首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
目的:研究诱导表达p27对HEK293细胞生长和代谢的影响。方法:将pTet—on载体和响应于Dox的p27诱导表达载体共转染HEK293细胞,随机挑选单克隆细胞株。以细胞周期分布和活细胞密度为主要观察指标,考察稳定转染的细胞在Dox诱导下的细胞生长;以Qglc、Qlac和Qgln为主要观察指标,考察转染细胞在Dox诱导下的细胞代谢。结:p27基因的表达使HEK293细胞的增殖速度显著降低,G1期细胞比例显著升高,葡萄糖消耗和乳酸生产减少。结论:诱导表达p27基因是对HEK293细胞进行G1期阻滞的一种有效策略。  相似文献   

2.
目的:研究诱导表达p27对HEK293细胞生长和代谢的影响。方法:将pTet-on载体和响应于Dox的p27诱导表达载体共转染HEK293细胞,随机挑选单克隆细胞株。以细胞周期分布和活细胞密度为主要观察指标,考察稳定转染的细胞在Dox诱导下的细胞生长;以Qglc、Qlac和Qgln为主要观察指标,考察转染细胞在Dox诱导下的细胞代谢。结果:p27基因的表达使HEK293细胞的增殖速度显著降低,G1期细胞比例显著升高,葡萄糖消耗和乳酸生产减少。结论:诱导表达p27基因是对HEK293细胞进行G1期阻滞的一种有效策略。  相似文献   

3.
目的:探讨Zeocin处理是否能增强CPNE5基因诱导细胞凋亡的作用。方法:分别构建CPNE5基因稳定过表达和抑表达载体,转染HEK293细胞,形成克隆后,用RT-PCR、MTT法分析CPNE5基因过表达和抑表达的HEK293单克隆细胞对Zeocin作用的敏感性。结果:CPNE5基因过表达的HEK293单克隆细胞对Zeocin反应敏感性增加。结论:Zeocin能增强CPNE5基因诱导细胞凋亡的作用。  相似文献   

4.
利用表达克隆法,从东方田鼠骨髓细胞中克隆出抗日本血吸虫抗性相关基因.首先提取高质量的mRNA,逆转录成cDNA,将cDNA与哺乳动物细胞瞬时表达载体pcDNA1.1/Amp连接,建立表达cDNA文库;将cDNA文库分成A—H8个基因池,转染HEK293细胞,48h后收集培养上清,获得条件培养基.将条件培养基与日本血吸虫童虫一起培养,观察杀虫效应,取对童虫抑制作用最强的基因池E再分成8个亚基因池E1-8,分别转染HEK293细胞,并将条件培养基与血吸虫童虫一起培养,获得具有明显抑制血吸虫童虫活性的亚基因池E77,按上述方法反复进行筛选,直到获得有抑制作用的单个克隆,该技术的建立为克隆东方田鼠抗日本血吸虫抗性相关基因以及研究其作用机制奠定基础.  相似文献   

5.
PTEN基因诱导人胚肾293细胞凋亡和细胞周期停滞   总被引:1,自引:0,他引:1  
为了研究抑癌基因PTEN过表达对HEK293细胞凋亡和细胞周期停滞的作用,以野生型PTEN和PTEN突变子(T910G)表达质粒分别转染无PTEN表达的人胚肾293细胞,采用细胞质梯度DNA方法检测细胞凋亡,以流式细胞仪分析细胞周期.发现PTEN过表达能够诱导人胚肾293细胞质中出现梯度DNA,293细胞发生凋亡,PTEN过表达改变细胞周期分布,G0/G1期细胞增加13%,S期细胞下降15%.PTEN突变子对细胞凋亡和G1细胞停滞的影响略弱于野生型PTEN.PTEN基因过表达明显下调血小板衍生生长因子(PDGF)诱导的蛋白激酶B(PKB)和p42,p44-促分裂原活化蛋白激酶(MAPK)磷酸化水平,PTEN突变子对p42,p44-MAPK磷酸化水平的调节作用略弱于野生型PTEN.PTEN通过抑制细胞增殖,诱导细胞凋亡而影响细胞生长.  相似文献   

