首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chick embryo retinal ganglion cell (RGC) axons grow to the optic tectum along a stereotyped route, as if responding to cues distributed along the pathway. We showed previously that, in culture, RGCs from embryonic Day 6 retina are responsive to the neurite-promoting effects of the extracellular matrix glycoprotein laminin and that this response is lost by RGCs at a later stage of development. Here we report that, before axon outgrowth is initiated in vivo, laminin, is expressed along the optic pathway at nonbasal lamina sites that are accessible to the growth cones of RGC axons. The distribution of laminin within the pathway is consistent with its localization at the end-feet of neuroepithelial cells that line the route, and it continues to be expressed at these marginal sites during the first week of embryonic development. At later stages, concomitant with the loss of response by RGCs in culture, laminin becomes restricted to basal laminae at the retinal inner limiting membrane and pial surface of the optic pathway. Neurofilament-positive RGC axons bind a monoclonal antibody, JG22, which recognizes the laminin/fibronectin receptor complex, and continue to do so throughout embryonic development. We show that, in vitro, the JG22 antigen expressed by RGCs appears to function as a laminin receptor, by demonstrating that JG22 antibody blocks neurite outgrowth on a substrate of laminin. These findings are consistent with the possibility that laminin defines a transient performed pathway specifically recognized by early RGC growth cones as they navigate toward their central target.  相似文献   

2.
P Doherty  J Cohen  F S Walsh 《Neuron》1990,5(2):209-219
We have used monolayers of control 3T3 cells and 3T3 cells transfected with a cDNA encoding human N-CAM as a culture substrate for embryonic chick retinal ganglion cells (RGCs). At embryonic day 6 (E6), but not at E11, RGCs extended longer neurites on monolayers of N-CAM-transfected cells. This loss of RGC responsiveness was not associated with substantial changes in the level of N-CAM expression on RGC growth cones. The neurite outgrowth response from E6 RGCs could be inhibited by removal of N-CAM from the monolayer, by removal of alpha 2-8-linked polysialic acid from neuronal N-CAM, or by antibodies that bind exclusively to chick (neuronal) N-CAM. In contrast, the response was not dependent on neuronal beta 1 integrin function. These data provide substantive evidence for a homophilic binding mechanism directly mediating N-CAM-dependent neurite outgrowth, and suggest that changes in polysialic acid expression on neuronal N-CAM may modulate N-CAM-dependent axonal growth during development.  相似文献   

3.
Laminin-1 is essential for early embryonic basement membrane assembly and differentiation. Several steps can be distinguished, i.e., the expression of laminin and companion matrix components, their accumulation on the cell surface and assembly into basement membrane between endoderm and inner cell mass, and the ensuing differentiation of epiblast. In this study, we used differentiating embryoid bodies derived from mouse embryonic stem cells null for gamma1-laminin, beta1-integrin and alpha/beta-dystroglycan to dissect the contributions of laminin domains and interacting receptors to this process. We found that (a) laminin enables beta1-integrin-null embryoid bodies to assemble basement membrane and achieve epiblast with beta1-integrin enabling expression of the laminin alpha1 subunit; (b) basement membrane assembly and differentiation require laminin polymerization in conjunction with cell anchorage, the latter critically dependent upon a heparin-binding locus within LG module-4; (c) dystroglycan is not uniquely required for basement membrane assembly or initial differentiation; (d) dystroglycan and integrin cooperate to sustain survival of the epiblast and regulate laminin expression; and (e) laminin, acting via beta1-integrin through LG1-3 and requiring polymerization, can regulate dystroglycan expression.  相似文献   

4.
Laminin, an extracellular matrix molecule, is known to promote neurite growth. In the present study, the effects of soluble laminin on organelle transport and their relation to neurite growth were investigated in cultured dissociated mouse dorsal root ganglion (DRG) neurons. Laminin added into the extracellular medium was deposited on the surface of DRG neurons. DRG neurons incubated with soluble laminin exhibited branched, long, and thin neurites. Time-lapse study demonstrated that many small-diameter branches were newly formed after the addition of laminin. Thus, the growths of large-diameter primary neuritis, arising from cell bodies and branches extended from growth cones of primary neuritis, were analyzed separately. Laminin decreased the growth rate of primary neurites but increased that of branches. In primary neurites, acute addition of laminin rapidly decreased organelle movement in the neurite shaft and growth cone, accompanied by slowing of the growth cone advance. Branching of primary neurites occurred in response to laminin in some growth cones. In these growth cones, organelles protruded into nascent branches. In branches, soluble laminin increased organelle movement in the growth cone and the distal portion of the shaft. These results suggest that laminin inhibits the elongation of primary neurites but promotes branching and elongation of branches, all of which seem to be closely related to organelle transport.  相似文献   

