首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we attempted to design a model using Sprague-Dawley rats to better reproduce perinatal systemic hypoxic-ischemic encephalopathy (HIE) in early preterm newborns. On day 21 of gestation, the uterus of pregnant rats were exposed and the blood supply to the fetuses of neonatal HIE groups were thoroughly abscised by hemostatic clamp for 5, 10 or 15 min. Thereafter, fetuses were moved from the uterus and manually stimulated to initiate breathing in an incubator at 37 °C for 1 hr in air. We showed that survival rates of offspring rats were decreased with longer hypoxic time. TUNEL staining showed that apoptotic cells were significant increased in the brains of offspring rats from the 10 min and 15 min HIE groups as compared to the offspring rats in the control group at postnatal day (PND) 1, but there was no statistical difference between the offspring rats in the 5 min HIE and control groups. The perinatal hypoxic treatment resulted in decreased neurons and increased cleaved caspase-3 protein levels in the offspring rats from all HIE groups at PND 1. Platform crossing times and the percentage of the time spent in the target quadrant of Morris Water Maze test were significantly reduced in the offspring rats of all HIE groups at PND 30, which were associated with decreased brain-derived neurotrophic factor levels and neuronal cells in the hippocampus of offspring rats at PND 35. These data demonstrated that perinatal ischemic injury led to the death of neuronal cells and long-lasting impairment of memory. This model reproduced hypoxic ischemic encephalopathy in early preterm newborns and may be appropriate for investigating therapeutic interventions.  相似文献   

2.
Felix-Ortiz AC  Febo M 《PloS one》2012,7(5):e37313
Valproic acid (VPA) has been used clinically as an anticonvulsant medication during pregnancy; however, it poses a neurodevelopmental risk due to its high teratogenicity. We hypothesized that midgestational (GD) exposure to VPA will lead to lasting deficits in social behavior and the processing of social stimuli. To test this, animals were given a single IP injection of 600 mg/kg of VPA on GD 12.5. Starting on postnatal day 2 (PND2), animals were examined for physical and behavior abnormalities. Functional MRI studies were carried out after PND60. VPA and control animals were given vehicle or a central infusion of a V(1a) antagonist 90 minutes before imaging. During imaging sessions, rats were presented with a juvenile test male followed by a primary visual stimulus (2 Hz pulsed light) to examine the effects of prenatal VPA on neural processing. VPA rats showed greater increases in BOLD signal response to the social stimulus compared to controls in the temporal cortex, thalamus, midbrain and the hypothalamus. Blocking the V(1a) receptor reduced the BOLD response in VPA animals only. Neural responses to the visual stimulus, however, were lower in VPA animals. Blockade with the V(1a) antagonist did not revert this latter effect. Our data suggest that prenatal VPA affects the processing of social stimuli and perhaps social memory, partly through a mechanism that may involve vasopressin V(1a) neurotransmission.  相似文献   

3.
During the early postnatal period the central nervous system (CNS) is extremely sensitive to external agents. The present study aims at the investigation of critical phases where methylmercury (MeHg) induces cerebellar toxicity during the suckling period in mice. Animals were treated with daily subcutaneous injections of MeHg (7 mg/kg of body weight) during four different periods (5 days each) at the early postnatal period: postnatal day (PND) 1–5, PND 6–10, PND 11–15, or PND 16–20. A control group was treated with daily subcutaneous injections of a 150 mM NaCl solution (10 ml/kg of body weight). Subjects exposed to MeHg at different postnatal periods were littermate. At PND 35, behavioral tests were performed to evaluate spontaneous locomotor activity in the open field and motor performance in the rotarod task. Biochemical parameters related to oxidative stress (levels of glutathione and thiobarbituric acid reactive substances, as well as glutathione peroxidase and glutathione reductase activity) were evaluated in cerebellum. Hyperlocomotor activity and high levels of cerebellar thiobarbituric acid reactive substances were observed in animals exposed to MeHg during the PND 11–15 or PND 16–20 periods. Cerebellar glutathione reductase activity decreased in MeHg-exposed animals. Cerebellar glutathione peroxidase activity was also decreased after MeHg exposure and the lowest enzymatic activity was found in animals exposed to MeHg during the later days of the suckling period. In addition, low levels of cerebellar glutathione were found in animals exposed to MeHg during the PND 16–20 period. The present results show that the postnatal exposure to MeHg during the second half of the suckling period causes hyperlocomotor activity in mice and point to this phase as a critical developmental stage where mouse cerebellum is a vulnerable target for the neurotoxic and pro-oxidative effects of MeHg.  相似文献   