6.
利用HEK293细胞在悬浮培养中具有聚集成团的体外培养特性,在250mL的Bellco的搅拌培养体系中,以HEK293细胞团的粒径、细胞数、细胞活力、葡萄糖比消耗率(qglc)、乳酸比产率(qlac)和乳酸转化率(Ylacglc)为观察指标,考察HEK293细胞在搅拌速度分别设置为25、50、75和100rmin的培养条件下的细胞团形成、粒径分布以及细胞生长和代谢。HEK293细胞在搅拌速度为50rmin和75rmin培养条件下所形成细胞团的粒径大小适中、离散度小。培养7d后,HEK293细胞团的平均粒径分别为201μm和175μm,其中粒径≥225μm的细胞团所占比例均低于10%;在整个培养过程中,细胞团中的HEK293细胞活力维持在90%以上,qglc、qlac和Ylacglc等反映HEK293细胞代谢的参数保持相对恒定。实验结果提示:合适的搅拌速度所产生的流体动力既可使细胞团的粒径控制在合适的范围内,也可为细胞团中的HEK293细胞提供基本满足其正常生长和代谢需要的物质传递效率。  相似文献   

7.
杀菌/通透性增加蛋白(Bactericidal/permeability-increasing protein,BPI)能结合并特异地中和来自革兰氏阴性菌外膜的脂多糖(Lipopolysaccharide,LPS)。为了研究牛源BPI蛋白及其N端结构域在LPS介导的免疫应答中的作用,本文将BPI全长1 449 bp编码区序列(BPI)和其N端714 bp的编码区序列(BPI714)分别导入m HEK293细胞,分析了稳定表达的BPI或BPI714对LPS介导的炎性细胞因子表达的影响。首先将构建的p LEX-BPI/p LEX-BPI714载体分别转染m HEK293细胞,获得稳定表达牛源BPI或BPI714的m HEK293细胞;然后用LPS刺激上述细胞,分别收集刺激前、刺激后1 h、3 h、6 h、12 h、24 h、36 h和48 h的细胞,并同时收集未表达BPI或BPI714的m HEK293细胞在各时间点的样品作为对照;采用定量RT-PCR检测上述细胞中炎性细胞因子IL-8、IL-1β、TNF-α、NF-κB-1、NF-κB-2的相对表达水平,比较LPS刺激前后表达BPI/BPI714和对照细胞中上述基因转录水平的变化规律。研究表明,LPS刺激后,对照细胞中IL-8、IL-1β、TNF-α、NF-κB-2表达水平在不同时间点均显著提高(P0.05),并呈现规律性变化;而稳定表达BPI/BPI714的细胞在同样刺激条件下,IL-8、IL-1β、TNF-α、NF-κB-2基因的转录水平均未发生显著变化(P0.05)。根据我们的实验结果,在m HKE293细胞模型中BPI或BPI714均能显著降低LPS介导的炎性细胞因子表达,抑制LPS介导的免疫应答。这不仅为进一步研究BPI抑菌机制和利用其抑菌功能提供了可靠的实验依据,也为分析抗菌蛋白的抗菌效果提供了一种可靠的实验方法。  相似文献   

8.
减少乳酸积累一直是哺乳动物细胞生物技术产业的一个目标。体外培养动物细胞时,乳酸积累主要是2种代谢途径作用的综合结果:一方面,葡萄糖在乳酸脱氢酶A(lactate dehydrogenase A,LDHA)的作用下生成乳酸;另一方面,乳酸可通过乳酸脱氢酶B(LDHB)或乳酸脱氢酶C(LDHC)氧化为丙酮酸重新进入三羧酸循环。本研究综合评估了乳酸代谢关键基因调控对人胚胎肾细胞(human embryonic kidney 293 cells,HEK-293)细胞生长、代谢和人腺病毒(human adenovirus,HAdV)生产的影响,有效提高了HEK-293细胞的HAdV生产能力,并为哺乳动物细胞的乳酸代谢工程调控提供了理论基础。通过改造乳酸代谢关键调控基因(敲除ldha基因以及过表达ldhb和ldhc基因),有效改善了HEK-293细胞的物质和能量代谢效率,显著提高了HAdV的生产。与对照细胞相比,3个基因改造均能促进细胞生长,降低乳酸和氨的积累,明显增强细胞的物质和能量代谢效率,显著提高了HEK-293细胞的HAdV生产能力。ldhc基因过表达对HEK-293细胞的生长、代谢和HAdV生产调控最显著,最大细胞密度提高了约38.7%,乳酸对葡萄糖得率和氨对谷氨酰胺得率分别下降了33.8%和63.3%,HAdV滴度提高了至少16倍。此外,相比于对照细胞株,改造细胞株的腺苷三磷酸(adenosine triphosphate,ATP)生成速率、ATP/O_(2)比率、ATP与腺苷二磷酸(adenosine diphosphate,ADP)的比值以及还原型辅酶Ⅰ(nicotinamide adenine dinucleotide,NADH)含量均有不同程度的提高,能量代谢效率明显改善。  相似文献   

