首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite the importance of the theory of evolution to scientific knowledge, a number of misconceptions continue to be found among teachers and undergraduate students. The aim of the present study was to describe and characterise knowledge about evolution among 120 freshman undergraduate students of two natural sciences programmes (environmental biology and veterinary medicine), 80 pre-service science teachers (elementary and biology) and 45 in-service teachers (elementary and biology high school) in Santiago, Chile. The research was carried out based on an eight-question questionnaire about evolution acceptance and understanding. The instrument included seven Likert-scale questions and one open-ended question. An analysis of the data revealed that more than 70% of teachers (pre-service and in-service) and undergraduate students recognised the theory of evolution as established scientific knowledge. When participants discussed the mechanism of evolution in the open-ended question, the most prevalent responses from students and teachers (33%) explained evolution as need-driven changes for survival purposes. Only 13% of the responses could be considered Darwinian, and 10% of responses included more than one view of evolution. The Darwinian responses generally included three important aspects: variation, inheritance and differential reproduction. The implications for biology teacher education are also discussed in this study.  相似文献   

2.
Sequencing of the human genome has ushered in a new era of biology. The technologies developed to facilitate the sequencing of the human genome are now being applied to the sequencing of other genomes. In 2004, a partnership was formed between Washington University School of Medicine Genome Sequencing Center's Outreach Program and Washington University Department of Biology Science Outreach to create a video tour depicting the processes involved in large-scale sequencing. "Sequencing a Genome: Inside the Washington University Genome Sequencing Center" is a tour of the laboratory that follows the steps in the sequencing pipeline, interspersed with animated explanations of the scientific procedures used at the facility. Accompanying interviews with the staff illustrate different entry levels for a career in genome science. This video project serves as an example of how research and academic institutions can provide teachers and students with access and exposure to innovative technologies at the forefront of biomedical research. Initial feedback on the video from undergraduate students, high school teachers, and high school students provides suggestions for use of this video in a classroom setting to supplement present curricula.  相似文献   

3.
Marine biology is an increasingly preferred study major and career among youth. This is particularly the case of countries with extensive coastlines, such as Italy. In order to understand what exactly is fuelling this trend, and whether it culminates in the successful absorption of marine biologists as valued workforce by society, this study investigated the motivations, satisfaction and career goals of marine biology undergraduate students in Italy. Although it was expected that scientific literacy in formal education plays an important role in motivating marine biology students, the results showed that intrinsic motivations and informal education play a more crucial role. The students consider realistic career options, although these imply having to leave the country. The results of this study were used to make recommendations on the importance of marine and ocean literacy in the formal educational system in Italy, and the general improvement of scientific literacy in formal school education. Recommendations were also made on the potential improvements that can be made by higher education institutions, to better equip marine biologists with the skills required by emerging sectors in society. Finally, considerations were made regarding the dimensioning of supply, offer and marketing of employment opportunities for marine biologists in Italy.  相似文献   

4.
In a climate where increasing numbers of students are encouraged to pursue post-secondary education, the level of preparedness students have for college-level coursework is not far from the minds of all educators, especially high school teachers. Specifically within the biological sciences, introductory biology classes often serve as the gatekeeper or a pre-requisite for subsequent coursework in those fields and pre-professional programmes (eg pre-medicine or pre-veterinarian). Thus, how helpful high school science and mathematics experiences are in preparing students for their introductory biology classes is important and relevant for teachers, science educators and policy makers alike. This quantitative study looked at the association between students' high school science and mathematics experiences with introductory college biology performance. Using a nationally representative sample of US students (n?=?2667) enrolled in 33 introductory college biology courses, a multi-level statistical model was developed to analyse the association between high school educational experiences and the final course grade in introductory biology courses. Advanced high school science and mathematics coursework, an emphasis on a deep conceptual understanding of biology concepts and a prior knowledge of concepts addressed in well-structured laboratory investigations are all positively associated with students' achievement in introductory college biology.  相似文献   

5.
After interviewing 17 students and four teachers at Drew University, a college of 1,400 undergraduates which I attend, I found that whereas most express a belief in evolution, many display a hesitancy to embrace the theory entirely. Instead, most students choose to believe only in evolution within lineages and not on a larger scale, specifically in the creation of new species. Teachers at the school explain that their experiences at Drew are similar to those they have experienced at other colleges they have taught at and discuss their methods for introducing the subject in the classroom and the significance of learning evolution. Furthermore, whereas it is easy for students to avoid taking biology classes that would expose them to the theory, I discuss what students look for when taking biology courses and preconceptions teachers must help students overcome when exposing them to evolution.  相似文献   

