首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Botanists benefit from a scientifically literate society and an interested and botanically literate student population, and we have opportunities to promote literacy in our classes. Unfortunately, scientific illiteracy exists, in part, because students are technologically advanced but lack intellectual curiosity and rigor. Botanical illiteracy results from several interacting factors, including a lack of interest in plants and infrequent exposure to plant science before students reach college. If scientific or botanical literacy is a goal, we must understand what literacy means and how we can help students reach that goal. A model of biological literacy recognizes four levels; students enter courses at the lowest level possessing misconceptions about concepts; however, misconceptions can be used to our advantage, especially by using concept inventories. Inquiry-based instruction is advocated for all science courses, and learning theory supports inquiry. Seven principles of learning inform recommendations about how botanists should teach, including using themes and "thinking botanically" to illustrate all biological concepts. Overall, consideration of the botanical content taught is less critical than the methods used to teach that content. If botanists emphasize thinking and process skills with an understanding of concepts, we will prepare scientifically literate students and citizens and benefit from our efforts.  相似文献   

2.
The curriculum is packed with so much content that teachers resort to telling students what they know and students simply commit facts to memory. The packed curriculum leaves little time for students to acquire a deep understanding of the subject or to develop life-long skills such as critical thinking, problem solving, and communication. However, learning is not committing a set of facts to memory, but the ability to use resources to find, evaluate, and apply information. This paper addresses these concerns by discussing "how we learn" and reviewing the literature on what works to improve learning. It is clear that active processing of information, not passive reception of information, leads to learning. That is, students must construct their own understanding of concepts, relationships, and procedures. Teachers can encourage this process by carefully considering the type and organization of information as well as instructional strategies. Specifically, teachers should reduce the total amount of factual information students are expected to memorize, reduce our use of the passive lecture format, and devote much more effort to helping students become active, independent learners and problem solvers. Collaborative learning activities, interactive models, educational games, and establishing a culture of inquiry/scholarship are critical for achieving these goals.  相似文献   

3.
To help students understand the concept of the ventilation-perfusion ratio (VA/Q) and the effects that VA/Q mismatching has on pulmonary gas exchange, a "sliding rectangles" visual aid was developed to teach VA/Q relationships. Adjacent rectangles representing "ventilation" and "perfusion" are slid past one another so that portions of the ventilation and perfusion rectangles are not touching, illustrating the concepts of dead-space ventilation (VD) and shunt flow (QS). The portion of the ventilation bar representing VD is further subdivided into anatomical and alveolar VD and used to show the effects of alveolar dead space on the PO2 (PAO2) and PCO2 of alveolar air (PACO2); movement away from the "ideal" point). Similarly, the portion of the perfusion bar representing QS is used to define anatomical and physiological shunts and the effect of shunts on the PO2 (PaO2) and PCO2 of arterial blood (PaCO2). The genesis of the PAO2-PaO2 (A-a) PO2 difference as well as the effects of VA/Q mismatching and diffusion abnormalities can all be discussed with this visual aid. This approach has greatly assisted some students in mastering this traditionally difficult area of respiratory physiology.  相似文献   

4.
Traditional review sessions are typically focused on instructor-based learning. However, experts in the field of higher education have long recommended teaching modalities that incorporate student-based active-learning strategies. Given this, we developed an educational game in pulmonary physiology for first-year medical students based loosely on the popular television game show Who Wants To Be A Millionaire. The purpose of our game, Who Wants To Be A Physician, was to provide students with an educational tool by which to review material previously presented in class. Our goal in designing this game was to encourage students to be active participants in their own learning process. The Who Wants To Be A Physician game was constructed in the form of a manual consisting of a bank of questions in various areas of pulmonary physiology: basic concepts, pulmonary mechanics, ventilation, pulmonary blood flow, pulmonary gas exchange, gas transport, and control of ventilation. Detailed answers are included in the manual to assist the instructor or player in comprehension of the material. In addition, an evaluation instrument was used to assess the effectiveness of this instructional tool in an academic setting. Specifically, the evaluation instrument addressed five major components, including goals and objectives, participation, content, components and organization, and summary and recommendations. Students responded positively to our game and the concept of active learning. Moreover, we are confident that this educational tool has enhanced the students' learning process and their ability to understand and retain information.  相似文献   

