首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
目的:本研究旨在探讨低糖低氧对大鼠神经干细胞增殖和代谢的影响。方法:实验采用不同葡萄糖浓度的培养基以及不同的氧浓度进行处理:高糖(4.5g/L)、低糖(1.4g/L);常氧(20%O2)、低氧(3%O2);神经干细胞(NSCs)来自孕13.5d的大鼠中脑,在不同糖浓度下培养至第三代进行低氧处理,分为低糖常氧(L+N)、低糖低氧(L+H)、高糖常氧(H+N)、高糖低氧(H+H)组。神经干细胞在上述四种条件下分别培养1、3、5d后,利用CCK-8检测神经干细胞的增殖情况;生化分析仪测定细胞培养上清液中葡萄糖、乳酸、丙酮酸浓度;RT-PCR方法检测葡萄糖转运蛋白4(GluT4)、葡萄糖激酶(GK)、丙酮酸激酶(PK)和乳酸脱氢酶(LDH)的表达变化。结果:在低糖低氧条件下培养3d时NSCs的数量增加最为明显;低糖低氧条件下,葡萄糖浓度降低最为显著;而丙酮酸浓度在低糖处理组均高于高糖处理组;同样地,在低糖低氧处理组培养上清中乳酸含量增加的幅度最大;此外,在低糖或低氧时Glut4和PK的表达也明显高于对照组。结论:低氧能促进NSCs的增殖,而以低氧和低糖共同作用时更为明显;在低氧低糖条件下,神经干细胞的代谢发生变化,葡萄糖的利用明显增加,主要通过糖酵解途径代谢产能。  相似文献   

2.
目的:实验旨在观察急性间歇低氧(氧含量12.7%)跑台运动后不同恢复环境下大鼠腓肠肌热休克蛋白HSP70表达的时程变化。方法:雄性sD大鼠进行低氧环境下的急性间歇跑台运动,用Western blot方法检测低氧运动后即刻、低氧运动后低氧恢复及常氧氧恢复1d,2d,7d的大鼠腓肠肌HSP70蛋白表达水平。结果:急性间歇低氧运动后即刻HSP70蛋白表达水平开始升高。常氧恢复第1dHSP70蛋白表达水平显著高于常氧对照组,P〈0.05。第2d、第7d呈现先降低后升高的趋势;低氧恢复中HSP70蛋白表达水平均显著高于常氧对照组,P〈0.05。结论:急性间歇低氧运动后能诱导HSP70蛋白表达水平升高;低氧恢复过程中HSP70蛋白高水平表达维持的时间要比常氧恢复长。  相似文献   

3.
目的:研究叶酸修饰稀土改性载氧碳纳米管在低氧环境下对乳腺癌细胞株放疗敏感性的影响。方法:使用水溶性四唑盐法(WST-1)方法研究叶酸修饰稀土改性载氧碳纳米管对MDA-MB-231细胞与ZR-75-1细胞生长的作用,使用细胞集落形成实验研究其在低氧环境下对无叶酸培养基中MDA-MB-231细胞、有叶酸培养基中MDA-MB-231细胞及ZR-75-1细胞放疗敏感性的影响。利用流式细胞术研究叶酸修饰稀土改性载氧碳纳米管联合放疗干预MDA-MB-231乳腺癌细胞株的凋亡率的改变。利用Western Blot实验观察Bcl-2、survivin、Hif-1α、Rad51及Ku80表达水平的改变。结果:在常氧及低氧环境下,叶酸修饰稀土改性载氧碳纳米管在低于100μg/ml的浓度时对乳腺癌细胞株生长无明显影响。在低氧环境下,放疗联合叶酸修饰稀土改性载氧碳纳米管组相比于单纯放疗组细胞克隆形成率有不同程度的降低,以无叶酸培养基中MDA-MB-231细胞组降低最为明显,照射剂量在2、4、6、8Gy时其细胞克隆形成率均显著降低(P0.05)。流式细胞术显示叶酸修饰稀土改性载氧碳纳米管联合放疗后可使MDA-MB-231乳腺癌细胞株的凋亡率增加。Western Blot实验显示Bcl-2、Survivin、Hif-1α、Rad51及Ku80表达水平均降低。结论:叶酸修饰稀土改性载氧碳纳米管可在体外低氧环境下增强乳腺癌细胞株对放疗的敏感性。  相似文献   

