首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies have shown that the G protein-coupled, extracellular calcium ([Ca(2+)](o))-sensing receptor (CaR) forms disulfide-linked dimers through cysteine residues within its extracellular domain and that dimerization of the CaR has functional implications. In this study, we have investigated which of these disulfide linkages are essential for dimerization of the CaR and whether they are required for these functional interactions. Our results confirm the key roles of Cys(129) and Cys(131) in CaR dimerization. However, utilizing cross-linking of the CaR or immunoprecipitation of a non-FLAG-tagged CaR with a FLAG-tagged CaR using anti-FLAG antibody, we demonstrate that CaRs with or without these two cysteines form dimers on the cell surface to a similar extent. In addition, reconstitution of CaR-mediated signaling by cotransfection of two individually inactive mutant CaRs is nearly identical in the presence or absence of both Cys(129) and Cys(131), showing that covalent linkage of CaR dimers is not needed for functional interactions between CaR monomers. These findings suggest that the CaR has at least two distinct types of motifs mediating dimerization and functional interactions, i.e. covalent interactions involving intermolecular disulfide bonds and noncovalent, possibly hydrophobic, interactions.  相似文献   

2.
Natriuretic peptide receptor-A (NPR-A), a particulate guanylyl cyclase receptor, is composed of an extracellular domain (ECD) with a ligand binding site, a transmembrane spanning, a kinase homology domain (KHD), and a guanylyl cyclase domain. Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), the natural agonists, bind and activate the receptor leading to cyclic GMP production. This receptor has been reported to be spontaneously dimeric or oligomeric. In response to agonists, the KHD-mediated guanylate cyclase repression is removed, and it is assumed that ATP binds to the KHD. Since NPR-A displays a pair of juxtamembrane cysteines separated by 8 residues, we hypothesized that the removal of one of those cysteines would leave the other unpaired and reactive, thus susceptible to form an interchain disulfide bridge and to favor the dimeric interactions. Here we show that NPR-AC423S mutant, expressed mainly as a covalent dimer, increases the affinity of pBNP for this receptor by enhancing a high affinity binding component. Dimerization primarily depends on ECD since a secreted NPR-A C423S soluble ectodomain (ECDC423S) also documents a covalent dimer. ANP binding to the unmutated ECD yields up to 80-fold affinity loss as compared with the membrane receptor. However, the ECD C423S mutation restores a high binding affinity. Furthermore, C423S mutation leads to cellular constitutive activation (20-40-fold) of basal catalytic production of cyclic GMP by the full-length mutant. In vitro particulate guanylyl cyclase assays demonstrate that NPR-AC423S displays an increased sensitivity to ATP treatment alone and that the effect of ANP + ATP joint treatment is cumulative instead of synergistic. Finally, the cellular and particulate guanylyl cyclase assays indicate that the receptor is desensitized to agonist stimulation. We conclude the following: 1) dimers are functional units of NPR-A guanylyl cyclase activation; and 2) agonists are inducing dimeric contact of the juxtamembranous region leading to the removal of the KHD-mediated guanylyl cyclase repression, hence allowing catalytic activation.  相似文献   

3.
Metabotropic glutamate receptor 1 (mGluR1) expresses at the cell surface as disulfide-linked dimers and can be reduced to monomers with sulfhydryl reagents. To identify the dimerization domain, we transiently expressed in HEK-293 cells a truncated version of mGluR1 (RhodC-R1) devoid of the extracellular domain (ECD). RhodC-R1 was a monomer in the absence or presence of the reducing agents, suggesting that dimerization occurs via the ECD. To identify cysteine residues involved in dimerization within the ECD, cysteine to serine point mutations were made at three cysteines within the amino-terminal half of the ECD. A mutation at positions Cys-67, Cys-109, and Cys-140 all resulted in significant amounts of monomers in the absence of reducing agents. The monomeric C67S and C109S mutants were not properly glycosylated, failed to reach the cell surface, and showed no glutamate response, indicating that these mutant receptors were improperly folded and/or processed and thus retained intracellularly. In contrast, the monomeric C140S mutant was properly glycosylated, processed, and expressed at the cell surface. Phosphoinositide hydrolysis assay showed that the glutamate response of the C140S mutant receptor was similar to the wild type receptor. Substitution of a cysteine for Ser-129, Lys-134, Asp-143, and Thr-146 on the C140S mutant background restored receptor dimerization. Taken together, the results suggest that Cys-140 contributes to intermolecular disulfide-linked dimerization of mGluR1.  相似文献   

