首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Afferent activity in thin myelinated and unmyelinated cutaneous nerve fibers was analyzed by an impulse collision method and by methods improving the signal-to-noise ratio in the record of the antidromic action potential. The following groups were distinguished among the thin myelinated and unmyelinated nerve fibers on the basis of the results of investigation of conduction velocities, thresholds of electrical excitation, and response to mechanical stimulation: A 1 (conduction velocity 30-14 m/sec) — a relatively larger number of these fibers conducts excitation in response to weak mechanical stimulation; A 2 (14–4.0 m/sec) — the receptors of these fibers are more easily excited by a strong stimulus; a group of "mixed" fibers, containing myelinated and unmyelinated nerve fibers (4–2 m/sec), conducting excitation in response to both types of mechanical stimulation; C1 (2.0–1.0 m/sec) — a fairly large number of these unmyelinated fibers conducts impulses in response to weak mechanical stimulation; C2 (1.0–0.15 m/sec) the majority of fibers of this group is connected with receptors requiring strong mechanical stimulation for their excitation.Research Institute of Applied Mathematics and Cybernetics, N. I. Lobachevskii State University, Gor'kii. Translated from Neirofiziologiya, Vol. 8, No. 1, pp. 67–75, January–February, 1976.  相似文献   

2.
Quantitative characteristics of afferent flows coding information from a number of receptors were obtained by the gliding impulses method. The frequency spectrum of activity in a cutaneous nerve, the relative numbers of active A, A, and C fibers and their distribution by impulse transition frequency during stimulation of the cat's skin with pins and needles were determined. The afferent flow recorded in the nerve during pricking of the skin is characterized by high density, due to the number of excited fibers and the frequency of activity in them. The higher density of the afferent flow during the application of a painful than of a painless stimulus is mainly due to activity in C fibers. Unmyelinated fibers subjected to the action of the same stimulus and of chemically active substances liberated from the cells during tissue injury are excited directly and generate high-frequency spikes which increase the flow density in the nerve. The number of active myelinated fibers and the spike frequency during the action of a painful stimulus are only a little greater than the corresponding characteristics of the afferent discharge during painless stimulation.Scientific-Research Institute of Applied Mathematics and Cybernetics, N. I. Lobachevskii Gor'kii State University. Translated from Neirofiziologiya, Vol. 8, No. 4, pp. 391–399, July–August, 1976.  相似文献   

3.
The dynamics of the activity of myelinated fibers of a cutaneous nerve under heat and burn influences on hair-covered skin was investigated in acute experiments on cats using the method of cross-correlation functions. Under heat influence on the skin the total activity of the nerve was reduced chiefly at the expense of the rapidly conducting myelinated fibers, whereas in the case of painful heating of the skin the A fibers were activated. The results obtained make it possible to solve the problem of the heat-information code from the standpoint of the flow "pattern" theory.S. M. Kirov Medical Institute, Ministry of Health of the Russian Federation, Nizhnii Novgorod. Translated from Neirofiziologiya, Vol. 24, No. 5, pp. 567–577, September–October, 1992.  相似文献   

4.
It is shown in a mathematical model of a myelinated nerve fiber that the development of a local response in an inexcitable node plays an important role in the mechanism of the "jumping" of an action potential (AP) across the inexcitable node. In the absence of such a response (for example, in the case of a 1000-fold decrease in the maximum sodium permeability, Na) in fibers with normal relations between the length of the internodal segment (L) and its diameter (D) (L/D>100), the conduction is blocked. It is possible only in fibers with relatively short internodal segments (L/D<90). With a decrease in the Na in several nodes, the transmission of excitation from the first to the second altered node is of critical importance for propagation of the impulse. The conduction of an AP becomes decremental if in each of the altered nodes the AP acquires a gradual character, for example, in the case of acceleration of sodium inactivation through the rate constant h.A. V. Vishnevskii Institute of Surgery, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 3, No. 3, pp. 316–324, May–June, 1971.  相似文献   