4.
目的:探讨低氧对大鼠骨骼肌成肌细胞(SkMs)增殖的影响及低氧诱导因子(HIF-1α)在低氧促成肌细胞增殖中的相关机制。方法:采用流式细胞仪观察了3、10%O2对SkMs细胞数量和增殖指数的影响;用RT-PCR方法检测了HIF-1αmRNA的表达,用Western blot方法检测了SkMs胞浆、胞核及总HIF-1α蛋白的水平。结果:低氧组较常氧组细胞数量和增殖指数增加(P0.05);HIF-1αmRNA、总蛋白水平在常氧组和低氧组中没有明显差异,常氧下胞浆中HIF-1α蛋白水平高于胞核内,低氧下HIF-1α蛋白水平在胞核内高于胞浆。结论:低氧能够促进SkMs增殖,HIF-1α可能是通过氧浓度调控的核转位的方式参与了低氧促SkMs的增殖。  相似文献   

5.
低氧促进神经干细胞向多巴胺能神经元分化   总被引:2,自引:0,他引:2  
Zhao T  Zhang CP  Zhu LL  Jin B  Huang X  Fan M 《生理学报》2007,59(3):273-277
神经干细胞(neural stem cells,NSCs)作为具有多向分化潜能的神经前体细胞,被广泛应用于细胞移植等研究,而低氧不但调节干细胞的体外增殖,在干细胞分化中也具有重要的作用。本文着重探讨了低氧对NSCs分化的调节作用。采用Wistar孕大鼠(E13.5d),分离胚胎中脑NSCs,加入无血清DMEM/F12培养液(含20ng/mL EGF、20ng/mL bFGF、1% N2和B27),3~5d后传代,细胞培养至第三代进行诱导分化,分别在低氧(3%O2)和常氧(20%O2)条件下诱导分化3d,然后在常氧条件下分化成熟5~7d(DMEM/F12含1%FBS、N2和B27)后进行检测。Nestin、NeuN以及TH免疫组织化学鉴定NSCs;流式细胞术分析测定NSCs向TH阳性神经元方向的分化;高效液相色谱测定细胞培养上清液中多巴胺(dopamine,DA)含量。结果显示,分离培养的NSCs均为nestin阳性细胞;低氧可明显促进NSCs向神经元方向的分化;TH阳性神经元比例在常氧和低氧组分别为(10.25±1.03)%和(19.88±1.44)%。NSCs诱导分化7d后,低氧组细胞培养上清液中DA浓度明显增加,约为常氧组的2倍(P〈0.05,n=8)。上述结果表明,3%低氧可促进NSCs向神经元方向,特别是向DA能神经元方向分化。这为NSCs应用于临床治疗帕金森病提供了基础。  相似文献   

6.
低氧对胚胎干细胞增殖的影响   总被引:4,自引:1,他引:3  
目的:观察间歇性低氧和持续性低氧对体外培养的胚胎干细胞(ES细胞)增殖的影响.方法:利用细胞记数法和BrdU (5-溴脱氧尿苷)掺入的流式细胞分析检测细胞增殖,并用RT -PCR的方法检测低氧诱导因子(HIF-1a)的表达变化.结果:①将ES细胞分别放在低氧(3%~10% O2)和常氧(20% O2)的环境中培养24 h后,在低氧环境中培养的ES细胞数较常氧组明显减少;②将ES细胞分别给予间歇性低氧刺激(3%~10% O2),每天10 min,连续4 d后,发现3%低氧组较常氧对照组的细胞增殖明显升高.③用RT-PCR方法观察HIF-1a的表达与细胞增殖的关系,发现在常氧环境中培养的ES即有HIF-1a的表达,ES细胞在持续低氧24 h或间歇性低氧(3%~10% O2)刺激4 d后对HIF-1a的表达均无明显影响.结论:间歇性低氧(3% O2)可明显促进体外培养的ES细胞增殖,而持续性低氧抑制ES细胞增殖,间歇性低氧(3% O2)刺激促进ES细胞增殖的机制尚有待于进一步的研究.  相似文献   