5.
We all expect our students to learn facts and concepts, but more importantly, we want them to learn how to evaluate new information from an educated and skeptical perspective; that is, we want them to become critical thinkers. For many of us who are scientists and teachers, critical thought is either intuitive or we learned it so long ago that it is not at all obvious how to pass on the skills to our students. Explicitly discussing the logic that underlies the experimental basis of developmental biology is an easy and very successful way to teach critical thinking skills. Here, I describe some simple changes to a lecture course that turn the practice of critical thinking into the centerpiece of the learning process. My starting point is the "Evidence and Antibodies" sidelight in Gilbert's Developmental Biology (2000), which I use as an introduction to the ideas of correlation, necessity and sufficiency, and to the kinds of experiments required to gather each type of evidence: observation ("show it"), loss of function ("block it") and gain of function ("move it"). Thereafter, every experiment can be understood quickly by the class and discussed intelligently with a common vocabulary. Both verbal and written reinforcement of these ideas dramatically improve the students' ability to evaluate new information. In particular, they are able to evaluate claims about cause and effect; they become experts at distinguishing between correlation and causation. Because the intellectual techniques are so powerful and the logic so satisfying, the students come to view the critical assessment of knowledge as a fun puzzle and the rigorous thinking behind formulating a question as an exciting challenge.  相似文献   

6.
罗成  李艳 《生命的化学》2021,(2):403-407
生物化学是很多高校的专业基础课程,具有概念多、代谢途径复杂等特点。传统的灌输式教学模式下,学生的学习难度很大,容易产生畏学情绪,导致学习效果不佳。通过开展课堂教学改革,构建问题导入、趣味讲解、技巧记忆、前沿拓展"四部曲式"趣味生化课堂:通过问题导入充分调动学生的好奇心和求知欲,通过趣味讲解和技巧记忆降低学习难度,通过前沿拓展加深对知识的理解,并锻炼学生的逻辑思维和应用知识解决问题的能力。在此基础上利用超星学习通等移动教学软件,通过签到、随机选人、讨论词云等活动活跃课堂气氛。以上举措可以将沉闷的生化课堂变得生动有趣,从而提高教学效果。  相似文献   

7.

Background

Students’ knowledge of scientific principles of evolution is often inadequate, despite its recognized importance for understanding biology. Moreover, difficulties associated with underlying abstract concepts such as randomness and probability can hinder successful learning of evolutionary concepts. Studies show that visualizations, particularly simulations together with appropriate instructional support, facilitate the learning of abstract concepts. Therefore, we have developed interactive, web-based simulation software called EvoSketch in efforts to help learners grasp the nature and importance of random and probabilistic processes in evolutionary contexts. We applied EvoSketch in an intervention study comparing four self-directed study conditions: learning with EvoSketch (1) alone, (2) combined with interpretative support, (3) combined with reflective support, and (4) using texts about randomness and probability instead of EvoSketch. All conditions received no support from any instructors. Knowledge about evolution as well as randomness and probability in the context of evolution, time-on-task, and perceived cognitive load were measured. A sample of 269 German secondary school students (Mage?=?15.6 years, SD?=?0.6 years) participated in the study.

Results

Learners using EvoSketch without additional support obtained higher follow-up test scores regarding their knowledge of randomness and probability than those using the text-based approach. However, use of the simulations together with given instructional support (interpretative or reflective) did not increase students’ performance, relative to the text-based approach. In addition, no significant between-intervention differences were found concerning the knowledge of evolution, while significant differences between the groups were detected concerning students’ perceived cognitive load and time-on-task.