9.
微囊化技术是一种有发展潜力的生物技术,在细胞移植和药物控释等方面具有广泛的应用。然而由于目前微囊化细胞规模化培养技术还不成熟,阻碍了其在临床治疗中的推广与应用。为了了解微囊化重组CHO细胞的生长代谢特性为今后规模化培养优化提供技术参考,考察了主要氮源物质谷氨酰胺对微囊化重组CHO细胞生长代谢及内皮抑素表达的影响。结果显示:当谷氨酰胺起始浓度从2.69mmolL增加到9.05mmolL时最大活细胞密度并没有增高,细胞增殖没有显著差异。当谷氨酰胺起始浓度较低(2.69mmolL)时,葡萄糖的比消耗速率较大;当谷氨酰胺起始浓度增高时(7.91mmolL~9.05mmolL)葡萄糖和谷氨酰胺的比消耗速率增大,但细胞对葡萄糖和谷氨酰胺的利用率降低。谷氨酰胺对产物表达有显著影响,起始浓度为4.97mmolL时的内皮抑素累积浓度最高,达546.36ngmL,过低和过高谷氨酰胺起始浓度下内皮抑素的累积浓度均较低。  相似文献   

10.
目的:优化重组抗体在悬浮无血清培养的HEK293 EBNA1瞬时表达,提高重组抗体表达量。方法:将HEK293 EBNA1细胞适应于无血清悬浮培养,筛选适宜的无血清培养基。使用PEI转染质粒进入细胞,瞬时表达重组抗体;使用Modde软件进行实验设计(DOE),优化转染质粒量、轻重链比例、PEI量等影响瞬时表达的条件。培养上清经亲和纯化,获得目标抗体,用快速免疫荧光灶抑制试验(RFFIT)测定抗体活性,用BCA法测定纯化抗体浓度。结果:293SFMII为适宜的HEK293 EBNA1细胞无血清悬浮培养基。对抗体表达影响最大的因素是轻重链比例(P=0.00000),其次为质粒浓度(P=0.00086),最后为PEI(P=0.00257)。优化的转染条件为:质粒用量0.61μg/106细胞,轻重链比例2:1,PEI 2.67μg/106细胞,优化后抗体表达量有显著提高(P=0.007)。结论:通过DOE优化获得了重组抗狂犬病病毒抗体的高水平表达,抗体表达量提高了至少50倍。  相似文献   

11.
The engineering of production cell lines to express anti-apoptotic genes has been pursued in recent years due to potential process benefits, including enhanced cell survival, increased protein expression, and improved product quality. In this study, a baby hamster kidney cell line secreting recombinant factor VIII (BHK-FVIII) was engineered to express the anti-apoptotic genes Aven and E1B-19K. In high cell density shake flask culture evaluation, 11 clonal cell lines expressing either E1B-19K or a combination of Aven and E1B-19K showed improved survival compared to both parental and blank vector cell line controls. These cell lines exhibited lower caspase-3 activation and reduced Annexin-V binding compared to the controls. Parental and blank vector cell lines were less than 50% viable after 48 h of exposure to thapsigargin while cell lines expressing E1B-19K with or without Aven maintained viabilities approaching 90%. Subsequently, the best Aven-E1B-19K candidate cell line was compared to the parental cell line in 12-L perfusion bioreactor studies. Choosing the appropriate perfusion rates in bioreactors is a bioprocess optimization issue, so the bioreactors were operated at sequentially lower specific perfusion rates, while maintaining a cell density of 2 x 10(7) viable cells/mL. The viability of the parental cell line declined from nearly 100% at a perfusion rate of 0.5 nL/cell/day to below 80% viability, with caspase-3 activity exceeding 15%, at its lower perfusion limit of 0.15 nL/cell/day. In contrast, the Aven-E1B-19K cell line maintained an average viability of 94% and a maximum caspase-3 activity of 2.5% even when subjected to a lower perfusion minimum of 0.1 nL/cell/day. Factor VIII productivity, specific growth rate, and cell size decreased for both cell lines at lower perfusion rates, but the drop in all cases was larger for the parental cell line. Specific consumption of glucose and glutamine and production of lactate were consistently lower for the Aven-E1B-19K culture. Furthermore, the yield of ammonia from glutamine increased for the Aven-E1B-19K cell line relative to the parent to suggest altered metabolic pathways following anti-apoptosis engineering. These results demonstrate that expression of anti-apoptotic genes Aven and E1B-19K can increase the stability and robustness of an industrially relevant BHK-FVIII mammalian cell line over a wide range of perfusion rates.  相似文献   

