首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Binge alcohol consumption in adolescents is increasing, and it has been proposed that immature brain deals poorly with oxidative stress. The aim of our work was to study the effect of an acute dose of ethanol on glutathione (GSH) metabolism in frontal cortex, hippocampus and striatum of juvenile and adult rats. We have observed no change in levels of glutathione produced by acute alcohol in the three brain areas studied of juvenile and adult rats. Only in the frontal cortex the ratio of GSH/GSSG was increased in the ethanol-treated adult rats. GSH levels in the hippocampus and striatum were significantly higher in adult animals compared to young ones. Higher glutathione peroxidase (GPx) activity in adult rats was observed in frontal cortex and in striatum. Our data show an increased GSH concentration and GPx activity in different cerebral regions of the adult rat, compared to the young ones, suggesting that age-related variations of total antioxidant defences in brain may predispose young brain structures to ethanol-induced, oxidative stress-mediated tissue damage.  相似文献   

2.
《Free radical research》2013,47(9):1076-1081
Abstract

Binge alcohol consumption in adolescents is increasing, and it has been proposed that immature brain deals poorly with oxidative stress. The aim of our work was to study the effect of an acute dose of ethanol on glutathione (GSH) metabolism in frontal cortex, hippocampus and striatum of juvenile and adult rats. We have observed no change in levels of glutathione produced by acute alcohol in the three brain areas studied of juvenile and adult rats. Only in the frontal cortex the ratio of GSH/GSSG was increased in the ethanol-treated adult rats. GSH levels in the hippocampus and striatum were significantly higher in adult animals compared to young ones. Higher glutathione peroxidase (GPx) activity in adult rats was observed in frontal cortex and in striatum. Our data show an increased GSH concentration and GPx activity in different cerebral regions of the adult rat, compared to the young ones, suggesting that age-related variations of total antioxidant defences in brain may predispose young brain structures to ethanol-induced, oxidative stress-mediated tissue damage.  相似文献   

3.
Several studies in human and animal models have shown that consumption of fructose facilitates oxidative damage but the mechanisms involved are unclear. In this study, the effects of two weeks of high sucrose on both oxidative stress parameters and stress-related gene expression, using a cDNA array, were investigated in rat heart. Both increased TBARS and lower Cu-Zn-SOD activity were found in heart from high sucrose fed rats compared to rats on a starch diet. Higher plasma NO level was also found in the high sucrose group, corroborating the pro-oxidant effect of fructose. The Cu-Zn-SOD mRNA level was also greater in the high sucrose group; the Mn-SOD, GPX and catalase were not different between the two groups. Increased HSP70 and decreased COMT genes expression were observed, underlying the hypertensive effect of dietary fructose. These findings confirm the pro-oxidant effect of high sucrose feeding to rats and highlight the NO/O(2)(*-) balance importance in oxidative homeostasis.  相似文献   

4.
An increase in the aggregation of misfolded/damaged polyubiquitinated proteins has been the hallmark of many age-related neurodegenerative diseases. The accumulation of these potentially toxic proteins in brain increases with age, in part due to increased oxidative and inflammatory stresses. Walnuts, rich in omega fatty acids, have been shown to improve memory, cognition and neuronal effects related to oxidative stress (OS) and inflammation (INF) in animals and human trials. The current study found that feeding 19-month-old rats with a 6% or 9% walnut diet significantly reduced the aggregation of polyubiquitinated proteins and activated autophagy, a neuronal housekeeping function, in the striatum and hippocampus. Walnut-fed animals exhibited up-regulation of autophagy through inhibiting phosphorylation of mTOR, up-regulating ATG7 and Beclin 1, and turnover of MAP1BLC3 proteins. The clearance of polyubiquitinated protein aggregates such as p62/SQSTM1 was more profound in hippocampus, a critical region in the brain involved in memory and cognitive performance, than striatum. The clearance of ubiquitinated aggregates was in tandem with significant reductions in OS/INF, as indicated by the levels of P38-MAP kinase and phosphorylations of nuclear factor kappa B and cyclic AMP response element binding protein. The results demonstrate the effectiveness of a walnut-supplemented diet in activating the autophagy function in brain beyond its traditionally known antioxidant and anti-inflammatory benefits.  相似文献   