5.
Summary Using the peroxidase-antiperoxidase technique, we showed the presence of peptides which are immunologically resembling mammalian corticotropin releasing hormone (CRF)-, adrenocorticotropic hormone (ACTH)-, -endorphin (-END)-, -melanocyte stimulating hormone (-MSH)-, methionine-enkephaline (met-ENK)- and leucine enkephaline (leu-ENK)- like immunoreactivity in hundreds to thousands of endocrine cells and nerve fibers in the midgut of the American cockroach Periplaneta americana.In the cockroach hindgut no immunoreactive cell bodies could be observed, although nerve fibers were clearly noticed to be recognized by antisera to CRF, ACTH1–24, ACTH11–24 and -END.Nothing is exactly known as to the function(s) of the demonstrated materials, but one can speculate that these numerous immunoreactive cells, might have important paracrine and/or endocrine functions in the insect physiology.  相似文献   

6.
Summary The fine structure of single identified muscle fibers and their nerve terminals in the limb closer muscle of the shore crab Eriphia spinifrons was examined, using a previous classification based on histochemical evidence which recognizes a slow (Type-I) fiber and three fast (Type-II, Type-III, Type-IV) fibers. All four fiber types have a fine structure characteristic of crustacean slow muscle, with 10–12 thin filaments surrounding each thick filament and sarcomere lengths of 6–13 m. Type-IV fibers have sarcomere lengths of 6 m while the other three types have substantially longer sarcomeres (10–13 m). Structural features of nerve terminals revealed excitatory innervation in all four fiber types but inhibitory innervation in Type-I, Type-II, and Type-III fibers only. Thus fibers with longer sarcomeres receive the inhibitor axon but those with shorter sarcomeres do not. Amongst the former, synaptic contact from an inhibitory nerve terminal onto an excitatory one, denoting presynaptic inhibition, was seen in Type-I and Type-II fibers but not in Type-III and Type-IV fibers. Inhibitory innervation of the walking leg closer muscle is therefore highly differentiated: some fibers lack inhibitory nerve terminals, some possess postsynaptic inhibition, and some possess both postsynaptic and presynaptic inhibition.  相似文献   

7.
Focal extracellular recordings were made of postjunctional currents produced at synapses of the inferior rectus eye muscle fibers by the spontaneous release of quanta of transmitter. These consisted of miniature endplate currents, or MEPC, in phasic fibers and miniature postjunctional currents, or MPJC, in tonic fibers. Open time of ionic channels (chan) was also registered. In tonic fibers, MPJC lasted considerably longer than MEPC did in phasic fibers: rising time, decay time, and chan in the former measured respectively 2.5, 4–5, and 2.2 times higher than in the latter. Acetylcholinesterace (AChE) inhibition produced a much greater (4.4-fold extension of current decay in phasic than in tonic fibers, where a 1.8-fold increase was seen, thereby reducing the gap between the decay time of currents in these fibers to a difference of 1.6 times. The more protracted decay of MPJC in tonic fibers compared with MEPC in phasic fibers is determined by the lower functional activity of AChE as well as the higher value of chan. Duration of MEPC and magnitude of chan in the "slow" phasic fibers of rat skeletal muscles fell well below the same parameters measured in the tonic fibers of the ocular muscle.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 19, No. 1, pp. 120–129, January–February, 1987.  相似文献   

8.
Analysis of afferent activity in unmyelinated fibers of a cutaneous nerve was carried out by the colliding impulses method in cats. The effect of antidromic excitation of the nerve and mechanical stimulation of the receptors on subsequent orthodromic activity during stretching of the skin was investigated. Both these factors were shown to reduce subsequent orthodromic activity evoked by testing stimulation. The reduction in activity was greatest 10–15 sec after stimulation. The duration of the inhibitory effect was greater after mechanical than after antidromic stimulation. Combined mechanical stimulation and antidromic excitation resulted in a greater decrease of afferent activity and an increase in the time of its recovery. An increase in the frequency of antidromic excitation potentiated the inhibitory effect of preliminary stimulation on orthodromic activity in C fibers.Research Institute of Applied Mathematics and Cybernetics, N. I. Lobachevskii Gor'kii State University. Translated from Neirofiziologiya, Vol. 9, No. 3, pp. 307–312, May–June, 1977.  相似文献   