4.
The purpose of this study was to evaluate the most appropriate rat age for the start of administration, and the effect of weaning, in the immature rat uterotrophic assay using ethynylestradiol (EE). Animals weaned on postnatal day (PND) 20 were administered subcutaneously EE at doses of 0.06-6 micrograms/kg/day for 3 days beginning on PND 21, 23 or 25. EE at the same doses was also administered to rats weaned on PND 17 or 20 from PND 21 for 3 days. Although uterine weight was significantly increased in the rats given 0.6-6 micrograms/kg EE in both of the studies, the percentage increase relative to the control in each group given EE from PND 21 and weaned on PND 20 was higher than in those groups given EE from PND 23 or 25, and the group weaned on PND 17.  相似文献   

5.
It is not possible to identify all pregnancies at risk of neonatal hypoxic-ischemic encephalopathy (HIE). Many women use some form of analgesia during childbirth and some anesthetic agents have been shown to be neuroprotective when used as analgesics at subanesthetic concentrations. In this study we sought to understand the effects of two anesthetic agents with presumptive analgesic activity and known preconditioning-neuroprotective properties (sevoflurane or xenon), in reducing hypoxia-induced brain damage in a model of intrauterine perinatal asphyxia. The analgesic and neuroprotective effects at subanesthetic levels of sevoflurane (0.35%) or xenon (35%) were tested in a rat model of intrauterine perinatal asphyxia. Analgesic effects were measured by assessing maternal behavior and spinal cord dorsal horn neuronal activation using c-Fos. In separate experiments, intrauterine fetal asphyxia was induced four hours after gas exposure; on post-insult day 3 apoptotic cell death was measured by caspase-3 immunostaining in hippocampal neurons and correlated with the number of viable neurons on postnatal day (PND) 7. A separate cohort of pups was nurtured by a surrogate mother for 50 days when cognitive testing with Morris water maze was performed. Both anesthetic agents provided analgesia as reflected by a reduction in the number of stretching movements and decreased c-Fos expression in the dorsal horn of the spinal cord. Both agents also reduced the number of caspase-3 positive (apoptotic) neurons and increased cell viability in the hippocampus at PND7. These acute histological changes were mirrored by improved cognitive function measured remotely after birth on PND 50 compared to control group. Subanesthetic doses of sevoflurane or xenon provided both analgesia and neuroprotection in this model of intrauterine perinatal asphyxia. These data suggest that anesthetic agents with neuroprotective properties may be effective in preventing HIE and should be tested in clinical trials in the future.  相似文献   

6.
The prenatal exposure of mice to diethylstilbestrol (DES, 10 micrograms/kg on day 15 of gestation) caused both quantitative and structural alterations in ovarian follicles within the neonatal ovary. At birth, control ovaries consisted of small type 1 and 2 ovarian follicles located in the ovarian cortex. By postnatal day 7, ovarian follicle development had advanced to the type 4 stage with larger follicles located within the ovarian medulla. In DES-exposed animals, ovarian follicle maturation was advanced with type 3b and 4 follicles appearing 24 h prior to their appearance in control animals. Also, type 5 ovarian follicles were present on postnatal day 6 in experimental animals but were never seen in control animals. In addition to an alteration in ovarian follicle dynamics, the diameter of individual ovarian follicles was transit time between the various stages of follicular development which results in a greater number of developmentally advanced ovarian follicles being present during neonatal ovarian development. The mechanism by which prenatal exposure to DES alters ovarian follicle dynamics during neonatal development is not known.  相似文献   