7.
目的:本研究通过对正常人群与呼吸暂停综合症人群在不同海拔高度低氧环境下睡眠结构的分析,探讨人体内源性摄氧受限与外源性环境缺氧两个不同缺氧因素导致人体睡眠结构的差异。方法:通过匹兹堡睡眠质量指数量表筛查16名不存在睡眠问题的男性青年,在常氧环境中测得其睡眠过程中的呼吸暂停低通气指数(AHI),并根据AHI将其分为正常组(NOR组,n=8)和呼吸暂停综合征组(OSA组,n=8)。本研究采用吸入低O2混合气的方法模拟不同海拔高度,受试者在每次测试中连续吸入10 h低O2混合气进行模拟高海拔环境下睡眠测试。在平原环境下测试的一周进行后O2浓度为16.3%(模拟海拔2 000 m)的常压低氧环境下进行睡眠测试,两周后进行O2浓度为12.7%(模拟海拔4 000 m)的常压低氧环境下进行睡眠测试。结果:随着海拔高度上升,受试者睡眠过程中的REM期睡眠占比从平原时的12.03%降至模拟海拔2 000 m时的9.33%、模拟海拔4 000 m时7.15%(P<0.05),但不同海拔高度下睡眠过程中的浅睡眠和深睡眠占比均无显著性变化(P>0.05)。NOR组和OSA组的睡眠效率分别是82%、69.5%(P<0.01),睡眠过程中的REM期占比分别是7.56%、11.2%(P<0.05);深睡眠占比分别是30.26%、 19.13%(P<0.01)。但NOR组和OSA组睡眠过程中的浅睡眠占比无明显差异(P>0.05)。结论:与海拔高度上升导致的外源性缺氧相比,OSA引起的内源性缺氧还将影响青年男性睡眠过程中的深睡眠和睡眠效率。且轻度的阻塞性呼吸暂停综合征患者急性暴露在低氧环境下睡眠过程中具有更强的低氧耐受性。  相似文献   

8.
在常氧孵育中,当孵育介质自由钙离子浓度升高时,离体心肌线粒体钙含量显著增加。同时,线粒体状态4呼吸速率也明显加快并与其钙含量的增加呈正相关关系。在低氧孵育中,当孵育介质自由钙离子浓度升高时,离体心肌线粒体钙含量没有明显的增加,其状态4呼吸速率虽有加快但程度明显较常氧孵育时低。另外,在低孵育介质自由钙离子浓度(pCa8.0)的条件下,低氧可引起轻微的线粒体状态4呼吸速率加快。从以上结果作者推测,低氧引起心肌细胞的线粒体损伤可能主要不是低氧直接对线粒体作用所造成的,而是由低氧引起的心肌细胞胞浆环境变化对线粒体破坏的结果。其中胞浆自由钙离子的升高可能是一个的原因。  相似文献   

9.
甘肃鼢鼠与SD大鼠骨骼肌低氧适应的比较   总被引:1,自引:0,他引:1  
运用组织学和紫外分光光度法,对常氧、低氧2周和4周的甘肃鼢鼠(Myospalax cansus)及SD大鼠(Rattus norvegicus)骨骼肌形态结构、乳酸脱氢酶(LDH)、琥珀酸脱氢酶(SDH)活力及肌红蛋白(Mb)浓度进行测定。结果显示,甘肃鼢鼠骨骼肌形态结构在常氧、低氧2周及4周后变化不明显;SD大鼠随低氧时间延长发生显著变化,低氧2周后,肌纤维明显萎缩,间隙增大,结构较紊乱;低氧4周后,肌纤维破裂,呈细丝状,不规则,大小不一致,肌节紊乱。甘肃鼢鼠LDH活性随低氧时间增长逐渐降低,但无显著性差异(P0.05);在不同时间低氧处理后,甘肃鼢鼠前后肢的LDH活性均极显著低于SD大鼠(P0.01);常氧条件下,甘肃鼢鼠前后肢SDH活性低于SD大鼠,但无显著差异(P0.05),低氧2周及4周后,与SD大鼠呈极显著差异(P0.01);常氧条件下,甘肃鼢鼠前后肢Mb浓度均显著高于SD大鼠(P0.05),低氧2周及4周后,极显著高于SD大鼠(P0.01)。结果表明,甘肃鼢鼠骨骼肌较SD大鼠有着更强的低氧耐受力。  相似文献   

