首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Although earlier studies on thiamine deficiency have reported increases in extracellular glutamate concentration in the thalamus, a vulnerable region of the brain in this disorder, the mechanism by which this occurs has remained unresolved. Treatment with pyrithiamine, a central thiamine antagonist, resulted in a 71 and 55% decrease in protein levels of the astrocyte glutamate transporters GLT-1 and GLAST, respectively, by immunoblotting in the medial thalamus of day 14 symptomatic rats at loss of righting reflexes. These changes occurred prior to the onset of convulsions and pannecrosis. Loss of both GLT-1 and GLAST transporter sites was also confirmed in this region of the thalamus at the symptomatic stage using immunohistochemical methods. In contrast, no change in either transporter protein was detected in the non-vulnerable frontal parietal cortex. These effects are selective; protein levels of the astrocyte GABA transporter GAT-3 were unaffected in the medial thalamus. In addition, astrocyte-specific glial fibrillary acidic protein (GFAP) content was unchanged in this brain region, suggesting that astrocytes are spared in this disorder. Loss of GLT-1 or GLAST protein was not observed on day 12 of treatment, indicating that down-regulation of these transporters occurs within 48 h prior to loss of righting reflexes. Finally, GLT-1 content was positively correlated with levels of the neurofilament protein alpha-internexin, suggesting that early neuronal drop-out may contribute to the down-regulation of this glutamate transporter and subsequent pannecrosis. A selective, focal loss of GLT-1 and GLAST transporter proteins provides a rational explanation for the increase in interstitial glutamate levels, and may play a major role in the selective vulnerability of thalamic structures to thiamine deficiency-induced cell death.  相似文献   

4.
Chronic exposure to excessive manganese (Mn) can lead to manganism, a type of neurotoxicity accomplished with extracellular glutamate (Glu) accumulation. To investigate this accumulation, this study focused on the role of astrocyte glutamate transporters (GluTs) and glutamine synthetase (GS), which have roles in Glu transport and metabolism, respectively. And the possible protective effects of riluzole (a glutamatergic modulator) were studied in relation to Mn exposure. At first, the astrocytes were exposed to 0, 125, 250, and 500 μM MnCl(2) for 24 h, and 100 μM riluzole was pretreated to astrocytes for 6 h before 500 μM MnCl(2) exposure. Then, [(3)H]-glutamate uptake was measured by liquid scintillation counting; Na(+)-K(+) ATPase and GS activities were determined by a colorimetric method; glutamate/aspartate transporter (GLAST), glutamate transporter-1 (GLT-1), and GS mRNA expression were determined by RT-PCR and protein levels were measured by western blotting. The results showed that Mn inhibited Glu uptake, Na(+)-K(+) ATPase and GS activities, GLAST, GLT-1, and GS mRNA, and protein in a concentration-dependent manner. And they were significantly higher for astrocytes pretreated with 100 μM riluzole than the group exposed to 500 μM MnCl(2). The results suggested that Mn disrupted Glu transport and metabolism by inhibiting GluTs and GS. Riluzole activated protective effects on enhancing GluTs and GS to reverse Glu accumulation. In conclusion, Mn exposure results in the disruption of GLAST, GLT-1, and GS expression and function. Furthermore, riluzole attenuates this Mn toxicity.  相似文献   

5.
Excitotoxicity has been implicated in the retinal neuronal loss in several ocular pathologies including glaucoma. Dysfunction of Excitatory Amino Acid Transporters is often a key component of the cascade leading to excitotoxic cell death. In the retina, glutamate transport is mainly operated by the glial glutamate transporter GLAST and the neuronal transporter GLT-1. In this study we evaluated the expression of GLAST and GLT-1 in a rat model of acute glaucoma based on the transient increase of intraocular pressure (IOP) and characterized by high glutamate levels during the reperfusion that follows the ischemic event associated with raised IOP. No changes were reported in GLAST expression while, at neuronal level, a reduction of glutamate uptake and of transporter reversal-mediated glutamate release was observed in isolated retinal synaptosomes. This was accompanied by modulation of GLT-1 expression leading to the reduction of the canonical 65 kDa form and upregulation of a GLT-1-related 38 kDa protein. These results support a role for neuronal transporters in glutamate accumulation observed in the retina following an ischemic event and suggest the presence of a GLT-1 neuronal new alternative splice variant, induced in response to the detrimental stimulus.  相似文献   

6.