7.
Changes in endogenous neonatal levels of the neurosteroid allopregnanolone (AlloP) as well as a single 24 h period of early maternal separation (EMS) on postnatal day (PND) 9 affect the development of the central nervous system (CNS), causing adolescent/adult alterations including systems and behavioural traits that could be related to vulnerability to drug abuse. In rats, some behavioural alterations caused by EMS can be neutralised by previous administration of AlloP. Thus, the aim of the present work is to analyse if manipulations of neonatal AlloP could increase adult alcohol consumption, and if EMS could change these effects. We administered AlloP or finasteride, a 5α-reductase inhibitor, from PND5 to PND9, followed by 24 h of EMS at PND9. At PND70 we measured alcohol consumption using a two-bottle free-choice model (ethanol 10% (v/v) + glucose 3% (w/v), and glucose 3% (w/v)) for 15 days. Ventral striatum samples were obtained to determine monoamine levels. Results revealed that neonatal finasteride increased both ethanol and glucose consumption, and AlloP increased alcohol intake compared with neonatal vehicle-injected animals. The differences between neonatal groups in alcohol consumption were not found in EMS animals. In accordance, both finasteride and AlloP animals that did not suffer EMS showed lower levels of dopamine and serotonin in ventral striatum. Taken together, these results reveal that neonatal neurosteroids alterations affect alcohol intake; an effect which can be modified by subsequent EMS. Thus, these data corroborate the importance of the relationship between neonatal neurosteroids and neonatal stress for the correct CNS development.  相似文献   

8.
BACKGROUND: The use of psychoactive drugs during adolescence and early adult life has increased in the last few decades. It is known that developmental exposure to psychostimulants affects the sensory systems, and the retina has been shown to be a target tissue. This work was conducted to evaluate the pattern of lipid peroxidation in the rat retina following prenatal exposure to methamphetamine (MA). METHODS: Pregnant female Wistar rats were given MA (5 mg/kg of body weight/day; SC, in 0.9% saline) from GD 8 to 22. Offspring were sacrificed at postnatal days (PNDs) 7, 14, and 21. The retinas were homogenized, and both the total antioxidant and superoxide dismutase (SOD) activities were measured by enzymatic-colorimetric methods. The lipid peroxidation byproducts (malondialdehyde [MDA] and MDA-like metabolites) were measured by the thiobarbituric acid test. RESULTS: Total antioxidant levels were lower in the MA group at PND 21 in both males and females. The activity of SOD was higher in PND 7 females from the MA group. MDA levels were higher in the MA group at PND 21 in both genders. CONCLUSIONS: These findings suggest that prenatal-induced MA toxicity in the retina may be related to lipid peroxidation processes and oxidative stress.  相似文献   

9.
Prenatal exposure to BPA disturbs mammary gland histoarchitecture and increases the carcinogenic susceptibility to chemical challenges administered long after BPA exposure. Our aim was to assess the effect of prenatal BPA exposure on mammary gland angiogenesis and steroid hormone pathways in virgin cycling rats. Pregnant Wistar rats were exposed to either 25 or 250 g/kg/day (25 and 250 BPA, respectively) or to vehicle. Female offspring were autopsied on postnatal day (PND) 50 or 110. Ovarian steroid serum levels, the expression of steroid receptors and their co-regulators SRC-3 and SMRT in the mammary gland, and angiogenesis were evaluated. At PND 50, all BPA-treated animals had lower serum levels of progesterone, while estradiol levels remained unchanged. The higher dose of BPA increased mammary ERα and decreased SRC-3 expression at PND 50 and PND 110. SMRT protein levels were similar among groups at PND 50, whereas at PND 110, animals exposed to 250 BPA showed a lower SMRT expression. Interestingly, in the control and 25 BPA groups, SMRT increased from PND 50 to PND 110. At PND 50, an increased vascular area associated with higher VEGF expression was observed in the 250 BPA-treated rats. At PND 110, the vascular area was still increased, but VEGF expression was similar to that of control rats. The present results demonstrate that prenatal exposure to BPA alters the endocrine environment of the mammary gland and its angiogenic process. Increased angiogenesis and altered steroid hormone signals could explain the higher frequency of pre-neoplastic lesions found later in life. This article is part of a Special Issue entitled 'Endocrine disruptors'.  相似文献   