6.
THE RELATIONSHIP BETWEEN EVOLUTIONARY BIOLOGY AND RELIGION   总被引:1,自引:0,他引:1  
Belief in creationism and intelligent design is widespread and gaining significance in a number of countries. This article examines the characteristics of science and of religions and the possible relationship between science and religion. I argue that creationism is sometimes best seen not as a misconception but as a worldview. In such instances, the most to which a science educator (whether in school, college or university) can normally aspire is to ensure that students with creationist beliefs understand the scientific position. In the short term, the scientific worldview is unlikely to supplant a creationist one for students who are firm creationists. We can help students to find their evolutionary biology courses interesting and intellectually challenging without their being threatening. Effective teaching in this area can help students not only learn about the theory of evolution but better appreciate the way science is done, the procedures by which scientific knowledge accumulates, the limitations of science, and the ways in which scientific knowledge differs from other forms of knowledge.  相似文献   

7.
Team-based learning (TBL) is an innovative form of collaborative learning. The purpose of this study was to evaluate TBL’s effect on the performance and satisfaction of grade 7 students in biology in a private school in Lebanon, as well as teachers’ willingness to implement this new methodology. An exploratory study was performed whereby two biology units were taught to two groups of students using either TBL (60 students) or traditional lecture-based instruction (30 students). Later, a summative test was administered to evaluate students’ performance. Students’ attitudes were evaluated using a questionnaire and teachers’ classroom observations. Finally, science teachers’ willingness to try TBL in their classes was assessed using a questionnaire (14 teachers). Results showed that underachievers taught according to TBL did better than underachievers taught with the lecture-based approach. The majority of students enjoyed TBL and found it useful and fun. Finally, science teachers agreed that TBL is a good alternative to the traditional lecture-based method.  相似文献   

8.
Computer science has become ubiquitous in many areas of biological research, yet most high school and even college students are unaware of this. As a result, many college biology majors graduate without adequate computational skills for contemporary fields of biology. The absence of a computational element in secondary school biology classrooms is of growing concern to the computational biology community and biology teachers who would like to acquaint their students with updated approaches in the discipline. We present a first attempt to correct this absence by introducing a computational biology element to teach genetic evolution into advanced biology classes in two local high schools. Our primary goal was to show students how computation is used in biology and why a basic understanding of computation is necessary for research in many fields of biology. This curriculum is intended to be taught by a computational biologist who has worked with a high school advanced biology teacher to adapt the unit for his/her classroom, but a motivated high school teacher comfortable with mathematics and computing may be able to teach this alone. In this paper, we present our curriculum, which takes into consideration the constraints of the required curriculum, and discuss our experiences teaching it. We describe the successes and challenges we encountered while bringing this unit to high school students, discuss how we addressed these challenges, and make suggestions for future versions of this curriculum.We believe that our curriculum can be a valuable seed for further development of computational activities aimed at high school biology students. Further, our experiences may be of value to others teaching computational biology at this level. Our curriculum can be obtained at http://ecsite.cs.colorado.edu/?page_id=149#biology or by contacting the authors.  相似文献   

9.
Is there a special conservation biology?   总被引:1,自引:0,他引:1  
Reed Noss 《Ecography》1999,22(2):113-122
Conservation biology is special to the extent that it fills useful roles in the scientific and conservation fields that are not being filled by practitioners of other disciplines. The emergence of the “new conservation biology” in the late 1970's and its blossoming in the 1980's and 1990's reflect, to a large degree, a failure of traditional academic ecology and the natural resource disciplines to address modern conservation problems adequately. Yet, to be successful conservation biology, as an interdisciplinary field, must build on the strengths of other disciplines both basic and applied. The new conservation biology grew out of concern over extinction of species, although the field has expanded to include issues about management of several levels of biological organization. I examine four controversial questions of importance to conservation biologists today: 1) are there any robust principles of conservation biology? 2) Is advocacy an appropriate activity of conservation biologists? 3) Are we educating conservation biologists properly? 4) Is conservation biology distinct from other biological and resource management disciplines? I answer three of these questions with a tentative “yes” and one (3) with a regretful “in most cases, no.” I see a need for broader Training for students of conservation biology, more emphasis on collecting basic field data, compelling applications of conservation biology to real problems, increased influence on policy, and expansion of the international scope of the discipline. If all these occur, conservation biology will by truly special.  相似文献   