10.
人体组织和细胞在环境氧浓度改变的条件下,通过氧感受器和信号转导通路特异地调节某些基因或蛋白的表达来适应低氧.同时在缺氧情况下,缺氧反应导致多种细胞信号通路的激活参与调节呼吸、代谢、细胞生存等.在哺乳动物体内,HIFs是主要的低氧应激转录因子,其α亚基受到多种因素的影响,如PHDs、FIH1、线粒体、CHIP,本文将在常氧和缺氧状态下,对HIF稳定性调节机制及缺氧所介导相关信号转导通路进行综述.  相似文献   

11.
Estimating the oxygen consumption rates (OCRs) of mammalian cells in hypoxic environments is essential for designing and developing a three‐dimensional (3‐D) cell culture system. However, OCR measurements under hypoxic conditions are infrequently reported in the literature. Here, we developed a system for measuring OCRs at low oxygen levels. The system injects nitrogen gas into the environment and measures the oxygen concentration by an optical oxygen microsensor that consumes no oxygen. The developed system was applied to HepG2 cells in static culture. Specifically, we measured the spatial profiles of the local dissolved oxygen concentration in the medium, then estimated the OCRs of the cells. The OCRs, and also the pericellular oxygen concentrations, decreased nonlinearly as the oxygen partial pressure in the environment decreased from 19% to 1%. The OCRs also depended on the culture period and the matrix used for coating the dish surface. Using this system, we can precisely estimate the OCRs of various cell types under environments that mimic 3‐D culture conditions, contributing crucial data for an efficient 3‐D culture system design. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:189–197, 2016  相似文献   

12.
Cell transplantation is emerging as a promising new approach to replace scarred, nonfunctional myocardium in a diseased heart. At present, however, generating the numbers of donor cardiomyocytes required to develop and test animal models is a major limitation. Embryonic stem (ES) cells may be a promising source for therapeutic applications, potentially providing sufficient numbers of functionally relevant cells for transplantation into a variety of organs. We developed a single-step bioprocess for ES cell-derived cardiomyocyte production that enables both medium perfusion and direct monitoring and control of dissolved oxygen. Implementation of the bioprocess required combining methods to prevent ES cell aggregation (hydrogel encapsulation) and to purify for cardiomyocytes from the heterogeneous cell populations (genetic selection), with medium perfusion in a controlled bioreactor environment. We used this bioprocess to investigate the effects of oxygen on cardiomyocyte generation. Parallel vessels (250 mL culture volume) were run under normoxic (20% oxygen tension) or hypoxic (4% oxygen tension) conditions. After 14 days of differentiation (including 5 days of selection), the cardiomyocyte yield per input ES cell achieved in hypoxic vessels was 3.77 +/- 0.13, higher than has previously been reported. We have developed a bioprocess that improves the efficiency of ES cell-derived cardiomyocyte production, and allows the investigation of bioprocess parameters on ES cell-derived cardiomyogenesis. Using this system we have demonstrated that medium oxygen tension is a culture parameter that can be manipulated to improve cardiomyocyte yield.  相似文献   

13.
The biotechnology for in vitro embryo production is becoming increasingly popular, being applied to humans and domestic animals. Embryo development can be achieved with either 20% or 5% oxygen tension. The extracellular vesicles (EVs) are secreted by different cell types and carry bioactive materials. Our objective was to determine the secretion pattern and micro RNA (miRNA) contents of EVs released in the bovine embryo culture environment—embryo and cumulus cell monolayer—on Days 3 and 7 of in vitro culture under two different oxygen tensions: High (20%) and low (5%). The EVs were isolated from the medium and analyzed to determine size, concentration, and miRNA levels. EVs concentration in low oxygen tension increased on Day 3 and decreased on Day 7. Additionally, altered EV miRNAs derived from the embryo‐cumulus culture medium were predicted to regulate survival and proliferation‐related pathways on Days 3 and 7. Moreover, miR‐210 levels decreased in EVs isolated from the culture medium under high oxygen tension suggesting that this miRNA can be used as a marker for normoxia since it is associated with low oxygen tension. In summary, this study provides knowledge of the oxygen tension effects on EVs release and content, and potentially, on cell‐to‐cell communication during in vitro bovine embryo production.  相似文献   