10.
The process of weaning programs the neurobehavioral development and therefore provides a critical formative period for adult behavior. However, the neural substrates underlying these behavioral changes are largely unknown. To test the hypothesis that during childhood neuronal networks in the prefrontal cortex are reorganized in response to the timing and extent of social interactions, we analyzed the length, ramification, and spine density of apical and basal dendrites of layer II/III pyramidal neurons in four groups of male rats. (1) Early weaning at postnatal day (PND) 21 + postweaning social rearing (EWS), (2) late weaning at PND 30 + postweaning social rearing (LWS), (3) early weaning + postweaning social isolation (EWI), (4) late weaning + postweaning social isolation (LWI). Compared with late weaned animals, the early weaned animals displayed elevated spine densities on apical and basal dendrites only in the anterior cingulate (ACd), but not in the orbitofrontal cortex (OFC), irrespective of the postweaning housing conditions. For dendritic length and complexity an interaction between the factors weaning and postweaning rearing conditions was observed. In the ACd the EWI animals had longer and more complex apical dendrites compared with all other groups, whereas in the OFC the EWI animals displayed a significant reduction of apical dendritic length and complexity compared with the EWS group. Taken together, our findings show that the timing as well as the amount of social contact with family members significantly affects the refinement of prefrontal cortical synaptic networks, which are essential for emotional and cognitive behavior.  相似文献   

11.
Maternal deprivation (MD) during neonatal life has diverse long-term effects, including affectation of metabolism. Indeed, MD for 24 hours during the neonatal period reduces body weight throughout life when the animals are maintained on a normal diet. However, little information is available regarding how this early stress affects the response to increased metabolic challenges during postnatal life. We hypothesized that MD modifies the response to a high fat diet (HFD) and that this response differs between males and females. To address this question, both male and female Wistar rats were maternally deprived for 24 hours starting on the morning of postnatal day (PND) 9. Upon weaning on PND22 half of each group received a control diet (CD) and the other half HFD. MD rats of both sexes had significantly reduced accumulated food intake and weight gain compared to controls when raised on the CD. In contrast, when maintained on a HFD energy intake and weight gain did not differ between control and MD rats of either sex. However, high fat intake induced hyperleptinemia in MD rats as early as PND35, but not until PND85 in control males and control females did not become hyperleptinemic on the HFD even at PND102. High fat intake stimulated hypothalamic inflammatory markers in both male and female rats that had been exposed to MD, but not in controls. Reduced insulin sensitivity was observed only in MD males on the HFD. These results indicate that MD modifies the metabolic response to HFD intake, with this response being different between males and females. Thus, the development of obesity and secondary complications in response to high fat intake depends on numerous factors.  相似文献   