Background

Clearance of synaptically released glutamate, and hence termination of glutamatergic neurotransmission, is carried out by glutamate transporters, most especially glutamate transporter-1 (GLT-1) and the glutamate-aspartate transporter (GLAST) that are located in astrocytes. It is becoming increasingly well appreciated that changes in the function and expression of GLT-1 and GLAST occur under different physiological and pathological conditions. Here we investigated the plasticity in expression of GLT-1 and GLAST in the spinal dorsal horn using immunohistochemistry following partial sciatic nerve ligation (PSNL) in rats.

Results

Animals were confirmed to develop hypersensitivity to mechanical stimulation by 7 days following PSNL. Baseline expression of GLT-1 and GLAST in naive animals was only observed in astrocytes and not in either microglia or neurons. Microglia and astrocytes showed evidence of reactivity to the nerve injury when assessed at 7 and 14 days following PSNL evidenced by increased expression of OX-42 and GFAP, respectively. In contrast, the total level of GLT-1 and GLAST protein decreased at both 7 and 14 days after PSNL. Importantly, the cellular location of GLT-1 and GLAST was also altered in response to nerve injury. Whereas activated astrocytes showed a marked decrease in expression of GLT-1 and GLAST, activated microglia showed de novo expression of GLT-1 and GLAST at 7 days after PSNL and this was maintained through day 14. Neurons showed no expression of GLT-1 or GLAST at any time point.

Conclusion

These results indicate that the expression of glutamate transporters in astrocytes and microglia are differentially regulated following nerve injury.  相似文献   

7.
Abstract: Excess activation of NMDA receptors is felt to participate in secondary neuronal damage after traumatic brain injury (TBI). Increased extracellular glutamate is active in this process and may result from either increased release or decreased reuptake. The two high-affinity sodium-dependent glial transporters [glutamate transporter 1 (GLT-1) and glutamate aspartate transporter (GLAST)] mediate the bulk of glutamate transport. We studied the protein levels of GLT-1 and GLAST in the brains of rats after controlled cortical impact-induced TBI. With use of subtype-specific antibodies, GLT-1 and GLAST proteins were quantitated by immunoblotting in the ipsilateral and contralateral cortex at 2, 6, 24, 72, and 168 h after the injury. Sham-operated rats served as control. TBI resulted in a significant decrease in GLT-1 (by 20–45%; p < 0.05) and GLAST (by 30–50%; p < 0.05) protein levels between 6 and 72 h after the injury. d -[3H]Aspartate binding also decreased significantly (by 30–50%; p < 0.05) between 6 and 72 h after the injury. Decreased glial glutamate transporter function may contribute to the increased extracellular glutamate that may mediate the excitotoxic neuronal damage after TBI. This is a first report showing altered levels of glutamate transporter proteins after TBI.  相似文献   

8.
9.
The mechanism of the antiepileptic drug topiramate is not fully understood, but interaction with the excitatory neurotransmission, e.g. glutamate receptors, is believed to be part of its anticonvulsant effect. The glutamate transporters GLAST and GLT-1 are responsible for the inactivation of glutamate as a neurotransmitter and it was therefore investigated if topiramate might affect the expression of GLAST and GLT-1 in astrocytes cultured separately or together with neurons. Since expression and membrane trafficking of glutamate transporters are affected by the protein kinase C system as well as by dBcAMP it was also investigated if these signalling pathways might play a role. In astrocyte cultures expressing mainly GLAST treatment with dBcAMP (0.25 mM) led to an increased expression of the total amount of GLAST as well as of its membrane association. The enhanced expression in the membrane was particularly pronounced for the oligomeric form of GLAST. No detectable effect on the expression of GLAST in astrocytes treated with topiramate in the presence and absence of protein kinase C activators or inhibitors was observed. Astrocytes co-cultured with neurons expressed both GLAST and GLT-1. In these cultures prolonged exposure to 30 muM topiramate (10 days) led to a statistically significant increase (P<0.025) in the membrane expression of GLAST. In case of GLT-1, culture in the presence of 30 microM topiramate for 1 and 10 days led to alterations in the total, cytoplamic and membrane expression of the oligomeric form of the transporter.  相似文献   