5.
Summary. Accumulation of calcium in rat cerebellar granule cells in culture was studied by two photon laser scanning microscopy. Depolarizations by high extracellular potassium induced short-lived increases in calcium in both cell bodies and neurites. However, although the increase in neurites subsided completely after the initial peak, in cell bodies there was a persistent plateau until the high potassium stimulus was removed. On the contrary, the calcium signal due to NMDA receptors activation was persistent in both cell bodies and neurites and remained until the agonist was present.The nature of these calcium signals provides an interpretation key for the effects of NMDA receptors activation on GABAA receptors. In particular, the persistent calcium increase in neurites may explain the decrease in GABA activated chloride currents which are related to activation of dendritic/synaptic GABAA receptors.  相似文献   

6.
In the vertebrate retina, neurites from distinct neuronal cell types are constrained within the plexiform layers, allowing for establishment of retinal lamination. However, the mechanisms by which retinal neurites are segregated within the inner or outer plexiform layers are not known. We find that the transmembrane semaphorins Sema5A and Sema5B constrain neurites from multiple retinal neuron subtypes within the inner plexiform layer (IPL). In Sema5A?/?; Sema5B?/? mice, retinal ganglion cells (RGCs) and amacrine and bipolar cells exhibit severe defects leading to neurite mistargeting into the outer portions of the retina. These targeting abnormalities are more prominent in the outer (OFF) layers of the IPL and result in functional defects in select RGC response properties. Sema5A and Sema5B inhibit retinal neurite outgrowth through PlexinA1 and PlexinA3 receptors both in vitro and in vivo. These findings define a set of ligands and receptors required for the establishment of inner retinal lamination and function.  相似文献   

7.
Recent reports suggest that laminin deposition is controlled by the cell via specific receptors, one of which is dystroglycan. In this study, the involvement of beta1-integrins in this process was investigated by comparing beta1-integrin-deficient cells of different phenotypes with their normal counterparts. Normal embryonic stem (ES) cells and embryoid bodies (EBs) derived from them were found to deposit cell-associated laminin into fibrillar networks, and in the EBs a basement membrane was assembled under the primitive endoderm. beta1-deficient ES cells and their EBs formed only small amounts of dot-like laminin deposits. Skeletal myotubes formed after prolonged differentiation in EBs were found to be surrounded by laminin, nidogen, and perlecan by immunofluorescent staining irrespective of the presence of beta1-integrins on the myotubes. However, at the electron microscope level only very thin sheet-like structures were detected close to the beta1-deficient myotubes, while the wt myotubes formed thick basement membranes. An epithelial cell line, GE11, derived from the beta1-integrin-deficient ES cells was also unable to assemble laminin on the cell surface, while transfection of the cells with the integrin beta1 subunit resulted in formation of a dense laminin network. Taken together, these results suggest that dystroglycan and beta1-integrins can both contribute to the recruitment of laminin to cell surfaces and that integrins are required at a subsequent step in the formation of basement membranes.  相似文献   

8.
During the development of the nervous system, outgrowing axons often have to travel long distances to reach their target neurons. In this process, outgrowing neurites tipped with motile growth cones rely on guidance cues present in their local environment. These cues are detected by specific receptors expressed on growth cones and neurites and influence the trajectory of the growing fibres. Neurite growth, guidance, target innervation and synapse formation and maturation are the processes that occur predominantly but not exclusively during embryonic or early post-natal development in vertebrates. As a result, a functional neural network is established, which is usually remarkably stable. However, the stability of the neural network in higher vertebrates comes at an expensive price, i.e. the loss of any significant ability to regenerate injured or damaged neuronal connections in their central nervous system (CNS). Most importantly, neurite growth inhibitors prevent any regenerative growth of injured nerve fibres. Some of these inhibitors are associated with CNS myelin, others are found at the lesion site and in the scar tissue. Traumatic injuries in brain and spinal cord of mammals induce upregulation of embryonic inhibitory or repulsive guidance cues and their receptors on the neurites. An example for embryonic repulsive directional cues re-expressed at lesion sites in both the rat and human CNS is provided with repulsive guidance molecules, a new family of directional guidance cues.  相似文献   