12.
张明  蔡景霞 《动物学研究》2006,27(4):344-350
采用split-litter法对仔鼠进行分组和处理,共5组NTS组(未经实验人员抓握和标记),PND2—9TS组和PND10—17TS组(分别在仔鼠出生后的2—9天、10—17天,每天短暂抓握和标记仔鼠),PND2—9MS组和PND10—17MS组(分别在仔鼠出生后的2—9天、10—17天,除了按TS组相同方式抓握并在不同部位标记外,每天把仔鼠与母鼠分离1h)。待雌鼠成年后,进行明/暗箱测试和一次性被动回避反应测试。结果发现与NTS组相比,PND2—9TS组和PND10—17TS组的雌鼠在明/暗箱测试中停留于明室的累计时间明显较长,在被动回避作业中的重测试潜伏期也明显较长,表明新生期的触觉刺激经历减少雌性大鼠成年后在新异环境中的焦虑,并改善情绪记忆。与相应TS组相比,MS处理组的所有行为指标都无显著性差异,说明短时间母婴分离对雌鼠成年后的焦虑和情绪记忆无明显影响。结果提示,新生期的触觉刺激和母婴分离经历对仔鼠神经系统的发育产生不同的长期效应。  相似文献   

13.
To better understand the effect of arsenic on central nervous system by prenatal and early life exposure, the oxidative stress and neurotransmitter metabolic enzymes were determined in offspring rats' brain cortex and hippocampus. Forty‐eight pregnant rats were randomly divided into four groups, each group was given free access to drinking water that contained 0, 10, 50, and 100 mg/L NaAsO2 from gestation day 6 (GD 6) until postnatal day 42 (PND 42). Once pups were weaned, they started to drink the same arsenic (As)‐containing water as the dams. The level of malondialdehyde in 100 mg/L As‐exposed pup's brain on PND 0 and cortex on PND 28 and 42 were significantly higher than in the control group (p < 0.05). Reduced glutathione (GSH) levels showed a clear decreasing trend in pup's cortex and hippocampus on PND 42. Activity of acetylcholinesterase was significantly higher in 100 mg/L As‐exposed pup's hippocampus than in control group on PND 28 and 42. mRNA expression of glutamate decarboxylase (GAD65 and GAD67) in 100 mg/L As‐exposed pup's cortex or hippocampus on PND 28 and 42 were significantly higher than in control (p < 0.05). These alterations in the neurotransmitters and reduced antioxidant defence may lead to neurobehavioral and learning and memory changes in offspring rats. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 24:368–378, 2010; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.20349  相似文献   

14.
Adult animals submitted to a single prolonged episode of maternal deprivation (MD) [24 h, postnatal day 9-10] show behavioral alterations that resemble specific symptoms of schizophrenia. Accordingly, this experimental procedure has been proposed as an animal model of schizophrenia based on the neurodevelopmental hypothesis. We have recently reported that MD-induced sex-dependent alterations in the hippocampus of neonatal rats. In view of recent evidence for important implications of the cerebellum in neurodevelopmental psychiatric diseases, we have now addressed possible degenerative changes in the cerebellar cortex of neonatal Wistar rats of both genders. To evaluate the presence of degenerated nerve cells, we used Fluoro-Jade C staining and for the study of astrocytes, we employed glial fibrillary acidic protein. Further, we analyzed the modulatory actions of two inhibitors of endocannabinoids inactivation, the fatty acid amide hydrolase inhibitor N-arachidonoyl-serotonin, AA-5-HT, and the endocannabinoid reuptake inhibitor, OMDM-2 (daily subcutaneous injections during the postnatal period 7-12). The animals were sacrificed at postnatal Day 13. MD induced significant increases in the number of Fluoro-Jade C positive cells (indicative of degenerating neurons) and in the number of glial fibrillary acidic protein positive cells, only in males. The two cannabinoid compounds reversed or attenuated these effects. The present results provide new insights regarding the psychopathological implications of the cerebellum, the role of the endocannabinoid system in neural development, and the possible neurodevelopmental basis of gender differences in schizophrenia.  相似文献   

