首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Designing the expression cassettes with desired properties remains the most important consideration of gene engineering technology. One of the challenges for predictive gene expression is the modeling of synthetic gene switches to regulate one or more target genes which would directly respond to specific chemical, environmental, and physiological stimuli. Assessment of natural promoter, high-throughput sequencing, and modern biotech inventory aided in deciphering the structure of cis elements and molding the native cis elements into desired synthetic promoter. Synthetic promoters which are molded by rearrangement of cis motifs can greatly benefit plant biotechnology applications. This review gives a glimpse of the manual in vivo gene regulation through synthetic promoters. It summarizes the integrative design strategy of synthetic promoters and enumerates five approaches for constructing synthetic promoters. Insights into the pattern of cis regulatory elements in the pursuit of desirable “gene switches” to date has also been reevaluated. Joint strategies of bioinformatics modeling and randomized biochemical synthesis are addressed in an effort to construct synthetic promoters for intricate gene regulation.  相似文献   

2.
3.
The structural diversity and localization of cell surface glycosphingolipids (GSLs), including gangliosides, in glycolipid-enriched microdomains (GEMs, also known as lipid rafts) render them ideally suited to play important roles in mediating intercellular recognition, interactions, adhesion, receptor function, and signaling. Gangliosides, sialic acid-containing GSLs, are most abundant in the nerve tissues. The quantity and expression pattern of gangliosides in brain change drastically throughout development and these changes are mainly regulated through stage-specific expression of glycosyltransferase genes. We previously demonstrated for the first time that efficient histone acetylation of the glycosyltransferase genes in mouse brain contributes to the developmental alteration of ganglioside expression. We further demonstrated that acetylation of histones H3 and H4 on the N-acetylgalactosaminyltransferase I (GalNAcT, GA2/GM2/GD2/GT2-synthase; B4galnt1) gene promoter resulted in recruitment of trans-activation factors. In addition, we showed that epigenetic activation of the GalNAcT gene was detected and accompanied by an apparent induction of neuronal differentiation of neural stem cells (NSCs) responding to an exogenous supplement of ganglioside GM1. Most recently, we found that nuclear GM1 binds with acetylated histones on the promoters of the GalNAcT as well as on the NeuroD1 genes in differentiated neurons. Here, we will introduce epigenetic regulation of ganglioside synthase genes in neural development and neuronal differentiation of NSCs.  相似文献   

4.
5.
The flower of the safflower plant Carthamus tinctorius L. has been widely used in traditional Chinese medicine because of its ability to improve cerebral blood flow. Flavonoids are the main active ingredient of safflower plants. Analyses of the regulation of flavonoids are of great significance for the artificial regulation of their biosynthesis, and previous studies have mainly focused on their metabolic synthesis in safflower. For a better understanding of the regulation of flavonoid biosynthesis in safflower, promoters of flavonoid biosynthesis genes in safflower were cloned and analysed. First, the expression of the flavonoid genes in safflower was analysed. Twenty-four genes involved in flavonoid biosynthesis exhibited large differences. Four promoters of flavonoid genes that were mainly expressed in the flowers of safflower (termed pctCHI-1, pctCHS-2, pctF3H-2 and pctGT-1) were cloned and analysed. Elements that respond to light, i.e. phytohormones and the MYB regulator, were identified. The promoter activities were analysed using a protoplast system. All four promoters had activities in the flower protoplast, and the pctCHS-2 activity was the highest. Our results also demonstrate that pctCHS-2 is a flower-specific promoter. All of these results provide a basis for improved analyses of flavonoid regulation in safflower.  相似文献   

6.
Animal domestication is a model of a rapid evolutionary process. In experimental fox domestication, the time required for the emergence and fixation of specific evolutionary changes was reduced from thousands to tens of years, compared to historical domestication. Tame foxes were obtained by extreme selective breeding for emotionally positive response toward humans. Unselected foxes, as well as foxes bred for enhanced aggressiveness to humans were used as control. Epigenetic regulation of gene expression is considered as one of the possible mechanisms of rapid evolution. In this study, expression of DNA methyltransferase genes, DNMT1 and DNMT3A, was investigated. It was demonstrated that, in tame foxes, the level of DNMT3A gene expression in the prefrontal cortex, hippocampus, and spleen was increased by more than 2 times in comparison with aggressive and unselected foxes. At the same time, the DNMT1 expression level did not differ among the studied groups of animals. A possible reason for the differences found in the DNMT3A expression could be the changes in the level and metabolism of methionine, which serves as a donor of methyl groups during DNA methylation. However, this study showed that there were no differences in the serum methionine levels between tame, unselected, and aggressive foxes. Thus, the data support the hypothesis that selection for positive emotional response toward humans affected the DNA methylation machinery.  相似文献   