9.
Summary Lectins with different sugar specificities and labeled with horseradish peroxidase or gold were used to study, at the electron-microscopic level, surface glycoconjugates of glial cells and neurites growing out from explant cultures of the central nervous system of embryonic locusts. Differential binding to differentiating glial cells and to neurites was demonstrated. Concanavalin A (Con A) and wheat-germ agglutinin (WGA) bound to glial and neurite surfaces with different degrees of labeling. The formation of glial processes and junctional complexes was invariably accompanied by a corresponding increase of Con A- and WGA-receptors. Peanut agglutinin (PNA) failed to bind to glial cells but strongly stained the plasma membrane of neurite junctions. Lotus tetragonolobus a. (LTA) did not bind either to glial cells or to neurites. In addition, staining with an antibody against laminin showed labeling in areas of neurite outgrowth and neurite interactions; this resembled the localization of PNA receptors. These findings provide evidence for the presence of different carbohydrates at the surface of neurites and glial cells of locust. Their predominant localization in glial processes and neurite junctions suggests that these carbohydrates constitute part of a group adhesion glycoproteins that also includes laminin.  相似文献   

10.
Extracellular matrix (ECM) integrity in the central nervous system (CNS) is essential for neuronal homeostasis. Signals from the ECM are transmitted to neurons through integrins, a family of cell surface receptors that mediate cell attachment to ECM. We have previously established a causal link between the activation of the matrix metalloproteinase-9 (MMP-9), degradation of laminin in the ECM of retinal ganglion cells (RGCs), and RGC death in a mouse model of retinal ischemia-reperfusion injury (RIRI). Here we investigated the role of laminin-integrin signaling in RGC survival in vitro, and after ischemia in vivo. In purified primary rat RGCs, stimulation of the β1 integrin receptor with laminin, or agonist antibodies enhanced RGC survival in correlation with activation of β1 integrin’s major downstream regulator, focal adhesion kinase (FAK). Furthermore, β1 integrin binding and FAK activation were required for RGCs’ survival response to laminin. Finally, in vivo after RIRI, we observed an up-regulation of MMP-9, proteolytic degradation of laminin, decreased RGC expression of β1 integrin, FAK and Akt dephosphorylation, and reduced expression of the pro-survival molecule bcl-xL in the period preceding RGC apoptosis. RGC death was prevented, in the context of laminin degradation, by maintaining β1 integrin activation with agonist antibodies. Thus, disruption of homeostatic RGC-laminin interaction and signaling leads to cell death after retinal ischemia, and maintaining integrin activation may be a therapeutic approach to neuroprotection.  相似文献   

11.
12.
Sensory neurons were dissociated from lumbar dorsal root ganglia of embryonic chick and put into culture, either directly or after removing non-neuronal cells by density gradient centrifugation. The cells were grown on culture substrata of various kinds in medium containing nerve growth factor (NGF). After 24 h the cultures were fixed, mounted and analysed. Lengths of neurites were measured, and the numbers of primary processes formed at the cell body and of growth cones were counted. From these values, the rates of growth cone advance and frequency of growth cone branching were calculated. Neuronal outgrowths increased strikingly in length and complexity with embryonic age; there was a 3.5-fold increase in total neurite length and a 3-fold increase in the number of growth cones when neurons from 15-day embryos (E15) were compared with those from 8-day embryos (E8) grown on the same substratum (glass). Growth was markedly greater on surfaces prepared with laminin or conditioned medium compared with plain glass or air-dried collagen. When E15 neurons grown on glass were compared with those grown on laminin, for example, a 2.5-fold increase in total neurite length and a 3-fold increase in the number of growth cones was observed. Calculations showed that a major factor in these changes was an increase in the frequency of growth cone branching. The number of initial processes emanating from the cell body changed with age, but not with the different substrata tested. Non-neuronal cells when present in low numbers and in contact with neurons did not appear to influence neuronal geometry in a systematic way. Our results document the fact that both external factors (in this case, the nature of the culture substratum) and intrinsic factors (stage of development of the neuron) can influence the geometry of neurite outgrowth.  相似文献   