10.
In a case study of a racially mixed high school undertaking detrucking, gender politics among the teachers emerged as a shaping force in the reform effort. This paper examines the politics of representation among two factions of teachers at the school. The reform, led by a party of female teachers, was derailed as a coalition of male teachers employed a gender discourse to successfully capture the dominant mode of representing what "school" means. The entrenched male teachers' efforts at maintaining a culture of patriarchy was part of their larger movement to maintain tracking's status hierarchy among students.  相似文献   

11.
ABSTRACT

Biology education should be relevant to young students so that they can become interested in biology and understand biological topics in their everyday and vocational lives. We conducted interviews and collected mind maps to examine Finnish pre-service biology teachers’ (N = 16) views on the relevance of biology education. Furthermore, we analysed Finnish secondary school biology curricula, which were compared with the pre-service teachers’ answers. We classified the views on relevance into nine main categories using grounded theory as the methodological frame of reference. Pre-service teachers emphasised the relevance of biology to the student’s own life, whereas scientific practices and the nature of science were expressed in secondary school curricula more often. Novice pre-service teachers put more value on general knowledge, while more experienced pre-service teachers were more likely to mention sustainable futures and societal aspects in their reasoning. Based on the results, we identified two stages in the development of the views. This study suggests that pedagogical studies, teaching experience and teacher training have an impact on the pre-service teachers’ views about the relevance of biology education. Moreover, we could find differences between curricula and pre-service teachers’ views, especially regarding scientific practices and the role of the nature of science in biology education.  相似文献   

12.
One of us remembers sitting in a high school biology class in 1977 being taught about scrapie, a naturally occurring disorder of sheep. The teacher had no particular interest in agriculture, but was pointing out some peculiar characteristics of this disease as a biological curiosity on a wet Friday afternoon. The prion disorders captured the imagination of a range of biologists (including that teacher) well before the epidemic of bovine spongiform encephalopathy (BSE) and the appearance of a new variant of the human prion disease, Creutzfeldt Jakob disease (CJD), in the UK, because of their extraordinary biology and the unique properties of the infectious agent. We review the results of studies leading to a convergence of evidence that the causative infectious agent, the `prion', is devoid of nucleic acid and is composed of an abnormal isoform of a host-encoded protein, the prion protein (PrP). Received: 2 March 1998 / Accepted: 2 March 1998  相似文献   

13.
Biologists in search of answers to real-world issues such as the ecological consequences of global warming, the design of species'' conservation plans, understanding landscape dynamics and understanding gene expression make decisions constantly that are based on a ‘philosophical’ stance as to how to create and test explanations of an observed phenomenon. For better or for worse, some kind of philosophy is an integral part of the doing of biology. Given this, it is more important than ever to undertake a practical assessment of what philosophy does mean and should mean to biologists. Here, I address three questions: should biologists pay any attention to ‘philosophy’; should biologists pay any attention to ‘philosophy of biology’; and should biologists pay any attention to the philosophy of biology literature on modelling? I describe why the last question is easily answered affirmatively, with the proviso that the practical benefits to be gained by biologists from this literature will be directly proportional to the extent to which biologists understand ‘philosophy’ to be a part of biology, not apart from biology.  相似文献   

14.
朱一峰 《生物学杂志》2011,28(1):110-112
推进课程改革的关键是实现课堂教学的高效,而高效课堂来自于课堂教学过程中师生双方主观能动性的充分发挥,通过教师课前设计学生学习活动方案(活动单),学生在课堂上开展"自主学习、活动探究"式学习,可以实现教师的主导性和突出学生的主体地位。通过实施"活动导学、自主互助"课堂教学模式,取得了一点认识,希望能为当前普通高中生物课堂教学改革提供一点借鉴。  相似文献   