5.
On the basis of the evidence of the transient learning impairment of young adult rats fed a zinc-deficient diet for 4 weeks, zinc concentration in the hippocampus was examined in the zinc-deficient rats to understand the mechanism of brain dysfunction in zinc deficiency. Zinc concentration in the hippocampus, as well as that in other brain regions, was not decreased by 4-week zinc deprivation. When Timm's stain, with which histochemically reactive zinc in the presynaptic vesicles is detected, was compared between the control and zinc-deficient rats, the intensity of Timm's stain in the hippocampus was almost the same between them. In the hippocampus, zinc concentration in the synaptosomal fraction was not also decreased by 4-week zinc deprivation, whereas that in the crude nuclear fraction was significantly increased. These results suggest that zinc concentration in the presynaptic vesicles is not decreased in young adults rats by 4-week zinc deprivation. It is likely that zinc-requiring systems in the nucleus are more responsive to zinc deficiency than vesicular zinc. This responsiveness appears to be involved in the transient learning impairment.  相似文献   

6.
Bile duct ligation (BDL)-treated rats exhibit cholestasis and increased systemic and brain oxidative stress. Activation of NADPH (nicotinamide adenine dinucleotide phosphate) oxidase and disruption of the blood-brain barrier (BBB) are implicated as the pathogenetic mechanisms of brain dysfunction in BDL-treated adult rats. Young rats underwent sham ligation or BDL at day 17 for 2 or 4weeks. Treatment group rats were administered melatonin between day 17 and 45. We found a progressive increase in prefrontal cortex NADPH-dependent superoxide anion (O(2)(-)) production and increased expression of NADPH oxidase subunits in either the prefrontal cortex or the hippocampus in BDL-treated young rats. In addition, expression of intercellular adhesion molecule-1 (ICAM) and tissue plasminogen activator (t-PA) genes were increased in either the prefrontal cortex or the hippocampus. Prefrontal cortex capillary junctional complex proteins expressions including occludin, claudin-5, platelet endothelial cell adhesion molecule-1 and vascular endothelial cadherin were not altered. Melatonin lowered the prefrontal cortex NADPH-dependent O(2)(-) production and t-PA gene expression. We conclude that alterations in NADPH oxidase expression and BBB are involved in brain dysfunction in BDL-treated young rats. In addition, melatonin regulates NADPH oxidase activity and t-PA gene expression.  相似文献   

7.
Glutamatergic activity of hypothalamus and hippocampus of young (3 months) male albino rats having normal diet [protein (20%)–carbohydrate (68%)] was increased with the increase of age. Long-term (60 consecutive days) feeding of low protein (8%)–high carbohydrate (80%) diet (LP–HC) increased glutamatergic activity in these brain regions of young rats and decreased that in aged (18 months). On the contrary, supplementation of high protein (50%)–low carbohydrate (38%) diet (HP–LC) under similar condition decreased glutamatergic activity in those brain regions of young and increased that in aged brain regions. Thus, prolonged exposure of LP–HC diet may damage young brain; whereas, HP–LC diet under similar condition causes excitotoxicity to aged brain. Therefore, considering the present scenario in relation to metabolism and receptor activity of glutamatergic system, it may be suggested that long-term consumption of LP–HC and HP–LC diets modulate the brain regional glutamatergic activity reversibly with age.  相似文献   

8.
A high-fat diet is thought to enhance inflammation in various tissues by increasing insulin resistance. In this study, we determined the mRNA levels of inflammatory cytokines in leukocyte-derived cells in the blood of rats with high-fat-diet-induced insulin resistance. Feeding rats a high-fat diet for 77 d induced moderate insulin resistance, which was determined by increased plasma glucose and insulin concentrations, following an oral glucose tolerance test. The interleukin (IL)-1beta mRNA level was higher in the insulin-resistant rats than in control rats at the fasting stage, whereas the tumor necrosis factor (TNF)-alpha mRNA level was greatly elevated at 180 min after glucose administration in the insulin-resistant rats. The results suggest that feeding rats a high-fat diet enhances the expression of fasting IL-1beta and postprandial TNF-alpha genes in leukocyte-derived cells.  相似文献   

9.
The effects of feeding with a histidine-excess diet and subsequent starvation on liver and muscle glycogen, and on serum glucose were investigated in young and adult rats.

Feeding with a histidine-excess diet resulted in the accumulation of liver glycogen in both young and adult rats. The hepatic glycogen continued to decrease during starvation, and the liver became almost totally depleted of glycogen after starvation for 48 hr. Glycogen in the liver of young rats starved for 24 hr after previous feeding with a histidine-excess diet was significantly higher than that of young rats starved for 24 hr after previous feeding with a basal diet.