13.
Cell attachment and neurite outgrowth by embryonic neural retinal cells were measured in separate quantitative assays to define differences in substrate preference and to demonstrate developmentally regulated changes in cellular response to different extracellular matrix glycoproteins. Cells attached to laminin, fibronectin, and collagen IV in a concentration-dependent fashion, though fibronectin was less effective for attachment than the other two substrates. Neurite outgrowth was much more extensive on laminin than on fibronectin or collagen IV. These results suggest that different substrates have distinct effects on neuronal differentiation. Neural retinal cell attachment and neurite outgrowth were inhibited on all three substrates by two antibodies, cell substratum attachment antibody (CSAT) and JG22, which recognize a cell surface glycoprotein complex required for cell interactions with several extracellular matrix constituents. In addition, retinal cells grew neurites on substrates coated with the CSAT antibodies. These results suggest that cell surface molecules recognized by this antibody are directly involved in cell attachment and neurite extension. Neural retinal cells from embryos of different ages varied in their capacity to interact with extracellular matrix substrates. Cells of all ages, embryonic day 6 (E6) to E12, attached to collagen IV and CSAT antibody substrates. In contrast, cell attachment to laminin and fibronectin diminished with increasing embryonic age. Age-dependent differences were found in the profile of proteins precipitated by the CSAT antibody, raising the possibility that modifications of these proteins are responsible for the dramatic changes in substrate preference of retinal cells between E6 and E12.  相似文献   

14.
We have examined the effects of collagen IV on the morphological development of embryonic rat sympathetic neurons in vitro. In short-term (less than or equal to 24 h) culture, collagen IV accelerated process outgrowth, causing increases in the number of neurites and total neuritic length. Analysis of proteolytic fragments of collagen IV indicated that the NC1 domain was nearly as active as the intact molecule in stimulating process outgrowth; in contrast, the 7S domain and triple helix-rich fragments of collagen IV were inactive. Moreover, anti-NC1 antiserum inhibited neuritic outgrowth on collagen IV by 79%. In long-term (up to 28 d) cultures, neurons chronically exposed to collagen IV maintained a single axon but failed to form dendrites. Thus, the NC1 domain of collagen IV can alter neuronal development by selectively stimulating axonal growth. Comparison of collagen IV's effects to those of laminin revealed that these molecules exert quantitatively different effects on the rate of initial axon growth and the number of axons extended by sympathetic neurons. Moreover, neuritic outgrowth on collagen IV, but not laminin, was blocked by cycloheximide. We also observed differences in the receptors mediating the neurite-promoting activity of these proteins. Two different antisera that recognize beta 1 integrins each blocked neuritic outgrowth on both collagen IV and laminin; however, an mAb (3A3) specific for the alpha 1 beta 1 integrin inhibited collagen IV but not laminin-induced process growth in cultures of both sympathetic and dorsal root neurons. These data suggest that immunologically distinct integrins mediate the response of peripheral neurons to collagen IV and laminin.  相似文献   

15.
Glutamate neurotoxicity has been postulated to play a prominent role in glaucoma. In this study the possible roles of two subunits of glutamate receptors during the early phase of retinal ganglion cell (RGC) loss in a rat chronic ocular hypertension (COH) model were investigated. COH was induced by applying argon laser to the episcleral and limbal veins of the right eye of rats, the observation times were at 4, 14 and 28 days after the first laser. RGCs were retrogradely labeled by putting Fluoro-Gold (FG) on the surface of both side superior colliculus. Immunohistochemical staining using specific antibodies against N-methyl-d-aspartate receptor 1 (NR1) or glutamate receptor 2/3 (GluR2/3) was performed on the retinal sections of normal and COH eyes. Fluorescent images were captured using confocal laser scanning microscope and the number of NR1 and GluR2/3 labeled cells were counted and cell size was measured using Stereo Investigator. During the observation period, the numbers of NR1 and GluR2/3 positive RGCs in the RGC layer were reduced parallel to the loss of RGC. The dramatic loss of GluR2/3 immunoreactive neurons occurred starting immediately after the first laser to 4 days while the dramatic loss of NR1 immunoreactive neurons occurred from 14 to 28 days after the first laser. Size difference was detected in NR1 immunoreactive RGCs, large ones were more sensitive to the high ocular pressure. These results suggest that both NR1 and GluR2/3 are involved in the mediation of RGC death in the early stage of COH.  相似文献   

