. IF-Aβ itself did not show neurotoxicity, and immunization with IF-Aβ did not cause behavioral deficits in Morris water maze or any abnormalities by histological examinations of major organs including the brain. We conclude that vaccination with IF-Aβ may be a potentially safe and effective treatment for AD.  相似文献   

16.
Alzheimer’s disease (AD) is clinically characterized with progressive memory loss and cognitive decline. Synaptic dysfunction is an early pathological feature that occurs prior to neurodegeneration and memory dysfunction. Mounting evidence suggests that aggregation of amyloid-β (Aβ) and hyperphosphorylated tau leads to synaptic deficits and neurodegeneration, thereby to memory loss. Among the established genetic risk factors for AD, the ɛ4 allele of apolipoprotein E (APOE) is the strongest genetic risk factor. We and others previously demonstrated that apoE regulates Aβ aggregation and clearance in an isoform-dependent manner. While the effect of apoE on Aβ may explain how apoE isoforms differentially affect AD pathogenesis, there are also other underexplored pathogenic mechanisms. They include differential effects of apoE on cerebral energy metabolism, neuroinflammation, neurovascular function, neurogenesis, and synaptic plasticity. ApoE is a major carrier of cholesterols that are required for neuronal activity and injury repair in the brain. Although there are a few conflicting findings and the underlying mechanism is still unclear, several lines of studies demonstrated that apoE4 leads to synaptic deficits and impairment in long-term potentiation, memory and cognition. In this review, we summarize current understanding of apoE function in the brain, with a particular emphasis on its role in synaptic plasticity and the underlying cellular and molecular mechanisms, involving low-density lipoprotein receptor-related protein 1 (LRP1), syndecan, and LRP8/ApoER2.  相似文献   

17.
β-arrestins represent a small family of G protein-coupled receptors (GPCRs) regulators, which provide modulating effects by facilitating desensitization and internalization of GPCRs as well as initiating their own signalings. Recent reports have demonstrated that β-arrestins levels were correlated with amyloid-β peptide (Aβ) pathology in brains of Alzheimer’s disease (AD) patients and animal models. β-arrestins could enhance the activity of γ-secretase via interacting with anterior pharynx defective 1 subunit, which increased Aβ production and contributed to the pathogenesis of AD. In addition, Aβ-induced internalization of β2-adrenergic receptor internalization and loss of dendritic spine in neurons were proven to be mediated by β-arrestins, further establishing their pathogenic role in AD. More importantly, deletion of β-arrestins markedly attenuated AD pathology, without causing any gross abnormality. Here, we review the evidence about the roles of β-arrestins in the progression of AD. In addition, the established and postulated mechanisms by which β-arrestins mediated in AD pathogenesis are also discussed. Based on the role of β-arrestins in AD pathogenesis, genetically or pharmacologically targeting β-arrestins might provide new opportunities for AD treatment.  相似文献   

18.
The Alzheimer’s disease neurotoxic amyloid-β (Aβ) peptide is derived from the larger amyloid precursor protein (APP) and is the principal component of the senile plaques in Alzheimer’s disease (AD) brains. This mechanism by which Aβ mediates neurotoxicity or neuronal dysfunction is not fully resolved. This review will outline some of the key determinants that modulate Aβ’s activity and the cellular pathways and mechanisms involved.  相似文献   

19.
Nazir  Samra  Anwar  Fareeha  Saleem  Uzma  Ahmad  Bashir  Raza  Zohaib  Sanawar  Maham  Rehman  Artta ur  Ismail  Tariq 《Neurochemical research》2021,46(7):1814-1829
Neurochemical Research - Alzheimer’s disease (AD) is a progressive neurodegenerative disease associated with decline in memory and cognitive impairments. Phosphodiesterase IV (PDE4) protein,...  相似文献   

20.
Receptor for advanced glycation end products (RAGE) is a receptor of the immunoglobulin super family that plays various important roles under physiological and pathological conditions. Compelling evidence suggests that RAGE acts as both an inflammatory intermediary and a critical inducer of oxidative stress, underlying RAGE-induced Alzheimer-like pathophysiological changes that drive the process of Alzheimer’s disease (AD). A critical role of RAGE in AD includes beta-amyloid (Aβ) production and accumulation, the formation of neurofibrillary tangles, failure of synaptic transmission, and neuronal degeneration. The steady-state level of Aβ depends on the balance between production and clearance. RAGE plays an important role in the Aβ clearance. RAGE acts as an important transporter via regulating influx of circulating Aβ into brain, whereas the efflux of brain-derived Aβ into the circulation via BBB is implemented by LRP1. RAGE could be an important contributor to Aβ generation via enhancing the activity of β- and/or γ-secretases and activating inflammatory response and oxidative stress. However, sRAGE–Aβ interactions could inhibit Aβ neurotoxicity and promote Aβ clearance from brain. Meanwhile, RAGE could be a promoting factor for the synaptic dysfunction and neuronal circuit dysfunction which are both the material structure of cognition, and the physiological and pathological basis of cognition. In addition, RAGE could be a trigger for the pathogenesis of Aβ and tau hyper-phosphorylation which both participate in the process of cognitive impairment. Preclinical and clinical studies have supported that RAGE inhibitors could be useful in the treatment of AD. Thus, an effective measure to inhibit RAGE may be a novel drug target in AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号