9.
Electrophysiological characteristics of superior laryngeal nerve fibers and reflex responses in respiratory motor nerves and the recurrent nerve were investigated in acute experiments on cats under superficial pentobarbital anesthesia. Analysis of the compound action potential in the superior laryngeal nerve revealed three distinct groups of afferent fibers subserving different functions: group A, responsible for proprioceptive mechanisms of coordination of activity of the laryngeal muscles; group A(3), responsible for feedback mechanisms between the receptor apparatus of the mucous membrane and muscles of the larynx and bulbar respiratory neurons, and group A, responsible for the development of protective respiratory reflexes.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 6, pp. 777–783, November–December, 1984.  相似文献   

10.
Summary In the crested newt, the ultrastructural organization of the pars nervosa is analogous to that already known in non-mammal tetrapods. An orderly array of ependymal cells makes up the inner limiting layer while less abundant pituicytes are irregularly distributed within this organ. Light and dark pituicytes can be distinguished on the basis of the relative density of the cytoplasmic matrix and the distribution of the cell organelles.Both the ependymal cells and pituicytes are rich in dense bodies and possess extensive processes which ramify among the nerve fibers, often reaching the pericapillary space which they can line for long distances.The main components of the pars nervosa are nerve fibers and nerve terminals (type A), containing electron dense granules 1200–2000 Å in diameter together with clear vesicles averaging 250–400 Å. These fibers are likely to correspond to the aldehyde fuchsin positive neurosecretory fibers revealed by light microscopy. Differences in the granule size within the fibers and terminals lead to further recognition of two subgroups (A1 and A2).Other fibers and terminals (type B) containing clear vesicles and granular vesicles 600 to 1000 Å in diameter, possibly of aminergic type, are also encountered. These fibers are rare and can be seen only in the portion of the pars nervosa near the pars intermedia of the adenohypophysis.Lastly, fibers and terminals containing only clear vesicles ranging from 250 to 400 Å (type C) are occasionally found.Nerve endings are often formed by type A fibers on the perivascular space and on the perivascular processes of the ependymal cells and pituicytes. In agreement with recent findings available in the literature, the occurrence of synaptoid contacts between these terminals and both pituicytes and ependymal cells may confirm the active role of these cells in transport and release of neurosecretion.Work supported by a grant from the Consiglio Nazionale delle Ricerche.We are gratefully indebted to Dr. G. Gendusa and P. Balbi for technical assistance, dr. G. E. Andreoletti for statistical analysis.  相似文献   

11.
Evoked and spontaneous end-plate currents (EPC) were studied in normal voltage-clamped frog sartorius muscle fibers and 2 weeks after application of colchicine to the nerve innervating the muscle to block axoplasmic transport in its fibers. Application of colchicine was found to reduce the rate of rise and to prolong decay of EPC without affecting the amplitude of the EPC and miniature EPC, the quantum composition of EPC, and the frequency of miniature EPC. The histogram of distribution of the time constant () of EPC decay under normal conditions follows the normal law, but after application of colchicine to the nerve it is shifted to the right, with separation of two modes (1 and 2). Three types of synapses can be distinguished from the character of EPC decay: monoexponential decay with 1 (44%), biexponential decay with 1 and 2 (39%), and monoexponential decay with 2 (19%). An increase in of EPC decay is accompanied by strengthening of the dependence of this process on the clamping voltage. The current-voltage characteristic and reversal potential of EPC are unchanged. It is suggested that the change in character of EPC decay after application of colchicine to the motor nerve is due to the appearance of acetylcholine-activated ionic channels in the muscle membrane with a longer duration of the open state and with potential-dependence of the open state similar to that taking place after muscle denervation.S. V. Kurashov Medical Institute, Ministry of Health of the RSFSR, Kazan'. Translated from Neirofiziologiya, Vol. 17, No. 2, pp. 204–211, March–April, 1985.  相似文献   