Muscle glycogen after feeding and subsequent starvation was not affected by the types of diets fed previously, muscle glycogen during starvation showing a slight decrease in young rats and a slight increase in adult rats.

Feeding with a histidine-excess diet caused a significant decrease of serum glucose in young rats, but not in adult rats. Serum glucose in young rats was markedly reduced by starvation after previous feeding with a basal diet, but not after previous feeding with a histidine-excess diet. In adult rats, there were no changes in serum glucose between rats starved after feeding with either a basal diet or a histidine-excess diet, and serum glucose was decreased slightly by starvation after feeding with the test diets.

The overall results indicate that the maintenance of serum glucose in young rate even during starvation after previous feeding with a histidine-excess diet might be partially concerned with the export of glucose from the accumulated glycogen in the liver due to the diet.  相似文献   

10.
Social isolation is one of the most potent stressors in the prepubertal period and may influence disease susceptibility or resilience in adulthood. The glucocorticoid response and, consequently, the adaptive response to stress involve important changes in mitochondrial functions and apoptotic signaling. Previous studies have shown that consumption of a palatable diet reduces some stress effects. Therefore, the aim of the present study was to investigate whether isolation stress in early life can lead to cellular alterations in the hippocampus. For this, we evaluated oxidative stress parameters, DNA breakage index, mitochondrial mass and potential, respiratory chain enzyme activities, apoptosis, and necrosis in the hippocampus of juvenile male rats submitted or not to isolation stress during the pre-puberty period. We also verified whether consumption of a palatable diet during this period can modify stress effects. Results show that stress led to an oxidative imbalance, DNA breaks, increased the mitochondrial potential and early apoptosis, and decreased the number of live and necrotic cells. In addition, the palatable diet increased glutathione peroxidase activity, high mitochondrial potential and complex I–III activity in the hippocampus of juvenile rats. The administration of a palatable diet during the isolation period prevented the stress effects that caused the reduction in live cells and increased apoptosis. In conclusion, the stress experienced during the pre-pubertal period induced a hippocampal oxidative imbalance, DNA damage, mitochondrial dysfunction, and increased apoptosis, while consumption of a palatable diet attenuated some of these effects of exposure, such as the reduction in live cells and increased apoptosis, besides favoring an increase in antioxidant enzymes activities.  相似文献   

11.
Excessive salt intake is known to preferentially increase blood pressure (BP) and promote kidney damage in young, salt-sensitive hypertensive human and animal models. We have suggested that mineralocorticoid receptor (MR) activation plays a major role in kidney injury in young rats. BP and urinary protein were compared in young (3-wk-old) and adult (10-wk-old) uninephrectomized (UNx) Sprague-Dawley rats fed a high (8.0%)-salt diet for 4 wk. The effects of the MR blocker eplerenone on BP and renal injury were examined in the high-salt diet-fed young UNx rats. Renal expression of renin-angiotensin-aldosterone (RAA) system components and of inflammatory and oxidative stress markers was also measured. The effects of the angiotensin receptor blocker olmesartan with or without low-dose aldosterone infusion, the aldosterone synthase inhibitor FAD286, and the antioxidant tempol were also studied. Excessive salt intake induced greater hypertension and proteinuria in young rats than in adult rats. The kidneys of young salt-loaded rats showed marked histological injury, overexpression of RAA system components, and an increase in inflammatory and oxidative stress markers. These changes were markedly ameliorated by eplerenone treatment. Olmesartan also ameliorated salt-induced renal injury but failed to do so when combined with low-dose aldosterone infusion. FAD286 and tempol also markedly reduced urinary protein. UNx rats exposed to excessive salt at a young age showed severe hypertension and renal injury, likely primarily due to MR activation and secondarily due to angiotensin receptor activation, which may be mediated by inflammation and oxidative stress.  相似文献   