7.
The aim of this study was to ensure the systematic protein expression of two genes (GTG and Cry1Ac) under the influence of two different constitutive promoters i.e. Ubiquitin-1 and CaMV 35S promoters in different sugarcane lines. PCR amplification of GTG and Cry1Ac was achieved from putative transgenic plants through gene specific primers. Qualitative comparisons of GTG and Cry1Ac genes expression under two different promoters were obtained through protein dot blot and dipstick assay. The appearance of comparatively dark color dots in dot blot and dark color bands on dipstick with Ubiquitin as compared to light color bands with CaMV35S promoter, qualitatively confirmed high protein expression of two genes under Ubiquitin promoter. In quantitative gene expression comparisons maximum optical density (OD) at 450 nm of UV-light was obtained for GTG (3.7 OD) and Cry1Ac (3 OD) under Ubiquitin promoter, while for GTG (1.6 OD) and Cry1Ac (2.5 OD) with CaMV 35S promoter. The results indicated higher expression of two genes under Ubiquitin-1 promoter in sugarcane was found as compared to CaMV 35S promoter. This study provides a guide for stable and high expression of transgenes with reference to Ubiquitin-1 promoter which can be utilize in sugarcane as well as in other monocots.  相似文献   

8.
9.
Tissue-specific promoters can drive genes specifically expressed in the target organs and have been widely used in plant molecular breeding. In this study, a 1.2-kb promoter region of an anther-specific gene PhLRR from Petunia hybrida “Fantasy” was isolated and fused to the β-glucuronidase (GUS) gene. The pPhLRR::GUS vector was heterogeneously transformed into tobacco in which the GUS staining was only detected in the early development stage of anthers and no GUS expression in any other three floral whirls or vegetative organs was observed. It is very different from other well-studied anther-specific promoters which drive genes specifically expressed in the later development stage of anthers or only in the pollens. Furthermore, the pPhLRR::Barnase was introduced into petunia and induced complete male sterility without influencing the ornamental characteristics or the female fertility in transformed plants. These results indicate that PhLRR promoter is a new kind of petunia anther-specific promoter and could be taken as a valuable tool in ornamental plant breeding.  相似文献   

10.
11.
Gene regulation from sites near and far   总被引:1,自引:0,他引:1  
  相似文献   

12.
13.
14.
15.
16.
17.
18.
Isoprene synthase (ISPS) catalyzes the formation of isoprene, an important volatile terpenoid with strong effects on global atmospheric chemistry and protective physiological functions in plant leaves. Many terpene synthase genes including isoprene synthase, a member of the TPS-b cluster of this numerous gene family, were already functionally analysed but much less is known about regulation of their promoters. To study regulation of the PcISPS gene in detail we developed transgenic Grey poplar (Populus × canescens) and Arabidopsis thaliana plants in which the PcISPS promoter is fused to enhanced green fluorescent protein (E-GFP) and β-glucuronidase (GUS) reporter genes. We analysed these reporters during plant development, for organ specificity and in plants subjected to different light and temperature regimes. We observed low promoter activity in non-isoprene emitting tissue like roots where ISPS gene is transcribed but no active enzyme is detectable. In leaves we demonstrate that light and temperature directly modulate ISPS promoter activity. Moreover, with confocal laser scanning microscopy we show a cell specific gradient of ISPS promoter activity within the leaf parenchyma depending on light direction. Our results indicate that ISPS promoter activity, which correlates with basal isoprene emission capacity, is not uniformly distributed within leaf tissue and that it can adapt rapidly towards internal as well as external environmental stimuli.  相似文献   

19.
20.
Climate change is posing a major challenge to coffee production worldwide leading to a need for the development of coffee cultivars with increased drought tolerance. In several plant species, the use of DREB genes in crop improvement has achieved promising results to desiccation tolerance engineering. Recent studies reported CcDREB1D specific patterns of expression in Coffea canephora and functional evidence of this gene involvement in drought stress responses. However, knowledge on natural diversity of this gene is largely unknown. In this context, this study aimed at evaluating the sequence variability of the DREB1D gene in several Coffea genotypes. Nucleotide variation in promoters and coding regions of this gene were evaluated in a population consisting of 38 genotypes of C. canephora, C. arabica and C. eugenioides, most of them characterized by different phenotypes (tolerance vs. susceptibility) in relation to drought. The genetic diversity of the loci revealed different haplotypes for the promoter and coding regions. In particular, our findings suggest association between drought tolerance and the genetic variations on DREB1D promoter regions, but not with those from its corresponding coding regions. Gene expression studies revealed up-regulated expression of DREB1D gene upon drought mainly in leaves of drought-tolerant clones of C. canephora, and in response to drought, high, and low temperatures in leaves of C. arabica, suggesting a key role of this gene in coffee responses to abiotic stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号