4.
Calcium-sensing receptors are present in membranes as dimers that can be reduced to monomers with sufhydryl reagents. All studies were carried out on the human calcium-sensing receptor tagged at the carboxyl terminus with green fluorescent protein (hCaR-GFP) to permit identification and localization of expressed proteins. Truncations containing either the extracellular agonist binding domain plus transmembrane helix 1 (ECD/TMH1-GFP) or the transmembrane domain plus the intracellular carboxyl terminus (TMD/carboxyl terminus-GFP) were used to identify the dimerization domain. ECD/TMH1-GFP was a dimer in the absence of reducing reagents, whereas TMD/carboxyl-terminal GFP was a monomer in the absence or presence of reducing agents, suggesting that dimerization occurs via the ECD. To identify the residue(s) involved in dimerization within the ECD, cysteine --> serine point mutations were made in residues that are conserved between hCaR and metabotropic glutamate receptors. Mutations at positions 60 and 131 were expressed at levels comparable to wild type in HEK 293 cells, had minimal effects on hCaR function, and did not eliminate dimerization, whereas mutations at positions 101 and 236 greatly decreased receptor expression and resulted in significant amounts of monomer in the absence of reducing agents. The double point mutant hCaR(C101S/C236S)-GFP was expressed more robustly than either C101S or C236S and covalent dimerization was eliminated. hCaR(C101S/C236S)-GFP had a decreased affinity for extracellular Ca2+ and slower response kinetics upon increases or decreases in agonist concentration. These results suggest that covalent, disulfide bond-mediated dimerization of the calcium-sensing receptor contributes to stabilization of the ECD and to acceleration of the transitions between inactive and active receptor conformations.  相似文献   

5.
Bai M 《Cell calcium》2004,35(3):197-207
The extracellular calcium-sensing receptor (CaR) originally cloned from bovine parathyroid gland is a G protein-coupled receptor. The physiological relevance of the cloned CaR for sensing and regulating the extracellular calcium concentration has been established by identifying hyper- and hypocalcemic disorders resulting from inactivating and activating mutations, respectively, in the CaR. The cloned CaR has been stably or transiently expressed in human embryonic kidney cells and significant progress has been made in elucidating its regulation and activation process using physiological, biochemical and molecular biological methods. A large collection of naturally occurring CaR mutations offers a valuable resource for studies aimed at understanding the structure-function relationships of the receptor, including functional importance of CaR dimerization. In turn, characterization of these naturally occurring mutations has clarified the pathogenesis of clinical conditions involving abnormalities in the CaR, such as familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism.  相似文献   

6.
The structure of the human Toll-like receptor 3 (TLR3) ectodomain (ECD) was recently solved by x-ray crystallography, leading to a number of models concerning TLR3 function (Choe, J., Kelker, M. S., and Wilson, I. A. (2005) Science 309, 581-585; Bell, J. K., Botos, I., Hall, P. R., Askins, J., Shiloach, J., Segal, D. M., and Davies, D. R. (2005) Proc. Natl. Acad. Sci. U. S. A. 102, 10976-10980) The structure revealed four pairs of cysteines that are putatively involved in disulfide bond formation, several residues that are predicted to be involved in dimerization between ECD subunits, and surfaces that could bind to poly(I:C). In addition, there are two loops that protrude from the central solenoid structure of the protein. We examined the recombinant TLR3 ECD for disulfide bond formation, poly(I:C) binding, and protein-protein interaction. We also made over 80 mutations in the residues that could affect these features in the full-length TLR3 and examined their effects in TLR3-mediated NF-kappaB activation. A number of mutations that affected TLR3 activity also affected the ability to act as dominant negative inhibitors of wild type TLR3. Loss of putative RNA binding did not necessarily affect dominant negative activity. All of the results support a model where a dimer of TLR3 is the form that binds RNA and activates signal transduction.  相似文献   