12.
Summary Extracellular recording from single auditory nerve fibers in the pigeon,Columba livia, revealed some unusual discharge patterns of spontaneous and evoked activity.Time interval histograms (TIHs) of spontaneous activity showed a random interval distribution in 73% of the auditory fibers (Fig. 1a). The remaining 27% revealed periodicity in the TIHs (Fig. 1b–e), determined by the characteristic frequency (CF) of a given fiber. Normally, those fibers had a CF<2.2 kHz. In both cases spontaneous activity was irregular.The time pattern of quasiperiodic spontaneous firing in different auditory fibers is described by three main types of autocorrelation histograms (ACHs; decaying, nondecaying, and modulated), reflecting the spontaneous oscillations of the hair cell membrane potential (Fig. 1b–d).Single-tone suppression in auditory fibers with quasi-periodic spontaneous activity was found (Figs. 2, 10) and it could be observed if the eighth nerve was cut. There was no suppressive effect in fibres with random spontaneous firing.The frequency selectivity properties of auditory fibers were studied by means of an automatic method. Both simple (Fig. 4) and complex (Figs. 7, 8) response maps were found. Apart from the usual excitatory area, complex response maps were characterized by suppressive areas lying either above (Fig. 7), below (Fig. 8e), or on both sides of the CF (Fig. 8a–c). Generally, complex response maps were observed for fibers showing quasiperiodic spontaneous activity (Figs. 7, 8).Input-output functions at frequencies evoking single-tone suppression were nonmonotonic, while they were always monotonic at frequencies near the CF (Fig. 12).No difference in sharpness was observed between normal frequency threshold curves (FTCs) and exitatory areas of complex response maps (Fig. 9).On-off responses evoked by suppressive stimuli were found (Figs. 2, 3). They had a periodic pattern determined by the CF and did not depend on the stimulus frequency (Fig. 3).Low-CF fibers were observed which changed their time discharge structure to tone levels about 45 dB lower than their thresholds at the CF (Fig. 6).The observed features of the discharge patterns of the pigeon's auditory fibers reflect the distinctive nature of the fundamental mechanisms of auditory analysis in birds that are connected with electrical tuning of the hair cells and probably with the micromechanics of the bird's cochlea.Abbreviations ACH autocorrelation histogram - BP base period - CF characteristic frequency - FTC frequency threshold curve - IHC inner hair cell - OHC outer hair cell - PSTH peristimulus time histogram - TIH time interval histogram  相似文献   

13.
Muscle spindle stretch responses (cat gastrocnemius muscles) were studied when bothsteady stretch andsmall near-threshold random stretch determined the Ia impulse sequence. Statistical properties of the inter-impulse-intervals gave some insight into the Ia encoder mechanism. Superimposed random stretch of mean velocities vel below 5 mm s–1 did not change the mean discharge rate, but the width of the Ia interspike interval distribution was clearly increased. Raising the stretch velocity further ( vel > 5 mm s–1) led to an additional increase in the distribution width, finally reaching values of 0.6 for the coefficient of variation. The shapes of the impulse interval histograms changed from symmetrical to positively skewed ones. The 1st order serial correlation coefficient of the interval sequence shifted to slightly more negative values with increasing vel; on the average, ther 1,2-value varied between zero and –0.2. The data were discussed in relation to current ideas on the mechanism of impulse initiation in the Ia terminal ending. They provide evidence that a combination of multiple encoder sites located in the myelinated terminal branches and a separate pathway for large static and small-amplitude dynamic stretch is not very likely. A model is proposed as to how the whole tree of myelinated axons functions as a single encoder site.  相似文献   

14.
Summary Three dimensional observation of the nerve fibers along the cerebral blood vessels was investigated by scanning electron microscopy. Electron probe X-ray microanalysis was also performed in the cerebral blood vessels treated with peroxidase-antiperoxidase immunohistochemistry intensified by nickel ammonium sulfate.Nerve fibers (2–8 m in diameter) formed a plexus on the outer surface of the adventitia. After branching, the nerve fibers penetrated the blood vessel adventitia. Substance P-immunoreactive nerve fibers showed a meshwork pattern in the outer layer of the adventitia, and vasoactive intestinal polypeptide (VIP)-immunoreactive nerve fibers revealed a spiral running pattern in the inner layer of the adventitia. Taken together with previous studies, these findings suggest that substance P nerve fibers in the cerebral arteries may not be related to arterial dilatation or constriction, but VIP nerve fibers may be vasodilative.  相似文献   