Conclusions

From our findings, we conclude that EvoSketch seems to have a very small positive effect on students’ understanding of randomness and probability. Contrary to our expectations, additional self-directed instructional support did not improve students’ understanding, probably because it was not necessary to understand EvoSketch simulations. When using EvoSketch in the classroom, we recommend increasing the intervention timeframe to several sessions and a variety of evolutionary examples for which EvoSketch serves as an underlying framework.
  相似文献   

8.
The sciences of industrial ecology, complex systems, and adaptive management are intimately related, since they deal with flows and dynamic interdependencies between system elements of various kinds. As such, the tool kit of complex systems science could enrich our understanding of how industrial ecosystems might evolve over time. In this article, I illustrate how an important tool of complex systems science— agent-based simulation —can help to identify those potential elements of an industrial ecosystem that could work together to achieve more eco-efficient outcomes. For example, I show how agent-based simulation can generate cost-efficient energy futures in which groups of firms behave more eco-efficiently by introducing strategically located clusters of renewable, low-emissions, distributed generation. I then explain how role-playing games and participatory modeling can build trust and reduce conflict about the sharing of common-pool resources such as water and energy among small clusters of evolving agents. Collective learning can encourage potential industrial partners to gradually cooperate by exchanging by-products and/or sharing common infrastructure by dint of their close proximity. This kind of coevolutionary learning, aided by participatory modeling, could help to bring about industrial symbiosis.  相似文献   

9.
To help students develop successful strategies for learning how to learn and communicate complex information in cell biology, we developed a quarter-long cell biology class based on team projects. Each team researches a particular human disease and presents information about the cellular structure or process affected by the disease, the cellular and molecular biology of the disease, and recent research focused on understanding the cellular mechanisms of the disease process. To support effective teamwork and to help students develop collaboration skills useful for their future careers, we provide training in working in small groups. A final poster presentation, held in a public forum, summarizes what students have learned throughout the quarter. Although student satisfaction with the course is similar to that of standard lecture-based classes, a project-based class offers unique benefits to both the student and the instructor.  相似文献   

10.
In an effort to understand how to improve student learning about evolution, a focus of science education research has been to document and address students?? naive ideas. Less research has investigated how students reason about alternative scientific models that attempt to explain the same phenomenon (e.g., which causal model best accounts for evolutionary change?). Within evolutionary biology, research has yet to explore how non-adaptive factors are situated within students?? conceptual ecologies of evolutionary causation. Do students construct evolutionary explanations that include non-adaptive and adaptive factors? If so, how are non-adaptive factors structured within students?? evolutionary explanations? We used clinical interviews and two paper and pencil instruments (one open-response and one multiple-choice) to investigate the use of non-adaptive and adaptive factors in undergraduate students?? patterns of evolutionary reasoning. After instruction that included non-adaptive causal factors (e.g., genetic drift), we found them to be remarkably uncommon in students?? explanatory models of evolutionary change in both written assessments and clinical interviews. However, consistent with many evolutionary biologists?? explanations, when students used non-adaptive factors they were conceptualized as causal alternatives to selection. Interestingly, use of non-adaptive factors was not associated with greater understanding of natural selection in interviews or written assessments, or with fewer naive ideas of natural selection. Thus, reasoning using non-adaptive factors appears to be a distinct facet of evolutionary thinking. We propose a theoretical framework for an expert?Cnovice continuum of evolutionary reasoning that incorporates both adaptive and non-adaptive factors, and can be used to inform instructional efficacy in evolutionary biology.  相似文献   

11.
Self-generated analogical models have emerged recently as alternatives to teacher-supplied analogies and seem to have good potential to promote deep learning and scientific thinking. However, studies of the ways and contexts in which students generate these models are still too limited to allow a fuller appraisal of these models’ effectiveness in enhancing conceptual learning in science. This study explores how biology students aged 15–17 generated physical concrete models to represent their understanding of the respiration pathway after learning about it through a conventional flow diagram model. The analogies portrayed in students’ self-generated models provide teachers with a supplementary channel to explore students’ conceptual understandings of this complicated topic and allow students to reflect on ways in which the abstract pathway portrayed in textbooks actually makes sense to them.  相似文献   

12.

Background

Alveolar volume measured according to the American Thoracic Society-European Respiratory Society (ATS-ERS) guidelines during the single breath diffusion test can be underestimated when there is maldistribution of ventilation. Therefore, the alveolar volume calculated by taking into account the ATS-ERS guidelines was compared to the alveolar volume measured from sequentiallly collected samples of the expired volume in two groups of individuals: COPD patients and healthy individuals. The aim of this study was to investigate the effects of the maldistribution of ventilation on the real estimate of alveolar volume and to evaluate some indicators suggestive of the presence of maldistribution of ventilation.