7.
The activity of outer membrane phospholipase A (OMPLA) is regulated by reversible dimerization. However, native OMPLA reconstituted in phospholipid vesicles was found to be present as a dimer but nevertheless inactive. To investigate the importance of dimerization for control of OMPLA activity, a covalent OMPLA dimer was constructed and its properties were compared to native OMPLA both in a micellar detergent and after reconstitution in a phospholipid bilayer. Unlike native OMPLA, activity of the covalent OMPLA dimer was independent of type and concentration of detergent in micellar systems. In such systems, the covalent OMPLA dimer invariantly displayed high calcium affinity. In contrast, high calcium concentrations were required to activate a covalent OMPLA dimer when present in intact vesicles. Solubilization of the vesicles increased the affinity for calcium, suggesting that in an intact bilayer the dimer interface is not properly formed. This was supported by the observation that OMPLA variants having an impaired dimeric interface also lacked high affinity calcium binding. A covalent linkage was not able to restore high affinity calcium binding in these variants, demonstrating that a proper dimer interface is essential for optimal catalysis.  相似文献   

8.
Streptococcal pyrogenic exotoxin A (SpeA1) is a bacterial superantigen associated with scarlet fever and streptococcal toxic shock syndrome (STSS). SpeA1 is found in both monomeric and dimeric forms, and previous work suggested that the dimer results from an intermolecular disulfide bond between the cysteines at positions 90 of each monomer. Here, we present the crystal structure of the dimeric form of SpeA1. The toxin crystallizes in the orthorhombic space group P212121, with two dimers in the crystallographic asymmetric unit. The final structure has a crystallographic R-factor of 21.52% for 7248 protein atoms, 136 water molecules, and 4 zinc atoms (one zinc atom per molecule). The implications of SpeA1 dimer on MHC class II and T-cell receptor recognition are discussed.  相似文献   

9.
We analyzed the effect of substituting serine for each of the 19 cysteine residues within the amino-terminal extracellular domain of the human Ca(2+) receptor on cell surface expression and receptor dimerization. C129S, C131S, C437S, C449S, and C482S were similar to wild type receptor; the other 14 cysteine to serine mutants were retained intracellularly. Four of these, C60S, C101S, C358S and C395S, were unable to dimerize. A C129S/C131S double mutant failed to dimerize but was unique in that the monomeric form expressed at the cell surface. Substitution of a cysteine for serine 132 within the C129S/C131S mutant restored receptor dimerization. Mutation of residues Cys-129, Cys-131, and Ser-132, singly and in various combinations caused a left shift in Ca(2+) response compared with wild type receptor. These results identify cysteines 129 and 131 as critical in formation of intermolecular disulfide bond(s) responsible for receptor dimerization. In a "venus flytrap" model of the receptor extracellular domain, Cys-129 and Cys-131 are located within a region protruding from one lobe of the flytrap. We suggest that this region represents a dimer interface for the receptor and that mutation of residues within the interface causes important changes in Ca(2+) response of the receptor.  相似文献   

10.
The transmembrane (TM) domains of receptor tyrosine kinases (RTKs) play an active role in signaling. They contribute to the stability of full-length receptor dimers and to maintaining a signaling-competent dimeric receptor conformation. In an exciting new development, two structures of RTK TM domains have been solved, a break-through achievement in the field. Here we review these structures, and we discuss recent studies of RTK TM domain dimerization energetics, possible synergies between domains, and the effects of pathogenic RTK TM mutations on structure and dimerization.Key words: transmembrane domain, dimerization thermodynamics, receptor tyrosine kinases, pathogenic mutations, dimer structure  相似文献   