14.
Three physiological variables, haematocrit, haemoglobin concentration and ventilation frequency, were measured to test how fathead minnows Pimephales promelas and small and large yellow perch Perca flavescens responded to three different dissolved oxygen concentrations. All fish were monitored continuously for any indications of stress in response to these manipulations. Within and between species, smaller individuals were the most tolerant of hypoxic environments. A species effect, however, did contribute to this observation, with fathead minnows being more tolerant of hypoxic environments than similar-sized yellow perch. In aquatic ecosystems where smaller fishes are more tolerant to hypoxia than their larger predators, hypoxic environments may have the potential to act as a refuge from predators.  相似文献   

15.
Besides having a metabolic role, oxygen is recognized as an important signaling stimulus for stem cells. In hematopoiesis, hypoxia seems to favor stem cell self‐renewal. In fact, long‐term repopulating hematopoietic stem cells reside in bone marrow at concentrations as low as 1% oxygen. However, O2 concentration is difficult to control in vitro. Thermodynamically, we found significant differences between O2 solubility in different media, and in presence of serum. Furthermore, we verified that medium equilibration with a hypoxic atmosphere requires several hours. Thus, in a static culture, the effective O2 concentration in the cell immediate microenvironment is difficult to control and subject to concentration gradients. Stirred systems improve homogeneity within the culture volume. In this work, we developed a stirred bioreactor to investigate hypoxia effect on the expression of stem cell markers in CD34+ cells from umbilical cord blood. The stirring system was designed on top of a standard six‐well plate to favor continuity with conventional static conditions and transfer of culture protocols. The bioreactor volume (10 mL/well) is suitable for cell expansion and multiparametric flow cytometry analyses. First, it was tested at 21% O2 for biocompatibility and other possible effects on the cells compared to static conditions. Then, it was used to study c‐kit expression of CD34+ cells at 5% O2, using 21%‐O2 cultures as a control. In hypoxia we found that CD34+ cells maintained a higher expression of c‐kit. Further investigation is needed to explore the dynamics of interaction between oxygen‐ and c‐kit‐dependent pathways at the molecular level. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

16.
Oxygen is a fundamental element for all living organisms, and modifications in its concentration influence several physiological and pathological events such as embryogenesis, development and also aging. Regulation of oxygen levels is an important factor in neural stem cell biology (e.g. differentiation, growth and the capacity to generate more differentiated cells). Studies on neural stem cells in culture have deepened our knowledge of their survival, proliferation and differentiation pathways. However, traditional cell culture for neural stem cells is performed employing environmental oxygen levels of 20%, while the effective oxygen concentration in the developing and adult brain is significantly lower; this results in an important alteration of the in vivo conditions. Several data indicate that a so called "physiologic hypoxic condition" could strongly influence the growth of neural stem cells and their differentiation mechanisms both in vivo and in vitro. The present overview deals with the different mechanisms utilized by invertebrate and vertebrate organisms to respond to hypoxic conditions. It highlights how the adaptations and responses to different oxygen concentrations have changed along the developmental route and underlines the importance of oxygen concentration in neural physiology and differentiation, with a final hint to the involvement of hypoxia in brain cancer stem cells.  相似文献   

17.
This study presents a mathematical model for simulating cartilaginous culture of chondrocytes seeded in scaffolds and for investigating the effects of glucose and oxygen concentration and pH value on cell metabolic rates. The model can clearly interpret the unexplained experimental observation (Sengers BG, Heywood HK, Lee DA, Oomens CWJ, Bader DL. Nutrient utilization by bovine articular chondrocytes: A combined experimental and theoretical approach. J Biomech Eng. 2005;127:758–766.), which showed that the oxygen concentration within the scaffold may increase instead of continuously decreasing in static cartilaginous culture of chondrocytes. Results from simulation demonstrate that when cells metabolize glucose and form lactate under high glucose concentration conditions, the acidity in the culture environment increases, inhibiting cell metabolic rates in the process. Consequently, the rate of oxygen consumption decreases in later stages of cell culture. As oxygen can be replenished through the free surface of the culture medium, oxygen concentration within the scaffold increases rather than decreases over time in the acidic environment. Different initial glucose concentration yields different results. In low glucose concentration conditions, oxygen concentration basically keeps decreasing with culture time. This is because the pH in the environment does not significantly change because of slower glycolysis rate in low glucose concentration cases, forming less lactic acid. From the simulation results, additional information regarding in vitro culture of chondrocytes is obtained. The correlations between nutrient consumption, lactate secretion, and pH changes during cell culture are also understood and may serve as a reference for in vitro cell culture research of tissue engineering. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29: 452–462, 2013  相似文献   