10.
Abstract: Low extracellular glutamate content is maintained primarily by high-affinity sodium-dependent glutamate transport. Three glutamate transporter proteins have been cloned: GLT-1 and GLAST are astroglial, whereas EAAC1 is neuronal. The effects of axotomy on glutamate transporter expression was evaluated in adult rats following unilateral fimbria-fornix and corticostriatal lesions. The hippocampus and striatum were collected at 3, 7, 14, and 30 days postlesion. Homogenates were immunoblotted using antibodies directed against GLT-1, GLAST, EAAC1, and glial fibrillary acidic protein and assayed for glutamate transport by d -[3H]aspartate binding. GLT-1 immunoreactivity was decreased within the ipsilateral hippocampus and striatum at 14 days postlesion. GLAST immunoreactivity was decreased within the ipsilateral hippocampus and striatum at 7 and 14 days postlesion. No alterations in EAAC1 immunoreactivity were observed. d -[3H]Aspartate binding was decreased at 14 days postlesion within the ipsilateral hippocampus and at 7 and 14 days postlesion within the ipsilateral striatum. By 30 days postlesion, glutamate transporters and d -[3H]aspartate binding returned to control levels. This study demonstrates the down-regulation of primarily glial, and not neuronal, glutamate transporters following regional disconnection.  相似文献   

11.
12.
Excitotoxicity has been associated with the loss of medium spiny neurons (MSN) in Huntington’s disease (HD). We have previously observed that the content of the glial glutamate transporters, glutamate transporter 1 (GLT-1) and glutamate-aspartate transporter (GLAST), diminishes in R6/2 mice at 14 weeks of age but not at 10 weeks, and that this change correlates with an increased vulnerability of striatal neurons to glutamate toxicity. We have also reported that inhibition of the glycolytic pathway decreases glutamate uptake and enhances glutamate neurotoxicity in the rat brain. We now show that at 10-weeks of age, glutamate excitotoxicity is precipitated in R6/2 mice, after the treatment with iodoacetate (IOA), an inhibitor of the glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH). IOA induces a larger inhibition of GAPDH in R6/2 mice, while it similarly reduces the levels of GLT-1 and GLAST in wild-type and transgenic animals. Results suggest that metabolic failure and altered glutamate uptake are involved in the vulnerability of striatal neurons to glutamate excitotoxicity in HD.  相似文献   

13.
Dysregulation of the astroglial glutamate transporters GLAST and GLT-1 has been implicated in several neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) where a loss of GLT-1 protein expression and activity is reported. Furthermore, the two principal C-terminal splice variants of GLT-1 (namely GLT-1a and GLT-1b) show altered expression ratio in animal models of this disease. Considering the putative link between inflammation and excitotoxicity, we have here characterized the influence of TNF-α on glutamate transporters in cerebral cortical astrocyte cultures from wild-type rats and from a rat model of ALS (hSOD1G93A). Contrasting with the down-regulation of GLAST, a 72 h treatment with TNF-α substantially increased the expression of GLT-1a and GLT-1b in both astrocyte cultures. However, as the basal level of GLT-1a appeared considerably lower in hSOD1G93A astrocytes, its up-regulation by TNF-α was insufficient to recapitulate the expression observed in wild-type astrocytes. Also the glutamate uptake activity after TNF-α treatment was lower for hSOD1G93A astrocytes as compared to wild-type astrocytes. In the presence of the protein synthesis inhibitor cycloheximide, TNF-α did not influence GLT-1 isoform expression, suggesting an active role of dynamically regulated protein partners in the adaptation of astrocytes to the inflammatory environment. Confirming the influence of inflammation on the control of glutamate transmission by astrocytes, these results shed light on the regulation of glutamate transporter isoforms in neurodegenerative disorders.  相似文献   

14.
The glial GLAST and GLT-1 glutamate transporters are transiently expressed in hippocampal neurons as shown by immunocytochemistry (Plachez et al., 2000. J. Neurosci. Res., 59, 587-593). In order to test if this transient expression is associated to a transient glutamate uptake activity, [3H]-glutamate uptake was studied during the in vitro development of embryonic hippocampal neurons cultured in a defined (serum free) medium. In these cultures, the ratio of the number of glial cells to the number of neurons increased from 1.7 to 11.3% during the first 10 days of culture, while 77% of the neurons died. The number of neurons then remains stable up to 23 days of culture. The initial glutamate uptake velocity at 20 and 200 microM [3H]-glutamate usually increased about five times between 1 and 10 days in vitro (DIV). Interestingly, at 2 microM [3H]-glutamate, the uptake initial velocity showed a biphasic pattern, with a transient peak between 1 and 6 DIV, the maximum being reached at 2 DIV and a delayed regular increase from 8 to 23 DIV. The concentration-dependent curves were best fitted with two saturable sites high and low affinities, at both 2 and 10 DIV. To pharmacologically characterize the transient increased glutamate uptake activity, four uptake inhibitors, L-threo-3-hydroxy-aspartic acid (THA), L-trans-pyrrolidine-2,4-dicarboxylic acid (L-trans-2,4-PDC), dihydrokainate (DHK), and DL-threo-beta-benzyloxyaspartate (TBOA) were tested. THA, L-trans-2,4-PDC and DL-TBOA inhibited glutamate uptake both at 2 and 10 DIV, while the GLT-1 selective uptake inhibitor DHK neither strongly affected the uptake at 2, nor at 10 DIV. These data indicated that, besides the regular increase in the glial-dependent glutamate uptake activity, a transient high-affinity, DHK insensitive, glutamate transport activity in hippocampal neurons in culture is present. This latter activity could potentially be related to the transient expression of the glial GLAST transporter in neurons.  相似文献   