11.
All mammalian cGMP-dependent protein kinases (PKGs) are dimeric. Dimerization of PKGs involves sequences located near the amino termini, which contain a conserved, extended leucine zipper motif. In PKG Ibeta this includes eight Leu/Ile heptad repeats, and in the present study, deletion and site-directed mutagenesis have been used to systematically delete these repeats or substitute individual Leu/Ile. The enzymatic properties and quaternary structures of these purified PKG mutants have been determined. All had specific enzyme activities comparable to wild type PKG. Simultaneous substitution of alanine at four or more of the Leu/Ile heptad repeats ((L3A/L10A/L17A/I24A), (L31A/I38A/L45A/I52A), (L17A/I24A/L31A/I38A/L45A/I52A), and (L3A/L10A/L45A/I52A)) of the motif produces a monomeric PKG Ibeta. Mutation of two Leu/Ile heptad repeats can produce either a dimeric (L3A/L10A) or monomeric (L17A/I24A and L31A/I38A) PKG. Point mutation of Leu-17 or Ile-24 (L17A or I24A) does not disrupt dimerization. These results suggest that all eight Leu/Ile heptad repeats are involved in dimerization of PKG Ibeta. Six of the eight repeats are sufficient to mediate dimerization, but substitutions at some positions (Leu-17, Ile-24, Leu-31, and Ile-38) appear to have greater impact than others on dimerization. The Ka of cGMP for activation of monomeric mutants (PKG Ibeta (delta1-52) and PKG Ibeta L17A/I24A/L31A/I38A/L45A/I52A) is 2- to 3-fold greater than that for wild type dimeric PKG Ibeta, and there is a corresponding 2- to 3-fold increase in cGMP-dissociation rate of the high affinity cGMP-binding site (site A) of these monomers. These results indicate that dimerization increases sensitivity for cGMP activation of the enzyme.  相似文献   

12.
In the absence of erythropoietin (Epo) cell surface Epo receptors (EpoR) are dimeric; dimerization is mediated mainly by the transmembrane domain. Binding of Epo changes the orientation of the two receptor subunits. This conformational change is transmitted through the juxtamembrane and transmembrane domains, leading to activation of JAK2 kinase and induction of proliferation and survival signals. To define the active EpoR conformation(s) we screened libraries of EpoRs with random mutations in the transmembrane domain and identified several point mutations that activate the EpoR in the absence of ligand, including changes of either of the first two transmembrane domain residues (Leu(226) and Ile(227)) to cysteine. Following this discovery, we performed cysteine-scanning mutagenesis in the EpoR juxtamembrane and transmembrane domains. Many mutants formed disulfide-linked receptor dimers, but only EpoR dimers linked by cysteines at positions 223, 226, or 227 activated EpoR signal transduction pathways and supported proliferation of Ba/F3 cells in the absence of cytokines. These data suggest that activation of dimeric EpoR by Epo binding is achieved by reorienting the EpoR transmembrane and the connected cytosolic domains and that certain disulfide-bonded dimers represent the activated dimeric conformation of the EpoR, constitutively activating downstream signaling. Based on our data and the previously determined structure of Epo bound to a dimer of the EpoR extracellular domain, we present a model of the active and inactive conformations of the Epo receptor.  相似文献   

13.
We have investigated the prefibrillar state of salmon (s) and human (h) calcitonin (CT). Size exclusion chromatography at pH 3.3 and 7.4 indicates that sCT is present in solution as a dimer, whereas hCT elutes as a monomer at pH 3.3 and as monomer-dimer at pH 7.4. Guanidine hydrochloride unfolding experiments show that dimerization is stabilized by hydrophobic interactions. We investigated the dimeric structure by multidimensional nuclear magnetic resonance spectroscopy and calculations by using an sCT mutant (LAsCT) in which Pro23 and Arg24 were substituted for Leu23 and Ala24. As indicated by the Leu9-Tyr27 and Leu12-Leu19 contacts, the mutated hormone forms a head-to-tail dimer whose basic unit is an alpha-helix in the region Leu12-Tyr22. The solution behavior of LAsCT is identical to that of sCT, so the dimeric structure can safely be extended to sCT: we believe that such a structure inhibits fibril maturation in sCT. No stable dimer was observed for hCT, which we attributed to the absence of a defined helical structure. However, we suggest that intermolecular collisions of short ordered regions (for example, a sequence of turns) in hCT favors intermolecular contacts, and specific orientation can be obtained through hydrogen bond formation involving Tyr12, Phe16, and Phe19, with the aromatic ring acting as an acceptor. Taken together, our results indicate that hCT fibrillation can be reduced by favoring a helical dimer, obtainable by replacing the three aromatic amino acids with leucines.  相似文献   