15.
Maternal deprivation (MD) during neonatal life has diverse long-term behavioral effects and alters the development of the hippocampus and frontal cortex, with several of these effects being sexually dimorphic. MD animals show a marked reduction in their circulating leptin levels, not only during the MD period, but also several days later (PND 13). A neonatal leptin surge occurs in rodents (beginning around PND 5 and peaking between PND 9 and 10) that has an important neurotrophic role. We hypothesized that the deficient neonatal leptin signaling of MD rats could be involved in the altered development of their hippocampus and frontal cortex. Accordingly, a neonatal leptin treatment in MD rats would at least in part counteract their neurobehavioural alterations. MD was carried out in Wistar rats for 24 h on PND 9. Male and female MD and control rats were treated from PND 9 to 13 with rat leptin (3 mg/kg/day sc) or vehicle. In adulthood, the animals were submitted to the open field, novel object memory test and the elevated plus maze test of anxiety. Neuronal and glial population markers, components of the glutamatergic and cannabinoid systems and diverse synaptic plasticity markers were evaluated by PCR and/or western blotting. Main results include: 1) In some of the parameters analyzed, neonatal leptin treatment reversed the effects of MD (eg., mRNA expression of hippocampal IGF1 and protein expression of GFAP and vimentin) partially confirming our hypothesis; 2) The neonatal leptin treatment, per se, exerted a number of behavioral (increased anxiety) and neural effects (eg., expression of the following proteins: NG2, NeuN, PSD95, NCAM, synaptophysin). Most of these effects were sex dependent. An adequate neonatal leptin level (avoiding excess and deficiency) appears to be necessary for its correct neuro-programing effect.  相似文献   

16.
Flanigan TJ  Cook MN 《PloS one》2011,6(4):e19058
Manipulations of rearing conditions have been used to examine the effects of early experience on adult behavior with varying results. Evidence suggests that postnatal days (PND) 15-21 are a time of particular susceptibility to environmental influences on anxiety-like behavior in mice. To examine this, we subjected C57BL/6J and DBA/2J mice to an early handling-like procedure. Pups were separated from dams from PND 12-20 for 30 minutes daily or received standard care. On PND 21, pups were weaned and either individually- or group-housed. On PND 60, anxiety-like behavior was examined on the elevated zero-maze. Although individually-housed animals took longer to enter an open quadrant of the maze, they spent more time in the open than group-housed animals. Additionally, we observed a trend of reduced anxiety-like behavior in C57BL/6J, but not DBA/2J mice that underwent the handling-like procedure.  相似文献   

17.
Attention-deficit/hyperactivity disorder (ADD/ADHD) has been emerging as a world-wide psychiatric disorder. There appears to be an increasing rate of stimulant drug abuse, specifically methylphenidate (MPH) which is the most common treatment for ADHD, among individuals who do not meet the criteria for ADHD and particularly for cognitive enhancement among university students. However, the long term effects of exposure to MPH are unknown. Thus, in light of a developmental approach in humans, we aimed to test the effects of adolescence exposure to enriched environment (EE) followed by MPH administration during early adulthood, on reactions to stress in adulthood. Specifically, at approximate adolescence [post natal days (PND) 30-60] rats were reared in EE and were treated with MPH during early adulthood (PND 60-90). Adult (PND 90-92) rats were exposed to mild stress and starting at PND 110, the behavioral and endocrine effects of the combined drug and environmental conditions were assessed. Following adolescence EE, long term exposure to MPH led to decreased locomotor activity and increased sucrose preference. EE had a beneficial effect on PPI (attentive abilities), which was impaired by long term exposure to MPH. Finally, the interaction between EE and, exposure to MPH led to long-term elevated corticosterone and testosterone levels. In view of the marked increase in MPH consumption over the past decade, vigilance is crucial in order to prevent potential drug abuse and its long term detrimental consequences.  相似文献   