15.
Our previous study has shown that cerebral ischemic preconditioning (CIP) can up-regulate the expression of glial glutamate transporter-1 (GLT-1) during the induction of brain ischemic tolerance in rats. The present study was undertaken to further explore the uptake activity of GLT-1 in the process by observing the changes in the concentration of extracellular glutamate with cerebral microdialysis and high-performance liquid chromatography. The results showed that a significant pulse of glutamate concentration reached the peak value of sevenfold of the basal level after lethal ischemic insult, which was associated with delayed neuronal death in the CA1 hippocampus. When the rats were pretreated 2 days before the lethal ischemic insult with CIP which protected the pyramidal neurons against delayed neuronal death, the peak value of glutamate concentration decreased to 3.9 fold of the basal level. Furthermore, pre-administration of dihydrokainate, an inhibitor of GLT-1, prevented the protective effect of CIP on ischemia-induced CA1 cell death. At the same time, compared with the CIP + Ischemia group, the peak value of glutamate concentration significantly increased and reached sixfold of the basal level. These results indicate that CIP induced brain ischemic tolerance via up-regulating GLT-1 uptake activity for glutamate and then decreasing the excitotoxicity of glutamate.  相似文献   

16.
In order to maintain normal functioning of the brain, glutamate homeostasis and extracellular levels of excitotoxic amino acids (EAA) must be tightly controlled. This is accomplished, in large measure, by the astroglial high-affinity Na+-dependent EAA transporters glutamate/aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1). Methylmercury (MeHg) is a potent neurotoxicant. Astrocytes are known targets for MeHg toxicity, representing a site for mercury localization. Mehg is known to cause astrocytic swelling, EAA release, and uptake inhibition in astrocytes, leading to increased extracellular glutamate levels and ensuing neuronal excitotoxicity and degeneration. However, the mechanisms and contribution of specific glutamate transporters to MeHg-induced glutamate dyshomeostasis remain unknown. Accordingly, the present study was carried out to investigate the effects of MeHg on the transport of [d-2, 3-3H]-d-aspartate, a nonmetabolizable glutamate analog in Chinese hamster ovary cells (CHO) transfected with the glutamate transporter subtypes GLAST or GLT-1. Additional studies examined the effects of MeHg on mRNA and protein levels of these transporters. Our results indicate the following (1) MeHg selectively affects glutamate transporter mRNA expression. MeHg treatment (6 h) led to no discernible changes in GLAST mRNA expression; however, GLT-1 mRNA expression significantly (p<0.001) increased following treatments with 5 or 10 μM MeHg. (2) Selective changes in the expression of glutamate transporter protein levels were also noted. GLAST transporter protein levels significantly (p<0.001, both at 5 and 10 μM MeHg) increased and GLT-1 transporter protein levels significantly (p<0.001) decreased followign MeHg exposure (5 μM). (3) MeHg exposure led to significant inhibition (p<0.05) of glutamate uptake by GLAST (both 5 and 10 μM MeHg), whereas GLT-1 transporter activity was significantly (p<0.01) increased following exposure to 5 and 10 μM MeHg. These studies suggest that MeHg contributes to the dysregulation of glutamate homeostasis and that its effects are distinct for GLAST and GLT-1.  相似文献   

17.
Excitatory amino acid transporters (EAATs) are membrane-bound proteins localized in glial and neuronal cells which transport glutamate (Glu) in a process essential for terminating its action and protecting neurons from excitotoxic damage. Since Pb-induced neurotoxicity has a glutamatergic component and astrocytes serve as a cellular Pb deposition site, it was of interest to investigate the response of main glutamate transporters to short-term lead exposure in the adult rat brain (25mg/kg b.w. of lead acetate, i.p. for 3 days). We examined the expression of mRNA and protein of GLAST, GLT-1 and EAAC1 in homogenates obtained from cerebellum, hippocampus and forebrain. Molecular evidence is provided which indicates that, of the two glial transporters, GLT-1 is more susceptible than GLAST to the neurotoxic effect arising from Pb. RT-PCR analysis revealed highly decreased expression of GLT-1 mRNA in forebrain and hippocampus. In contrast, GLAST was overexpressed in forebrain and in cerebellum. In the case of EAAC1, the enhanced expression of mRNA and protein of transporter was observed only in forebrain. The results demonstrate regional differences in the expression of glutamate transporters after short-term exposure to Pb. In forebrain, downregulation of GLT-1 is compensated by enhanced expression of GLAST, while in hippocampus, the expression of both is lowered. This observation suggests that under conditions of Pb toxicity in adult rat brain, the hippocampus is most vulnerable to the excitotoxic cell damage arising from impaired clearance of the released glutamate.  相似文献   