14.
The carboxyl-terminal sequence of the lac repressor protein contains heptad repeats of leucines at positions 342, 349, and 356 that are required for tetramer assembly, as substitution of these leucine residues yields solely dimeric species (Chakerian, A. E., Tesmer, V. M., Manly, S. P., Brackett, J. K., Lynch, M. J., Hoh, J. T., and Matthews, K. S. (1991) J. Biol. Chem. 266, 1371-1374; Alberti, S., Oehler, S., von Wilcken-Bergmann, B., Kr?mer, H., and Müller-Hill, B. (1991) New Biol. 3, 57-62). To further investigate this region, which may form a leucine zipper motif, a family of lac repressor carboxyl-terminal deletion mutants eliminating the last 4, 5, 11, 18, and 32 amino acids (aa) has been constructed. The -4 aa mutant, in which all of the leucines in the presumed leucine zipper are intact, is tetrameric and displays operator and inducer binding properties similar to wild-type repressor. The -5 aa, -11 aa, -18 aa, and -32 aa deletion mutants, depleted of 1, 2, or all 3 of the leucines in the heptad repeats, are all dimeric, as demonstrated by gel filtration chromatography. Circular dichroism spectra and protease digestion studies indicate similar secondary/tertiary structures for the mutant and wild-type proteins. Differences in reaction with a monoclonal antibody specific for a subunit interface are observed for the dimeric versus tetrameric proteins, indicative of exposure of the target epitope as a consequence of deletion. Inducer binding properties of the deletion mutants are similar to wild-type tetrameric repressor at neutral pH. Only small differences in affinity and cooperativity from wild-type are evident at elevated pH; thus, the cooperative unit within the tetramer appears to be the dimer. "Apparent" operator binding affinity for the dimeric proteins is diminished, although minimal change in operator dissociation rate constants was observed. The diminution in apparent operator affinity may therefore derive from either 1) dissociation of the dimeric mutants to monomer generating a linked equilibrium or 2) alterations in intrinsic operator affinity of the dimers; the former explanation is favored. This detailed characterization of the purified mutant proteins confirms that the carboxyl-terminal region is involved in the dimer-dimer interface and demonstrates that cooperativity for inducer binding is contained within the dimer unit of the tetramer structure.  相似文献   

15.
16.
The avian leukosis virus (ALV) belongs to the alpha group of retroviruses that are widespread in nature. The 5'-untranslated region of ALV genome contains the L3 element that is important for virus infectivity and the formation of an unstable RNA dimer in vitro. The L3 sequence is predicted to fold into a long stem-loop structure with two internal loops and an apical one. Phylogenetic analysis predicts that the L3 stem-loop is conserved in alpharetroviruses. Furthermore, a significant selection mechanism maintains a palindrome in the apical loop. The nucleocapsid protein of the alpharetroviruses (NCp12) is required for RNA dimer formation and replication in vivo. It is not known whether L3 can be an NCp12-mediated RNA dimerization site able to bind NCp12 with high affinity. Here, we report that NCp12 chaperones formation of a stable ALV RNA dimer through L3. To investigate the NCp12-mediated L3 dimerization reaction, we performed site-directed mutagenesis, gel retardation and heterodimerization assays and analysis of thermostability of dimeric RNAs. We show that the affinity of NCp12 for L3 is lower than its affinity for the microPsi RNA packaging signal. Results show that conservation of a long stem-loop structure and a loop-loop interaction are not required for NCp12-mediated L3 dimerization. We show that the L3 apical stem-loop is sufficient to form an extended duplex and the whole stem-loop L3 cannot be converted by NCp12 into a duplex extending throughout L3. Three-dimensional modelling of the stable L3 dimer supports the notion that the extended duplex may represent the minimal dimer linkage structure found in the genomic RNA.  相似文献   

17.
The molecular mechanisms underlying the exit from the endoplasmic reticulum (ER) for cell surface trafficking of the human calcium receptor (hCaR) remain poorly understood. We investigated the role of the Sar1 small GTP-binding protein in cell surface transport of the hCaR. Disruptions of endogenous Sar1 function with the constitutively active Sar1H79G mutant or depletion using small interfering RNA, attenuates cell surface expression of the hCaR. Mutation of several putative di-acidic ER export motifs in the carboxyl-tail of the receptor revealed no apparent defect in cell surface expression. Truncated mutants lacking most of the carboxyl-terminal sequences or all intracellular domains also showed no impairment in cell surface expression at steady state. A truncated receptor containing only the large amino-terminal extracellular ligand-binding domain (ECD) is secreted into the culture medium and Sar1H79G inhibits this secretion. ECD receptor variants with the cysteines essential for intermolecular disulfide-linked dimerization mutated to serine or four of the asparagine sites for N-glycosylation mutated to alanine also disrupt secretion, indicating proper ECD conformation is critical for forward transport of this receptor.  相似文献   