12.
High dietary fructose is an important causative factor in the development of metabolic syndrome-associated glomerular podocyte oxidative stress and injury. Here, we identified microRNA-377 (miR-377) as a biomarker of oxidative stress in renal cortex of fructose-fed rats, which correlated with podocyte injury and albuminuria in metabolic syndrome. Fructose feeding increased miR-377 expression, decreased superoxide dismutase (SOD) expression and activity, and caused O2 and H2O2 overproduction in kidney cortex or glomeruli of rats. This reactive oxygen species induction increased p38 MAPK phosphorylation and thioredoxin-interacting protein (TXNIP) expression and activated the NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome to produce interleukin-1β in kidney glomeruli of fructose-fed rats. These pathological processes were further evaluated in cultured differentiated podocytes exposed to 5 mM fructose, or transfected with miR-377 mimic/inhibitor and TXNIP siRNA, or co-incubated with p38 MAPK inhibitor, demonstrating that miR-377 overexpression activates the O2/p38 MAPK/TXNIP/NLRP3 inflammasome pathway to promote oxidative stress and inflammation in fructose-induced podocyte injury. Antioxidants pterostilbene and allopurinol were found to ameliorate fructose-induced hyperuricemia, podocyte injury, and albuminuria in rats. More importantly, pterostilbene and allopurinol inhibited podocyte miR-377 overexpression to increase SOD1 and SOD2 levels and suppress the O2/p38 MAPK/TXNIP/NLRP3 inflammasome pathway activation in vivo and in vitro, consistent with the reduction of oxidative stress and inflammation. These findings suggest that miR-377 plays an important role in glomerular podocyte oxidative stress, inflammation, and injury driven by high fructose. Inhibition of miR-377 by antioxidants may be a promising therapeutic strategy for the prevention of metabolic syndrome-associated glomerular podocyte injury.  相似文献   

13.
During development, the brain goes through fundamental processes, including organization of neural networks and plasticity. Environmental interventions may change initial brain programming, leading to long-lasting effects and altering the susceptibility to psychopathologies, including depression disorder. It is known that depression is a psychiatric disorder with a high prevalence worldwide, including high rates among adolescents. In this study, we evaluated whether social isolation in the prepubertal period and chronic use of high-fat diet (HFD) may induce depressive-like behavior in male adult rats. We also investigated hippocampal plasticity markers and neurotransmitter systems. We found both social isolation and HFD induced a depressive-like behavior in the forced swimming task. Moreover, chronic HFD reduced synaptic markers in hippocampus, demonstrated by reductions in βIII-tubulin (neuronal marker), PSD-95, SNAP-25, and neurotrophin-3. The HFD group also presented decreased glutamatergic and GABAergic receptors subunits. On the other hand, stress affected hippocampal brain-derived neurotrophic factor (BDNF) signaling pathways, and increased expression of subunit of the NMDA receptor (NR2A). Both factors (stress and diet) decreased GR in the hippocampus without affecting plasma corticosterone at basal levels. Interactions between early stress and HFD access were observed only in the BNDF receptor (tropomyosin receptor kinase B; TrkB) and synaptophysin. In summary, these findings showed that a brief social isolation and chronic HFD, during a sensitive developmental period, cause depressive-like behavior in adulthood. The mechanisms underlying these behavioral effects may involve changes in the levels of synaptic proteins in hippocampus: HFD consumption appears to affect synaptic markers, while social isolation affected BDNF signaling more significantly.  相似文献   

14.
Intermittent hypoxia (IH) has been found to protect brain from ischemic injury. We investigated whether IH mitigates brain oxidative stress and behavioral deficits in rats subjected to ethanol intoxication and abrupt ethanol withdrawal (EW). The effects of IH on overt EW behavioral signs, superoxide generation, protein oxidation, and mitochondrial permeability transition pore (PTP) opening were examined. Male rats consumed dextrin or 6.5% (wt/vol) ethanol for 35 days. During the last 20 days, rats were treated with repetitive (5-8 per day), brief (5-10 min) cycles of hypoxia (9.5-10% inspired O2) separated by 4-min normoxia exposures. Cerebellum, cortex, and hippocampus were biopsied on day 35 of the diet or at 24 h of EW. Superoxide and protein carbonyl contents in tissue homogenates and absorbance decline at 540 nm in mitochondrial suspensions served as indicators of oxidative stress, protein oxidation, and PTP opening, respectively. Although IH altered neither ethanol consumption nor blood ethanol concentration, it sharply lowered the severity of EW signs including tremor, tail rigidity, and startle response. Compared with dextrin and ethanol per se, in the three brain regions, EW increased superoxide and protein carbonyl contents and accelerated PTP opening in a manner ameliorated by IH. Administration of antioxidant N-acetylcysteine throughout the IH program abrogated the reductions in EW signs and superoxide content, implicating IH-induced ROS as mediators of the salutary adaptations. We conclude that IH conditioning during chronic ethanol consumption attenuates oxidative damage to the brain and mitigates behavioral abnormalities during subsequent EW. IH-induced ROS may evoke this powerful protection.  相似文献   