12.
It is now well documented that apoptosis represents the prevalent mode of death in lymphoid cultures and occurs spontaneously in late-exponential phase of batch cultures following nutrient exhaustion. In an attempt to enhance the cell survival of these cell lines, we have initially engineered nonproducing NS/0 myeloma cells with a vector expressing the adenoviral E1B-19K protein. NS/0 cells transfected with E1B-19K were found to be more resistant to apoptosis occurring in the late phase of batch culture and under stressful conditions such as cultivation in glutamine-free medium or following heat shock. In this study, we have characterised a number of NS/0 subclones constitutively expressing different levels of E1B-19K, as well as several subclones in which the expression of E1B-19K was regulated by a tetracycline-controllable gene switch. We have found that a threshold E1B-19K level was required in order to achieve protection against apoptosis. The extent of resistance against cell death induced by nutrient deprivation in glutamine-free medium and in the late phase of batch cultures correlated with the level of E1B-19K expression up to an optimal level where further increases in E1B-19K levels did not result in significant additional protection. To assess the effects of E1B-19K on antibody productivity, an apoptosis-resistant NS/0 clone was then transfected with a chimeric antibody construct. Despite their improved viability, the antibody productivity of E1B-19K clones in batch culture was not significantly improved. Moreover, while the use of E1B-19K considerably delayed cell death, cells eventually died by apoptosis. Surprisingly, E1B-19K had no beneficial effect on the efficiency of fusion of NS/0 myelomas and splenocytes for the generation of hybridoma cells. Furthermore, the resulting hybridomas, although expressing E1B-19K at levels comparable to the myeloma parent, were no longer resistant to apoptosis. This indicates that the ability of E1B-19K to prevent apoptosis is not only dose-dependent but also seems to be cell-type dependent.  相似文献   

13.
Mammalian cells are used for the production of numerous biologics including monoclonal antibodies. Unfortunately, mammalian cells can lose viability at later stages in the cell culture process. In this study, the effects of expressing the anti-apoptosis genes, E1B-19K and Aven, separately and in combination on cell growth, survival, and monoclonal antibody (MAb) production were investigated for a commercial Chinese Hamster Ovary (CHO) mammalian cell line. CHO cells were observed to undergo apoptosis following a model insult, glucose deprivation, and at later stages of batch cell culture. The CHO cell line was then genetically modified to express the anti-apoptotic proteins E1B-19K and/or Aven using an ecdysone-inducible expression system. Stable transfected pools induced to express Aven or E1B-19K alone were found to survive 1-2 days longer than the parent cell line following glucose deprivation while the expression of both genes in concert increased cell survival by 3 days. In spinner flask batch studies, a clonal isolate engineered to express both anti-apoptosis genes exhibited a longer operating lifetime and higher final MAb titer as a result of higher viable cell densities and viabilities. Interestingly, survival was increased in the absence of an inducer, most likely as a result of leaky expression of the anti-apoptosis genes confirmed in subsequent PCR studies. In fed-batch bioreactors, the expression of both anti-apoptosis genes resulted in higher growth rates and cell densities in the exponential phase and significantly higher viable cell densities, viabilities, and extended survival during the post-exponential phase. As a result, the integral of viable cells (IVC) was between 40 and 100% higher for cell lines engineered to express both Aven and E1B-19K in concert, and the operational lifetime of the fed-batch bioreactors was increased from 2 to 5 days. The maximum titers of MAb were also increased by 40-55% for bioreactors containing cells expressing Aven and E1B-19K. These increases in volumetric productivity arose primarily from enhancements in viable cell density over the course of the fed-batch culture period since the specific productivities for the cells expressing anti-apoptosis genes were comparable or slightly lower than the parental hosts. These results demonstrate that expression of anti-apoptosis genes can enhance culture performance and increase MAb titers for mammalian CHO cell cultures especially under conditions such as extended fed-batch bioreactor operation.  相似文献   