Methods

Thirty healthy individuals and fifty patients with moderate-severe COPD were studied. The alveolar volume was measured either according to the ATS-ERS guidelines or considering the whole expired volume subdivided into five quintiles. An index reflecting the non-uniformity of the distribution of ventilation was then derived (DeltaVA/VE).

Results

Significant differences were found when comparing the two measurements and the alveolar volume by quintiles appeared to have increased progressively towards residual volume in healthy individuals and much more in COPD patients. Therefore, DeltaVA/VE resulted in an abnormal increase in COPD.

Conclusion

The results of our study suggest that the alveolar volume during the single breath diffusion test should be measured through the collection of a sample of expired volume which could be more representative of the overall gas composition, especially in the presence of uneven distribution of ventilation. Further studies aimed at clarifying the final effects of this way of calculating the alveolar volume on the measure of DLCO are needed. DeltaVA/VE is an index that can help assess the severity of inhomogeneity in COPD patients.  相似文献   

13.
Like humans, songbirds are one of the few animal groups that learn vocalization. Vocal learning requires coordination of auditory input and vocal output using auditory feedback to guide one’s own vocalizations during a specific developmental stage known as the critical period. Songbirds are good animal models for understand the neural basis of vocal learning, a complex form of imitation, because they have many parallels to humans with regard to the features of vocal behavior and neural circuits dedicated to vocal learning. In this review, we will summarize the behavioral, neural, and genetic traits of birdsong. We will also discuss how studies of birdsong can help us understand how the development of neural circuits for vocal learning and production is driven by sensory input (auditory information) and motor output (vocalization).  相似文献   

14.
Do we fully understand the structure of the problems we present to our subjects in experiments on animal cognition, and the information required to solve them? While we currently have a good understanding of the behavioural and neurobiological mechanisms underlying associative learning processes, we understand much less about the mechanisms underlying more complex forms of cognition in animals. In this study, we present a proposal for a new way of thinking about animal cognition experiments. We describe a process in which a physical cognition task domain can be decomposed into its component parts, and models constructed to represent both the causal events of the domain and the information available to the agent. We then implement a simple set of models, using the planning language MAPL within the MAPSIM simulation environment, and applying it to a puzzle tube task previously presented to orangutans. We discuss the results of the models and compare them with the results from the experiments with orangutans, describing the advantages of this approach, and the ways in which it could be extended.  相似文献   

15.
目的:通过自行设计的启发式思考题,让问题式学习伴随医学生分子生物学实验教学全程,利用实验课的教学互动环节发挥学生学习的主观能动性。方法:借鉴启发式教学经验和问题式教学方法,在实验的平时考核中增加了启发式思考题,针对教学内容设置拓展性问题,以开卷回答的方式引导学生通过自学寻找操作实践及其理论基础中潜在的知识内涵和科学规律。结果:思考题的引入在强化学生自主学习,锻炼思考和解决问题能力的同时也显示出了良好的区分度。思考题成绩以及以此为基础的平时成绩与实验理论考核成绩之间显示出了显著的相关性。结论:贯穿于实验课教学活动中的启发式思考题在拓展思维、提升学生自主学习能力的同时促进了实验课的教学效果。  相似文献   

16.
Many complex cellular processes involve major changes in topology and geometry. We have developed a method using topology-based geometric modelling in which the edge labels of an n-dimensional generalized map (a subclass of graphs) represent the relations between neighbouring biological compartments. We illustrate our method using two topological models of the Golgi apparatus. These models can be animated using transformation rules, which depend on geometric and/or biochemical data and which modify both these data and the topology. Both models constitute plausible topological representations of the Golgi apparatus, but only the model based on a recent hypothesis about the Golgi apparatus is fully compatible with data from electron microscopy. Finally, we outline how our method may help biologists to choose between different hypotheses.  相似文献   