15.
As scientists it is our duty to fight against obscurantism and loss of rational thinking if we want politicians and citizens to freely make the most intelligent choices for the future generations. With that aim, the scientific education and training of young students is an obvious and urgent necessity. We claim here that Hydra provides a highly versatile but cheap model organism to study biology at any age. Teachers of biology have the unenviable task of motivating young people, who with many other motivations that are quite valid, nevertheless must be guided along a path congruent with a 'syllabus' or a 'curriculum'. The biology of Hydra spans the history of biology as an experimental science from Trembley's first manipulations designed to determine if the green polyp he found was plant or animal to the dissection of the molecular cascades underpinning, regeneration, wound healing, stemness, aging and cancer. It is described here in terms designed to elicit its wider use in classrooms. Simple lessons are outlined in sufficient detail for beginners to enter the world of 'Hydra biology'. Protocols start with the simplest observations to experiments that have been pretested with students in the USA and in Europe. The lessons are practical and can be used to bring 'life', but also rational thinking into the study of life for the teachers of students from elementary school through early university.  相似文献   

16.
Abstract

A technique devised to isolate topics of high perceived difficulty in a school biology syllabus is described. Results obtained from questioning school pupils, teachers, and university students indicate a large measure of agreement.  相似文献   

17.
Evolutionary trees are key tools for modern biology and are commonly portrayed in textbooks to promote learning about biological evolution. However, many people have difficulty in understanding what evolutionary trees are meant to portray. In fact, some ideas that current professional biologists depict with evolutionary trees are neither clearly defined nor conveyed to students. To help biology teachers and students learn how to more deeply interpret, understand and gain knowledge from diagrams that represent ancestor–descendant relationships and evolutionary lineages, we describe the different rooted and unrooted evolutionary tree visualisations and explain how they are best read. Examples from a study of tree-shaped diagrams in the journal Science are used to illustrate how to distinguish evolutionary trees from other tree-shaped representations that are easily misunderstood as visualising evolutionary relationships. We end by making recommendations for how our findings may be implemented in teaching practice in this important area of biology education.  相似文献   

18.
The mathematics in school biology is investigated by means of an analysis of the questions in examination papers set over a period of time in biological subjects by the University of London Examinations Board. Throughout, the incidence of questions requiring mathematics changes but remains low, while the range of mathematics topics called upon remains both restricted and unchanging. However, the various biological examination subjects differ markedly with respect both to the changes in the incidence of such questions and to the range and frequency with which the topics are used.

Certain difficulties associated with the mathematics of school biology are identified, and biology teachers are encouraged to discuss these with their colleagues who teach mathematics.  相似文献   

19.
ABSTRACT

First-year undergraduate curricula and their delivery should assist students in the transition from previous learning experiences to learning in higher education. However, the so-called articulation gap or discontinuity between secondary and higher education has been identified as a key structural curriculum problem for first-year success in South Africa and abroad. Valuable insights into this problem came from a recent study that drew on Legitimation Code Theory (LCT). Findings revealed an unexpectedly wide gap between the high school and the university biology curricula. The high school biology curriculum displays minimal movement between context-dependent, simpler meaning and relatively decontextualized, condensed meaning common in first-year biology. LCT Semantics was also found to be a valuable tool for restructuring curricula and pedagogy to intentionally enact semantic movement and thereby a more gradual transition for students from high school to university. This paper reports on an integrative first-year biology project aimed intentionally at taking students’ concept knowledge through a wide contextual range, and repeatedly between less and more complex meaning. I reflect on how the project design steers students towards creating semantic movement during their presentations, thereby contributing to cumulative knowledge building and a more gradual transition towards first-year epistemological access.  相似文献   

20.
This study used sociocultural learning theory to better understand how middle and high school environmental science and biology students and pre- and in-service science teachers connect the daily life activity of eating to the food web model learned in school. We sought to understand how student and teacher perceptions of the environment and their experiences influenced their responses to interview questions regarding this topic. Findings, based on transcribed interviews with 54 study participants, indicate that three quarters of teachers and students were unable to connect the food they eat with ecosystem food webs. Even so, many respondents particularly those from elite public schools, did not demonstrate common food web misconceptions identified by other researchers, instead showing a sophisticated understanding of food web interactions. These findings indicate that even though participants were proficient in their school science understanding of food web interactions, they did not readily think about how their everyday out of school activities, like eating, relate to those interactions. This may be representative of a more general disconnect between formal ecology instruction and daily life activities. We provide several recommendations for how this disconnect can be remedied in our classrooms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号