18.
Assembly of the T cell receptor (TCR) with its dimeric signaling modules, CD3deltaepsilon, CD3gammaepsilon, and zetazeta, is organized by transmembrane (TM) interactions. Each of the three assembly steps requires formation of a three-helix interface involving one particular basic TCR TM residue and two acidic TM residues of the respective signaling dimer. The extracellular domains of CD3deltaepsilon and CD3gammaepsilon contribute to assembly, but TCR interaction sites on CD3 dimers have not been defined. The structures of the extracellular domains of CD3deltaepsilon and CD3gammaepsilon demonstrated parallel beta-strands ending at the first cysteine in the CXXCXEXXX motif present in the stalk segment of each CD3 chain. Mutation of the membrane-proximal cysteines impaired assembly of either CD3 dimer with TCR, and little complex was isolated when all four membrane-proximal cysteines were mutated to alanine. These mutations had, however, no discernable effect on CD3deltaepsilon or CD3gammaepsilon dimerization. CD3deltaepsilon assembled with a TCRalpha mutant that lacked both immunoglobulin domains, but shortening of the TCRalpha connecting peptide reduced assembly, consistent with membrane-proximal TCRalpha-CD3deltaepsilon interactions. Chelation of divalent cations did not affect assembly, indicating that coordination of a cation by the tetracysteine motif was not required. The membrane-proximal cysteines were within close proximity but only formed covalent CD3 dimers when one cysteine was mutated. The four cysteines may thus form two intrachain disulfide bonds integral to the secondary structure of CD3 stalk regions. The three-chain interaction theme first established for the TM domains thus extends into the membrane-proximal domains of TCRalpha-CD3deltaepsilon and TCRbeta-CD3gammaepsilon.  相似文献   

19.
We previously described structural and functional characterization of the first ubiquitin variant (UbV), UbV.v27.1, engineered by phage display to bind with high affinity to a specific ubiquitin interacting motif (UIM). We identified two substitutions relative to ubiquitin (Gly10Val/His68Tyr) that were critical for enhancing binding affinity but could only rationalize the mechanism of action of the Tyr68 substitution. Here, we extend our characterization and uncover the mechanism by which the Val10 substitution enhances binding affinity. We show that Val10 in UbV.v27.1 drives UbV dimerization through an intermolecular β‐strand exchange. Dimerization serves to increase the contact surface between the UIM and UbV and also affords direct contacts between two UIMs through an overall 2:2 binding stoichiometry. Our identification of the role of Val10 in UbV dimerization suggests a general means for the development of dimeric UbVs with improved affinity and specificity relative to their monomeric UbV counterparts. Statement: Previously, we used phage display to engineer a UbV that bound tightly and specifically to a UIM. Here, we discovered that tight binding is partly due to the dimerization of the UbV, which increases the contact surface between the UbV and UIM. We show that UbV dimerization is dependent on the Gly10Val substitution, and posit that dimerization may provide a general means for engineering UbVs with improved binding properties.  相似文献   

20.
Monomeric and dimeric PufX-containing core complexes have been purified from membranes of wild-type Rhodobacter sphaeroides. Reconstitution of both samples by detergent removal in the presence of lipids leads to the formation of two-dimensional crystals constituted of dimeric core complexes. Two-dimensional crystals were further analyzed by cryoelectron microscopy and atomic force microscopy. A projection map at 26-A resolution reveals that core complexes assemble in an "S"-shaped dimeric complex. Each core complex is composed of one reaction center, 12 light-harvesting 1 alpha/beta-heterodimers, and one PufX protein. The light-harvesting 1 assemblies are open with a gap of density of approximately 30-A width and surround oriented reaction centers. A maximum density is found at the dimer junction. Based on the projection map, a model is proposed, in which the two PufX proteins are located at the dimer junction, consistent with the finding of dimerization of monomeric core complexes upon reconstitution. This localization of PufX in the core complex implies that PufX is the structural key for the dimer complex formation rather than a channel-forming protein for the exchange of ubiquinone/ubiquinol between the reaction center and the cytochrome bc1 complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号