15.
Summary The effects of pH on the permeability and conductance of the membranes to nitrate and to chloride of semitendinosus and lumbricalis muscle fibers were examined.Membrane potential responses to quick solution changes were recorded in semitendinosus fibers initially equilibrated in isotonic, high K2SO4 solutions. External solutions were first changed to ones in which either Rb+ or Cs+ replaced K+ and then to solutions containing either NO 3 or Cl to replace SO 4 2– . The hyperpolarizations produced by Cl depend on external pH, being smaller in acid than in alkaline solutions. By contrast, hyperpolarizations produced by NO 3 were independent of external pH over a pH range from 5.5 to 9.0.In addition, voltage-clamp measurements were made on short lumbricalis muscle fibers. Initially they were equilibrated in isotonic solutions containing mainly K2SO4 plus Na2SO4. KCl or KNO3 were added to the sulfate solutions and the fibers were equilibrated in these new solutions. When finally equilibrated the fibers had the same volume they had in the sulfate solutions before the additions. Constant hyperpolarizing voltage pulses of 0.6-sec duration were applied when all external K+ was replaced by TEA+. For these conditions, inward currents flowing during the voltage pulses were largely carried by Cl or NO 3 depending on the final equilibrating solution. Cl currents during voltage pulses were both external pH and time dependent. By contrast, NO 3 currents were independent of both external pH and time.The voltage dependence of NO 3 currents could be fit by constant field equations with aP NO 3 of 3.7·10–6 cm/sec. The voltage dependence of the initial or instantaneous Cl currents at pH 7.5 and 9.0 could also be fit by constant field equations with PCl of 5.8·10–6 and 7.9·10–6 cm/sec, respectively. At pH 5.0, no measurable instantaneous Cl currents were found.From these results we conclude that NO 3 does not pass through the pH, time-dependent Cl channels but rather passes through a distinct set of channels. Furthermore, Cl ions do not appear to pass through the channels which allow NO 3 through. Consequently, the measured ratio ofP Cl/P NO 3 based on membrane potential changes to ionic changes made on intact skeletal muscle fibers is not a measure of the selectivity of a single anion channel but rather is a measure of the relative amounts of different channel types.  相似文献   

16.
Summary The dendritic outer segment of the cell which is most likely the cold unit in the poreless coeloconic sensilla onLocusta migratoria antennae, has finger-like projections up to 1.5 m long and 0.13 m thick (Fig. 1). This unit responds to constant temperature, to slowly changing temperature and to step changes. Under stationary conditions impulse frequency attained 35 imp/s. Between 14 °C and 41 °C the higher frequencies were associated with the higher temperatures (Fig. 5). In this range the differential sensitivity is positive but not large: + 0.8 (imp/s)/°C. Its resolving power for steady temperature is 4.7 °C.Downward step changes produced by shifting between airstreams at different temperatures yield far higher frequencies (Figs. 2, 3). Step amplitudes were between –0.1 °C and –12 °C; the conditioning temperature from which the steps were initiated, was between 16 °C and 33 °C. Frequency peaked during the first 50 ms after stimulus onset (Fig. 2) and reached its highest values (310–340 imp/s) at initial temperatures above 30 °C and steps larger than –10 °C (Fig. 4). The mean differential sensitivity from 23 curves was –19 (imp/s)/°C and the resolving power 0.6 °C.During slowly changing temperature the impulse frequency was governed by two parameters simultaneously: ambient temperature and its rate of change. Rates were between 0.001 °C/s or less, and 0.03 °C/s in either direction. Frequency was higher during slow cooling at a given temperature than during slow warming (Fig. 6). The average differential sensitivity to the rate of change was –210 (imp/s)/(°C/s). Further, the larger responses to cooling developed at lower ambient temperatures (differential sensitivity: –1.0 (imp/s)/°C). It is to be noted that this sign is negative, in contrast to the sign for differential sensitivity to constant temperature and also for the influence of initial temperature on the response to downward step changes.Abbreviations b Slope of characteristic curve, differential sensitivity - F impulse frequency in imp/s - imp/s impulses/s - P w partial pressure of water vapor in torr - r correlation coefficient - T temperature in °C - T T-step - x resolving power in °C  相似文献   