14.
We have shown previously that recombinant NS/0 myelomas expressing sufficient amounts of E1B-19K were resistant to apoptosis occurring in the late phase of batch culture and under stressful conditions such as cultivation in glutamine-free medium or following heat shock. However, no significant increase in monoclonal antibodies (MAb) was observed during the prolonged stationary phase of these batch cultures. Here, we show that E1B-19K can enhance cell survival and improve MAb productivity in high cell density perfusion culture. Typically, lymphoid cells grown under steady state in perfusion exhibit decreasing viabilities with concomitant accumulation of apoptotic cells. By modulating the ability of these cells to resist to induction of apoptosis in low nutrient environment, a 3-fold decrease in specific death rate from 0.22 day-1 for NS/0 control to 0.07 day-1 for E1B-19K cells was achieved, resulting in a significant improvement in cell viability throughout perfusion. E1B-19K cells at the perfusion plateau phase also exhibited a 3-fold reduction in specific growth rate concomitant with a lower percentage of S and higher percentage of G1 phase cells. This was associated with a 40% decrease in specific oxygen consumption rate, likely related to a reduction in the specific consumption rates of limiting nutrient(s). Expression of E1B-19K consequently had a significant impact on the steady-state viable cell density, allowing maintenance of 11.5 x 10(6) E1B-19K cells/mL versus 5.9 x 10(6) control NS/0 cells/mL for the same amount of fresh medium brought into the system (half a volume per day). Whereas MAb concentrations found in perfusion culture of control NS/0 myelomas were almost 3-fold higher than those found in batch culture; in the case of E1B-19K-expressing myelomas, the MAb concentration in perfusion was more than 7-fold higher than in batch. This was attributable to the 2-fold increase in viable cell plateau and to a 40% increase in the perfusion to batch ratio of specific MAb productivity (2.2-fold for E1B-19K myelomas versus 1.6-fold for NS/0 control).  相似文献   

15.
Transient expression of adenoviral oncoprotein E1B55K in normal cells induces aggresome formation and sequestration of critical host proteins in aggresomes. Our previous studies reported that Sequence Specific Binding Protein 2 (SSBP2), a candidate tumor suppressor is recruited to aggresomes in adenovirally transformed human embryonal kidney 293 (HEK293) cells. To understand the extent and significance of the E1B55K-SSBP2 interactions in these cells, we have examined SSBP2 localization under conditions of stress in HEK293 cells. SSBP2 localizes to PML- Nuclear Bodies (PML-NBs) in response to inhibition of nuclear export, treatment with etoposide, hydroxyurea or gamma irradiation only in HEK293 cells. Furthermore, the PML-NBs grow in size and number in response to radiation over a 24 hour period in HEK293 cells analogous to previous findings for other cell types. Nonetheless, we conclude that E1B55K subverts SSBP2 function in HEK293 cells. These findings demonstrate the limitations in using HEK293 cells to study DNA damage response and other cellular processes since SSBP2 and similar regulatory proteins are aberrantly localized due to constitutive E1B55K expression.  相似文献   

16.
The K(v)2.1 potassium channel plays an important role in regulating membrane excitability and is highly phosphorylated in mammalian neurons. Our previous results showed that variable phosphorylation of K(v)2.1 at multiple sites allows graded activity-dependent regulation of channel gating. Our previous studies also found functional differences between recombinant K(v)2.1 channels expressed in HEK293 cells and COS-1 cells that were eliminated upon complete dephosphorylation of K(v)2.1. To better understand how phosphorylation affects K(v)2.1 gating in HEK293 and COS-1 cells we used stable isotope labeling by amino acids in cell culture (SILAC) and mass spectrometry to determine the level of phosphorylation at one newly and thirteen previously identified sites on K(v)2.1 purified from HEK293 and COS-1 cells. We identified seven phosphorylation sites on the K(v)2.1 C-terminus that exhibit different levels of phosphorylation in HEK293 and COS-1 cells. Six sites have enhanced phosphorylation in HEK293 compared to COS-1, while one site exhibits enhanced phosphorylation in COS-1 cells. No sites were found phosphorylated in one cell type and not the other. Interestingly, the sites exhibiting differential phosphorylation in HEK293 and COS-1 cells under basal conditions are similar to the subset targeted by calcineurin-mediated signaling pathways. The data presented here suggests that differential phosphorylation at a specific subset of sites, as opposed to utilization of novel cell-specific phosphorylation sites, can explain differences in the gating properties of K(v)2.1 in different cell types under basal conditions, and in the same cell type under basal versus stimulated conditions.  相似文献   