17.
黑腹果蝇杂交实验的教学改革   总被引:10,自引:1,他引:10  
周玉萍  田长恩  周伯春  王正询 《遗传》2002,24(3):345-348
本文介绍关于黑腹果蝇杂交实验的一次教学改革尝试。讨论遗传学实验教学中,如何由常规的“验证性”教学改变为启发式的“发现式”教学,在本实验教学中,学生处于主导地位,自己选择实验组合,提出实验设计方案,独立完成实验内容;教师只是协助学生完成其实验内容。这种教学方法,充分发挥学生学习的主动性,培养学生独立思考和实际操作能力,激发学生的学习兴趣。 Abstract:The paper is concerned about a teaching and learning reform of hybridization experiment of Drosophila melanogaster.In the teaching of genetic experiment,we have adopted a new teaching and learning method which was a discovering way instead of tranditional method .In this way,students themselves selected the combination subject,put forward and carried out the whole experiment scheme.By the reform,we couldd find out that it was helpful not only to improve students' thinking and operating abilities but also to encourage their interests in genetics.  相似文献   

18.
Enrollment in courses taught remotely in higher education has been on the rise, with a recent surge in response to a global pandemic. While adapting this form of teaching, instructors familiar with traditional face‐to‐face methods are now met with a new set of challenges, including students not turning on their cameras during synchronous class meetings held via videoconferencing. After transitioning to emergency remote instruction in response to the COVID‐19 pandemic, our introductory biology course shifted all in‐person laboratory sections into synchronous class meetings held via the Zoom videoconferencing program. Out of consideration for students, we established a policy that video camera use during class was optional, but encouraged. However, by the end of the semester, several of our instructors and students reported lower than desired camera use that diminished the educational experience. We surveyed students to better understand why they did not turn on their cameras. We confirmed several predicted reasons including the most frequently reported: being concerned about personal appearance. Other reasons included being concerned about other people and the physical location being seen in the background and having a weak internet connection, all of which our exploratory analyses suggest may disproportionately influence underrepresented minorities. Additionally, some students revealed to us that social norms also play a role in camera use. This information was used to develop strategies to encourage—without requiring—camera use while promoting equity and inclusion. Broadly, these strategies are to not require camera use, explicitly encourage usage while establishing norms, address potential distractions, engage students with active learning, and understand your students’ challenges through surveys. While the demographics and needs of students vary by course and institution, our recommendations will likely be directly helpful to many instructors and also serve as a model for gathering data to develop strategies more tailored for other student populations.  相似文献   

19.
Evolutionary trees are key tools for modern biology and are commonly portrayed in textbooks to promote learning about biological evolution. However, many people have difficulty in understanding what evolutionary trees are meant to portray. In fact, some ideas that current professional biologists depict with evolutionary trees are neither clearly defined nor conveyed to students. To help biology teachers and students learn how to more deeply interpret, understand and gain knowledge from diagrams that represent ancestor–descendant relationships and evolutionary lineages, we describe the different rooted and unrooted evolutionary tree visualisations and explain how they are best read. Examples from a study of tree-shaped diagrams in the journal Science are used to illustrate how to distinguish evolutionary trees from other tree-shaped representations that are easily misunderstood as visualising evolutionary relationships. We end by making recommendations for how our findings may be implemented in teaching practice in this important area of biology education.  相似文献   

20.
Evolution is a complex subject that requires knowledge of basic biological concepts and the ability to connect them across multiple scales of time, space, and biological organization. Avida-ED is a digital evolution educational software environment designed for teaching and learning about evolution and the nature of science in undergraduate biology courses. This study describes our backward design approach to developing an instructional activity using Avida-ED for teaching and learning about evolution in a large-enrollment introductory biology course. Using multiple assessment instruments, we measured student knowledge and understanding of key principles of natural selection before and after instruction on evolution (including the Avida-ED activity). Assessment analysis revealed significant post-instruction learning gains, although certain evolutionary principles (most notably those including genetics concepts, such as the genetic origin of variation) remained particularly difficult for students, even after instruction. Students, however, demonstrated a good grasp of the genetic component of the evolutionary process in the context of a problem on Avida-ED. We propose that: (a) deep understanding of evolution requires complex systems thinking skills, such as connecting concepts across multiple levels of biological organization, and (b) well designed use of Avida-ED holds the potential to help learners build a meaningful and transferable understanding of the evolutionary process. An erratum to this article can be found at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号