18.
Summary In the present study we have investigated the effect of prenatal hypoxia on expression of amyloid precursor protein (APP) and some metallopeptidases, which regulate β-amyloid peptide (Aβ) levels (neprilysin (NEP) and endothelin-converting enzyme (ECE-1)) in the cortex of rats during different periods of postnatal development. We have found that the level of APP in the sensorimotor cortex (SMC) of rats, analysed by Western blotting, increases from days 1 to 5 of postnatal development and then steadily decreases with age, with the most dramatic decline in the period from day 180 to 600. In the cortex of rats subjected to prenatal hypoxia on day 13.5 of embryogenesis, the postnatal levels of APP were higher than in the control. Secretion of the soluble form of APP (sAPP) by α-secretase was found to be the most active on day 30 of postnatal development and there was a significant decrease in the production of sAPP after prenatal hypoxia. NEP was found to be expressed in the cortex of rats only at the early stages of postnatal development and it was barely detectable in adult rats. The decline of NEP levels during ageing might contribute to accumulation of Aβ in later life in humans. Prenatal hypoxia resulted in a significant decrease of NEP expression on day 10, but its level was recovered when animals were preconditioned to mild hypoxia. A similar phenomenon was observed when the expression of ECE-1 was analysed. Overall, prenatal hypoxia leads to significant changes in the levels of APP and expression of metallopeptidases involved in amyloid metabolism during all postnatal life and preconditioning to hypoxia appeared to be neuroprotective.  相似文献   

19.
Tight regulation of hormone and neurochemical milieu during developmental periods is critical for adequate physiological functions. For instance, activation of peptide systems during early life stress induces morphological changes in the brain resulting in depression and anxiety disorders. Prolactin (PRL) exerts different actions within the brain; it regulates neurogenesis and modulates neuroendocrine functions in the adult. However, PRL effects during early postnatal life are hardly known. Therefore, we examined whether neonatal administration of PRL influences cell survival in the hippocampal dentate gyrus (DG) and in the olfactory bulb (OB) and whether such influence results in behavioral consequences in adulthood. PRL-treated rat pups (13 mg/kg; PND1 to PND14), injected with BrdU at postnatal day 5 (PND5), showed a decrease in the density of DG BrdU/DCX and BrdU/NeuN-positive cells that survive at PND15. Similarly, PRL treatment decreased the density of BrdU + cells in the OB compared with VEH. Fluorojade B analysis showed no significant changes in the amount of cell death in the DG between the groups. Postnatal PRL administration induced a passive coping strategy in the forced swimming test in male and female adult rats when compared with control and vehicle groups. Corticosterone endogenous levels at PND12 were not affected by PRL or VEH treatment. Altogether, these results suggest that opposed to its effects in the adult, postnatal PRL treatment affects neurogenesis and results in psychopathology later in life. High PRL levels, as observed in neonates under several pathological states, might contribute to detrimental effects on the developing brain.  相似文献   

20.
《Hormones and behavior》2014,65(5):781-789
Tight regulation of hormone and neurochemical milieu during developmental periods is critical for adequate physiological functions. For instance, activation of peptide systems during early life stress induces morphological changes in the brain resulting in depression and anxiety disorders. Prolactin (PRL) exerts different actions within the brain; it regulates neurogenesis and modulates neuroendocrine functions in the adult. However, PRL effects during early postnatal life are hardly known. Therefore, we examined whether neonatal administration of PRL influences cell survival in the hippocampal dentate gyrus (DG) and in the olfactory bulb (OB) and whether such influence results in behavioral consequences in adulthood. PRL-treated rat pups (13 mg/kg; PND1 to PND14), injected with BrdU at postnatal day 5 (PND5), showed a decrease in the density of DG BrdU/DCX and BrdU/NeuN-positive cells that survive at PND15. Similarly, PRL treatment decreased the density of BrdU + cells in the OB compared with VEH. Fluorojade B analysis showed no significant changes in the amount of cell death in the DG between the groups. Postnatal PRL administration induced a passive coping strategy in the forced swimming test in male and female adult rats when compared with control and vehicle groups. Corticosterone endogenous levels at PND12 were not affected by PRL or VEH treatment. Altogether, these results suggest that opposed to its effects in the adult, postnatal PRL treatment affects neurogenesis and results in psychopathology later in life. High PRL levels, as observed in neonates under several pathological states, might contribute to detrimental effects on the developing brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号