17.
The parameters of conduction via afferent nerve fibers were studied in mice with streptozotocin-induced and genetically determineddiabetes mellitus (9- to 12-week-old animals; streptozotocin was injected into 5-week-old mice). Recording of spinal cord dorsal surface potentials evoked by stimulation of the sciatic nerve showed that within the studied time interval the mice of the two diabetic groups were characterized by a moderate decrease (by 7.9% and 5.8%, on average) in the conduction velocity for afferent volleys (measured according to the delay of the peak of positivity of a volley) and by a considerable increase in the duration of the positive phase of these volleys (by 36% and 33%, respectively, as compared with the values in intact animals). Therefore, the population of relatively slow group A afferent fibers becomes noticeably larger in the sciatic nerve of diabetic mice even at early stages of the pathology, but at the same time a considerable amount of the fastest-conducting (about 45–60 m/sec) fibers is still preserved. The changes in mice with diabetes of different etiology were very similar, in spite of different hyperglycemia levels in these groups. Possible factors determining diabetes-induced modifications of the conduction velocity via the nerve fibers are discussed.Neirofiziologiya/Neurophysiology, Vol. 28, No. 4/5, pp. 173–178, July–October, 1996.  相似文献   

18.
The structure of the cold-stable kinetochore fiber in metaphase PtK1 cells   总被引:1,自引:0,他引:1  
Conly L. Rieder 《Chromosoma》1981,84(1):145-158
When metaphase PtK1 cells are cooled to 6–8 ° C for 4–6 h the free, polar, and astral spindle microtubules (MTs) disassemble while the MTs of each kinetochore fiber cluster together and persist as bundles of cold-stable MTs. These cold-stable kinetochore fibers are similar to untreated kinetochore fibers in both their length (i.e., 5–6 m) and in the number of kinetochore-associated MTs (i.e., 20–45) of which they are comprised. Quantitative information concerning the lengths of MTs within these fibers was obtained by tracking individual MTs between serial transverse sections. Approximately 1/2 of the kinetochore MTs in each fiber were found to run uninterrupted into the polar region of the spindle. It can be inferred from this and other data that a substantial number of MTs run uninterrupted between the kinetochore and the polar region in untreated metaphase PtK1 cells.  相似文献   

19.
The distribution of myelinated and nonmyelinated nerve fibers of the saphenous nerve of cats in the ventral and dorsal roots of the spinal cord was investigated by methods improving the signal—noise ratio in records of evoked responses from the nerve. The fibers of this nerve enter the spinal cord through roots of segments L4–6. Nerve fibers with conduction velocities of between 80 and 0.38 m/sec were distributed in the dorsal roots of these segments. Four groups of nerve fibers with conduction velocities of 80–60, 40–30, 12.0–3.0, and 1.1–0.51 m/sec, possibly afferent in nature, were found in the ventral roots. The conditions of origin and detection of low-amplitude potentials in the roots of the spinal cord and the probable functional role of the nerve fibers in the ventral roots are discussed.Research Institute of Applied Mathematics and Cybernetics, N. I. Lobachevskii State University, Gor'kii. Translated from Neirofiziologiya, Vol. 7, No. 6, pp. 647–654, November–December, 1975.  相似文献   

20.
Auditory and vestibular functions of otolithic organs vary among vertebrate taxa. The saccule has been considered a major hearing organ in many fishes. However, little is known about the auditory role of the lagena in fishes. In this study we analyzed directional and frequency responses from single lagenar fibers of Dormitator latifrons to linear accelerations that simulate underwater acoustic particle motion. Characteristic frequencies of the lagenar fibers fell into two groups: 50 Hz and 80–125 Hz. We observed various temporal response patterns: strong phase-locking, double phase-locking, phase-locked bursting, and non-phase-locked bursting. Some bursting responses have not been previously observed in vertebrate otolithic nerve fibers. Lagenar fibers could respond to accelerations as small as 1.1 mm s–2. Like saccular fibers, lagenar fibers were directionally responsive and decreased directional selectivity with stimulus level. Best response axes of the lagenar fibers clustered around the lagenar longitudinal axis in the horizontal plane, but distributed in a diversity of axes in the mid-sagittal plane, which generally reflect morphological polarizations of hair cells in the lagena. We conclude that the lagena of D. latifrons plays a role in sound localization in elevation, particularly at high stimulus intensities where responses of most saccular fibers are saturated.Abbreviations BRA best response axis/axes - BS best sensitivity - CF characteristic frequency - CV coefficient of variation - DI directionality index - ISIH inter-spike interval histogram - PSTH peri-stimulus time histogram - SR spontaneous rate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号