17.
The expression of three BH3-only proteins, Bad, Bid and Bim, were knocked down in HEK 293 cells using vectors that express corresponding siRNAs. When cultured in the presence of 10% (v/v) serum and a diminished glucose/nutrients environment, cells lacking any one of these BH3-only proteins showed delayed cell death compared to wild type cells. Remarkably, the culture life of Bad (−) cells was extended for an additional 5 days compared to WT HEK 293 cells. In the absence of serum, the suppression of either Bad, Bim or Bid expression delayed cell death under several stress conditions. Results presented in this paper offer an insight into the functions of BH3-only proteins in mediating the death signals under different stress conditions. Anup Padmanabhan and Sen Liu contributed equally to this work.  相似文献   

18.
利用HEK293细胞在悬浮培养体系中下具有聚集成团的体外培养特性,在250ml的spinner flask搅拌式细胞培养瓶中以悬浮细胞团的形式实施HEK293细胞的无载体固定化培养,以细胞密度、细胞活力、细胞团粒径分布和葡萄糖比消耗率 (qglc)、乳酸比产率 (qlac)、乳酸转化率 (Ylac/glc)、氨基酸消耗为观察指标,同时设置静止培养体系作为参照,考察无载体固定化培养模式下的HEK293细胞生长和代谢特征。观察结果表明,HEK293细胞在搅拌式细胞培养瓶中无载体固定化培养和在组织培养瓶中静止贴壁培养表现为基本相同的细胞生长和代谢特征,平均粒径小于300μm的细胞团中的物质传递能够满足HEK293细胞维持正常生长和代谢的基本需要。HEK293细胞的无载体固定化培养便于实施灌注操作、提高生物反应器单位体积的生产效率。  相似文献   

19.
Fas-associated death domain (FADD) is a common adaptor molecule which plays an important role in transduction of death receptor mediated apoptosis. The FADD provides DED motif for binding to both procaspase-8 and cFLIP molecules which executes death receptor mediated apoptosis. Dysregulated expression of FADD and cFLIP may contribute to inhibition of apoptosis and promote cell survival in cancer. Moreover elevated intracellular level of cFLIP competitively excludes the binding of procaspase-8 to the death effector domain (DED) of FADD at the DISC to block the activation of death receptor signaling required for apoptosis. Increasing evidence shows that defects in FADD protein expression are associated with progression of malignancies and resistance to apoptosis. Therefore, improved expression and function of FADD may provide new paradigms for regulation of cell proliferation and survival in cancer. In the present study, we have examined the potential of FADD in induction of apoptosis by overexpression of FADD in HEK 293T cells and validated further its consequences on the expression of pro and anti-apoptotic proteins besides initiation of death receptor mediated signaling. We have found deficient expression of FADD and elevated expression of cFLIP(L) in HEK 293T cells. Our results demonstrate that over expression of FADD attenuates the expression of anti-apoptotic protein cFLIP and activates the cascade of extrinsic caspases to execution of apoptosis in HEK 293T cells.  相似文献   

20.
To characterize the biological role of Kin17 protein, a mammalian nuclear protein which participates in the response to UV and ionizing radiation and binds to curved DNA, EBV-derived vectors carrying (Mm)Kin17 cDNA were constructed and transfected in tumorigenic cells harboring different p53 profiles (HeLa, H1299, and HCT116) and in immortalized HEK 293 cells. (Mm)Kin17 protein expression induced a tremendous decrease in cell proliferation of the three tumorigenic cell lines 2 weeks after transfection. Transfection of HEK 293 cells with an pEBVCMV(Mm)Kin17 plasmid gave rise to numerous (Mm)Kin17-expressing cells which constantly disappeared with time, preventing the establishment of (Mm)Kin17-expressing cells. Several independent clones were isolated from HEK 293 cells carrying a pEBVMT(Mm)Kin17 vector. The two clones described here (B223.1 and B223.2) exhibited different (Mm)Kin17 protein levels and displayed a gradual decrease in their proliferative capacities. In B223.1 cells, the basal expression of (Mm)Kin17 greatly reduced plating efficiency and cell growth. B223.1 cell morphology was altered, with numerous round-shaped cells whose spreading on the culture support was hampered. We observed giant multinucleated cells or cells containing micronuclei-like structures and/or multilobed nuclei. To conclude, (Mm)Kin17 overexpression reduced the proliferation of tumorigenic cells independently of their p53 status and modified cell growth and cell morphology of established HEK 293 cells producing (Mm)Kin17 protein. It is likely that (Mm)Kin17 may interfere with DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号