18.
In the central nervous system (CNS), extracellular concentrations of amino acids (e.g., aspartate, glutamate) and divalent metals (e.g., zinc, copper, manganese) are primarily regulated by astrocytes. Adequate glutamate homeostasis and control over extracellular concentrations of these excitotoxic amino acids are essential for the normal functioning of the brain. Not only is glutamate of central importance for nitrogen metabolism but, along with aspartate, it is the primary mediator of excitatory pathways in the brain. Similarly, the maintenance of proper Mn levels is important for normal brain function. Brain glutamate is removed from the extracellular fluid mainly by astrocytes via high affinity astroglial Na+-dependent excitatory amino acid transporters, glutamate/aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1). The effects of Mn on specific glutamate transporters have yet to be determined. As a first step in this process, we examined the effects of Mn on the transport of [D-2, 3-3H]D-aspartate, a non-metabolizable glutamate analog, in Chinese hamster ovary cells (CHO) transfected with two glutamate transporter subtypes, GLAST (EAAT1) or GLT-1 (EAAT2). Mn-mediated inhibition of glutamate transport in the CHO-K1 cell line DdB7 was pronounced in both the GLT-1 and GLAST transfected cells. This resulted in a statistically significant inhibition (p<0.05) of glutamate uptake compared with transfected control in the absence of Mn treatment. These studies suggest that Mn accumulation in the CNS might contribute to dysregulation of glutamate homeostasis.  相似文献   

19.
We investigated the effect of hypoxia on glutamate metabolism and uptake in rat pheochromocytoma (PC12) cells. Various key enzymes relevant to glutamate production, metabolism and transport were coordinately regulated by hypoxia. PC12 cells express two glutamate-metabolizing enzymes, glutamine synthetase (GS) and glutamate decarboxylase (GAD), as well as the glutamate-producing enzyme, phosphate-activated glutaminase (PAG). Exposure to hypoxia (1% O(2)) for 6 h or longer increased expression of GS mRNA and protein and enhanced GS enzymatic activity. In contrast, hypoxia caused a significant decrease in expression of PAG mRNA and protein, and also decreased PAG activity. In addition, hypoxia led to an increase in GAD65 and GAD67 protein levels and GAD enzymatic activity. PC12 cells express three Na(+)-dependent glutamate transporters; EAAC1, GLT-1 and GLAST. Hypoxia increased EAAC1 and GLT-1 protein levels, but had no effect on GLAST. Chronic hypoxia significantly enhanced the Na(+)-dependent component of glutamate transport. Furthermore, chronic hypoxia decreased cellular content of glutamate, but increased that of glutamine. Taken together, the hypoxia-induced changes in enzymes related to glutamate metabolism and transport are consistent with a decrease in the extracellular concentration of glutamate. This may have a role in protecting PC12 cells from the cytotoxic effects of glutamate during chronic hypoxia.  相似文献   

20.
The GLT-1 and GLAST astroglial transporters are the glutamate transporters mainly involved in maintaining physiological extracellular glutamate concentrations. Defects in neurotransmitter glutamate transport may represent an important component of glutamate-induced neurodegenerative disorders (such as amyotrophic lateral sclerosis) and CNS insults (ischemia and epilepsy). We characterized the protein expression of GLT-1 and GLAST in primary astrocyte-neuron cocultures derived from rat hippocampal tissues during neuron differentiation/maturation. GLT-1 and GLAST are expressed by morphologically distinct glial fibrillary acidic protein-positive astrocytes, and their expression correlates with the status of neuron differentiation/maturation and activity. Up-regulation of the transporters paralleled the content of the synaptophysin synaptic vesicle marker p38, and down-regulation was a consequence of glutamate-induced neuronal death or the reduction of synaptic activity. Finally, soluble factors in neuronal-conditioned media prevented the down-regulation of the GLT-1 and GLAST proteins. Although other mechanisms may participate in regulating GLT-1 and GLAST in the CNS, our data indicate that soluble factors dependent on neuronal activity play a major regulating role in hippocampal cocultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号