15.
The peripubertal period is critical for the final maturation of circuits controlling energy homeostasis and stress response. However, the consequence of juvenile fat consumption on adult physiology is not clear. This study analyzed the adult consequences of post-weaning fat feeding on limbic–hypothalamic–pituitary–adrenal (HPA) axis components and on metabolic regulators of female rats. Wistar rats were fed either a high fat (HF) diet or the normal chow from weaning to puberty or to 3 months of age. Additional groups crossed their diets at puberty onset. Plasma leptin, insulin, and corticosterone levels were determined by radioimmunoassay and their brain receptors by western blot analysis. Adult HF-fed animals though not overweight, had higher corticosterone and reduced glucocorticoid receptor levels in the hypothalamus and hippocampus, compared to the controls. The alterations in HPA axis emerged already at puberty onset. Leptin receptor levels in the hypothalamus were reduced only by continuous fat feeding from weaning to adulthood. The pre-pubertal period appeared more vulnerable to diet-induced alterations in adulthood than the post-pubertal one. Switching from fat diet to normal chow at puberty onset restored most of the diet-induced alterations in the HPA axis. The corticosteroid circuit rather than the leptin or insulin system appears as the principal target for the peripubertal fat diet-induced effects in adult female rats.  相似文献   

16.
Crocetin, a unique carotenoid with potent antioxidative and anti-inflammatory activities, is a major ingredient of saffron which is used as an important spice and food colorant in various parts of the world. In the present study, the effect of crocetin on insulin resistance and its related abnormalities induced by high-fructose diet were investigated in male Wistar rats. Compared to the control rats fed on normal laboratory diet, fructose-fed rats developed a series of pathological changes including insulin resistance, hyperinsulinemia, dyslipidemia and hypertension. Although having no evident effect on the body weight, fructose feeding caused a marked increase in the weight of epididymal white adipose tissue. Furthermore, a significant reduction in the expression of both protein and mRNA of adiponectin (an insulin-sensitizing adipocytokine) was observed, whereas those of tumor necrosis factor (TNF)-alpha and leptin were enhanced in epididymal white adipose tissue in fructose-fed rats. These disorders were effectively normalized in crocetin-treated rats. Crocetin was also demonstrated here to alleviate free fatty acid (FFA)-induced insulin insensitivity and dysregulated mRNA expression of adiponectin, TNF-alpha and leptin in primary cultured rat adipocytes. These findings suggest the possibility of crocetin treatment as a preventive strategy of insulin resistance and related diseases. The favorable impact on adiponectin, TNF-alpha and leptin expression in white adipose tissue may be involved in the improvement of insulin sensitivity observed in crocetin-treated rats.  相似文献   

17.
Koike N  Takamura T  Kaneko S 《Life sciences》2007,80(18):1721-1728
Diabetic nephropathy is a major complication of diabetes leading to end-stage renal disease, which requires hemodialysis. Although the mechanism by which it progresses is largely unknown, the role of hyperglycemia-derived oxidative stress has recently been the focus of attention as the cause of diabetic complications. Constituent cells of the renal glomeruli have the capacity to release reactive oxygen species (ROS) upon stimulation of NADPH oxidase activated by protein kinase C (PKC). Hyperglycemia and insulin resistance in the diabetic state are often associated with activation of PKC and tumor necrosis factor (TNF)-alpha, respectively. The aim of this study is to clarify the signaling pathway leading to ROS production by PKC and TNF-alpha in rat glomeruli. Isolated rat glomeruli were stimulated with phorbol 12-myristate 13-acetate (PMA) and TNF-alpha, and the amount of ROS was measured using a chemiluminescence method. Stimulation with PMA (10 ng/ml) generated ROS with a peak value of 136+/-1.2 cpm/mg protein (mean+/-SEM). The PKC inhibitor H-7, the NADPH oxidase inhibitor diphenylene iodonium and the phosphatidylinositol-3 (PI-3) kinase inhibitor wortmannin inhibited PMA-induced ROS production by 100%, 100% and 80%, respectively. In addition, TNF-alpha stimulated ROS production (283+/-5.8/mg protein/20 min). The phosphodiesterase inhibitor cilostazol activates protein kinase A and is reported to improve albuminuria in diabetic rats. Cilostazol (100 microg/ml) inhibited PMA, and TNF-alpha-induced ROS production by 78+/-1.8, and 19+/-2.7%, respectively. The effects of cilostazol were not additive with wortmannin. Cilostazol arrests oxidative stress induced by PKC activation by inhibiting the PI-3 kinase-dependent pathway, and may thus prevent the development of diabetic nephropathy.  相似文献   