18.
In this paper we report the regulation of Aspergillus niger growth rate during citric acid fermentation in a stirred tank bioreactor. For this, the influence of dissolved oxygen concentration in a medium on intracellular pH values and consequently on overall microbial metabolism was emphasized. Intracellular pH of mycelium grown under different concentrations of dissolved oxygen in the medium was determined. Sensitivity of proteins toward proton concentration is well recognized, therefore pH influences on the activities of key regulatory enzymes of Aspergillus niger were determined at pH values similar to those detected in the cells grown under lower dissolved oxygen concentrations. The results have shown significantly reduced specific activities of hexokinase, 6-phosphofructokinase and glucose-6-phosphate dehydrogenase in more acidic environment, while pyruvate kinase was found to be relatively insensitive towards higher proton concentration. As expected, due to the reduced specific activities of regulatory enzymes under more acidic conditions, overall metabolism should be hindered in the medium with lower dissolved oxygen concentration which was confirmed by detecting the reduced specific growth rates. From the studies, we conclude that dissolved oxygen concentration affects the intracellular pH and thus growth rate of Aspergillus niger during the fermentation process.  相似文献   

19.
Disposable cell culture vessels are extensively used at small scales for process optimization and validation, but they lack monitoring capabilities. Optical sensors that can be easily adapted for use in small‐scale vessels are commercially available for pH, dissolved oxygen (DO), and dissolved carbon dioxide (DCO2). However, their use has been limited due to the contamination and compatibility issues. We have developed a novel solution to these problems for DO monitoring. Oxygen diffusion through permeable vessel wall can be exploited for noninvasive monitoring. An optical oxygen sensor can be placed outside the oxygen permeable vessel wall thereby allowing oxygen diffusing through the vessel wall to be detected by the sensor. This way the sensor stays separate from the cell culture and there are no concerns about contaminants or leachants. Here we implement this method for two cell culture devices: polystyrene‐made T‐75 tissue culture flask and fluorinated ethylene propylene (FEP)‐made Vuelife® cell culture bag. Additionally, mammalian and microbial cell cultures were performed in Vuelife® cell culture bags, proving that a sensor placed outside can be used to track changes in cell cultures. This approach toward noninvasive monitoring will help in integrating cell culture vessels with sensors in a seamless manner. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:172–177, 2014  相似文献   

20.
A simplified model of hypoxic injury in primary cultured rat hepatocytes   总被引:2,自引:0,他引:2  
Summary The Anaeropack system for cell culture, which was originally designed for the growth of anaerobic bacteria, was used to produce a hypoxic atmosphere for cultured hepatocytes. We measured changes in the oxygen and carbon dioxide concentrations and the atmospheric temperature in an airtight jar. We also measured changes in the pH of the medium during hypoxia to assess the accuracy of this system. Moreover, we used three durations (2, 3, and 4 h) of hypoxia and 8 h of reoxygenation in cultured rat hepatocytes, and then measured the lactate dehydrogenase (LDH), ketone body concentration (acetoacetate + β-hydroxybutyrate), and the ketone body ratio (KBR: acetoacetate/β-hydroxybutyrate) in the medium in order to assess the suitability of this system as a model for reperfusion following liver ischemia. The oxygen concentration dropped to 1% or less within 1 h. The concentration of carbon dioxide rose to about 5% at 30 min after the induction of the hypoxic conditions, and was maintained at this level for 5 h. No effect of the reaction heat produced by the oxygen absorbent in the jar was recognized. The extent of cell injury produced by changing the hypoxic parameters was satisfactorily reflected by the KBR, the ketone body concentration, and the LDH activity released into the medium. Because this model can duplicate the conditions of the hepatocytes during revascularization following ischemic liver, and the Anaeropack system for cell culture is easy to manipulate, it seems suitable for the experimental study of hypoxic injury and revascularization in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号