18.
Juvenile obesity is a rising epidemic due largely to consumption of caloric dense, fat-enriched foods. Nevertheless, literature on fat-induced neuroendocrine and metabolic disturbances during adolescence, preceding obesity, is limited. This study aimed to examine early events induced by a fat diet (45% calories from saturated fat) in male rats fed the diet during the pre- and post-pubertal period. The neuroendocrine endpoints studied were the levels of circulating leptin, insulin and corticosterone, as well as their receptors in the hypothalamus and hippocampus. Hormonal levels were determined by radioimmunoassay and receptors’ levels by western blot analysis. Leptinemia was increased in pubertal rats and in adult rats fed the fat diet from weaning to adulthood, but not in those fed from puberty to adulthood. Modifications in the developmental pattern from puberty to adulthood were observed for most of the brain receptors studied. In adult animals fed the fat diet from weaning onwards, the levels of leptin receptors in the hypothalamus and glucocorticoid receptors in the hippocampus were decreased compared to chow-fed controls. Switching from fat to normal chow at puberty onset restored the diet-induced alterations on circulating leptin, but not on its hypothalamic receptors. These data suggest that when a fat-enriched diet, resembling those consumed by many teenagers, provided in rats during pubertal growth, it can longitudinally influence the actions of leptin and corticosterone in the brain. The observed alterations at a preobese state may constitute early signs of the disturbed energy balance toward overweight and obesity.  相似文献   

19.
Age-related physiological changes develop at the same time as the increase in metabolic syndrome in humans after young adulthood. There is a paucity of data in models mimicking chronic diet-induced changes in human middle age and interventions to reverse these changes. This study measured the changes during chronic consumption of a high-carbohydrate (as cornstarch), low-fat (C) diet and a high-carbohydrate (as fructose and sucrose), high-fat (H) diet in rats for 32 wk. C diet feeding induced changes without metabolic syndrome, such as disproportionate increases in total body lean and fat mass, reduced bone mineral content, cardiovascular remodeling with increased systolic blood pressure, left ventricular and arterial stiffness, and increased plasma markers of liver injury. H diet feeding induced visceral adiposity with reduced lean mass, increased lipid infiltration in the skeletal muscle, impaired glucose and insulin tolerance, cardiovascular remodeling, hepatic steatosis, and increased infiltration of inflammatory cells in the heart and the liver. Chia seed supplementation for 24 wk attenuated most structural and functional modifications induced by age or H diet, including increased whole body lean mass and lipid redistribution from the abdominal area, and normalized the chronic low-grade inflammation induced by H diet feeding; these effects may be mediated by increased metabolism of anti-inflammatory n-3 fatty acids from chia seed. These results suggest that chronic H diet feeding for 32 wk mimics the diet-induced cardiovascular and metabolic changes in middle age and that chia seed may serve as an alternative dietary strategy in the management of these changes.  相似文献   

20.
L-type pyruvate kinase is an enzyme of the glycolytic pathway whose activity and mRNA levels fluctuate in the small intestine according to dietary status. Both the enzyme activity and mRNA concentration decline during fasting and increase upon refeeding either a glucose-rich or a fructose-rich diet. Using a single-strand M 13 phage complementary to L-type pyruvate kinase mRNA as probe, we determined the level of the mRNA in the small intestine of normal, adrenalectomized, thyroidectomized, diabetic and glucagon-treated or cAMP-treated animals refed either a glucose-rich or a fructose-rich diet. The specific mRNA is present in the small intestine of normal fasted rats and increases twofold and threefold on refeeding glucose and fructose respectively. However, the hormonal control of the gene expression differs according to the dietary carbohydrate. The L-type pyruvate kinase mRNA increase, induced by glucose feeding, is hormone-dependent and requires the presence of thyroid hormones and insulin. In fructose-fed rats a certain level of mRNA increase occurs regardless of the hormonal status of the animals, but the full induction of the mRNA by fructose requires the presence of glucocorticoids, thyroid hormones and insulin. Thus, the hormonal regulation of L-type pyruvate kinase gene expression in the small intestine is largely similar to that described in normal rat liver but the basal mRNA level and the stimulation of the mRNA increase by fructose are higher in the small intestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号