16.
The epigenetic factors involved in regulating the proliferation and differentiation of cells of the developing mammalian central nervous system are largely unknown. In this study, laminin, a molecule which is present in the basal lamina from the earliest stage of neural tube formation, has been examined in vitro for its possible regulatory role in mammalian neural development. Purified populations of murine neuroepithelial (NEP) cells isolated from the 10-day embryonic telencephalon and mesencephalon respond in vitro to laminin by undergoing aggregation, proliferation, and extensive neurite elaboration. The proliferation and differentiation of NEP cells induced by the interaction with laminin were dependent upon an early cell aggregation, since precoating of wells with poly-L-ornithine, a procedure which prevented such aggregation, completely blocked these responses. The previously reported proliferative effect of acidic fibroblast growth factor (FGF) on NEP cells was found to be synergistic with that of laminin. This observation is consistent with the idea that laminin may regulate cell responses in several ways: by direct stimulation via laminin receptors; by optimal presentation of FGF molecules to neural cells; and finally by upregulation of FGF receptor numbers on responsive cells. The in vitro response of laminin is mimicked by its long arm elastase digestion fragment, E8, whereas the cross arm fragment of laminin, E1-4, had no effect. In addition, antibodies specific for epitopes on the long arm blocked the effect seen with the whole laminin molecule. Binding studies of 125I-labeled laminin and its fragment performed on freshly isolated NEP cells confirmed the specificity of the in vitro observations: whole laminin and the E8 fragment bound to the NEP cell surface whereas the E1-4 fragment did not. These studies demonstrate mechanisms by which laminin, specifically through its long arm fragment, may assert a regulatory function during development of the mammalian central nervous system.  相似文献   

17.
Laminin promotes mast cell attachment   总被引:4,自引:0,他引:4  
Tissue mast cells often localize in close proximity to the basement membrane of endothelial cells and increase at sites of inflammation. The reason for this unique tissue distribution is unknown. We report here that both the murine mast cell line PT18 and mouse bone marrow-derived mast cells possess functional receptors for laminin, and exhibit adhesion, spreading and redistribution of histamine-containing granules on a laminin substratum. This adherence is enhanced in the presence of purified IL-3 and can be inhibited by antibodies to laminin and by antibodies to laminin receptors. Northern analysis showed a high level of mRNA for a 32-kDa laminin receptor in PT18 mast cells. Mouse bone marrow-derived cultures initially exhibited a low level of the mRNA expression. However, the expression of the laminin receptor mRNA is induced rapidly within 1 wk of culture with IL-3. Thus, mast cells exhibit functional laminin receptors that may explain the tissue distribution of mast cells and their accumulation at sites of tissue injury.  相似文献   

18.

Purpose

Retinal ganglion cells (RGCs) are exposed to injury in a variety of optic nerve diseases including glaucoma. However, not all cells respond in the same way to damage and the capacity of individual RGCs to survive or regenerate is variable. In order to elucidate factors that may be important for RGC survival and regeneration we have focussed on the extracellular matrix (ECM) and RGC integrin expression. Our specific questions were: (1) Do adult RGCs express particular sets of integrins in vitro and in vivo? (2) Can the nature of the ECM influence the expression of different integrins? (3) Can the nature of the ECM affect the survival of the cells and the length or branching complexity of their neurites?

Methods

Primary RGC cultures from adult rat retina were placed on glass coverslips treated with different substrates: Poly-L-Lysine (PL), or PL plus laminin (L), collagen I (CI), collagen IV (CIV) or fibronectin (F). After 10 days in culture, we performed double immunostaining with an antibody against βIII-Tubulin to identify the RGCs, and antibodies against the integrin subunits: αV, α1, α3, α5, β1 or β3. The number of adhering and surviving cells, the number and length of the neurites and the expression of the integrin subunits on the different substrates were analysed.

Results

PL and L were associated with the greatest survival of RGCs while CI provided the least favourable conditions. The type of substrate affected the number and length of neurites. L stimulated the longest growth. We found at least three different types of RGCs in terms of their capacity to regenerate and extend neurites. The different combinations of integrins expressed by the cells growing on different substrata suggest that RGCs expressed predominantly α1β1 or α3β1 on L, α1β1 on CI and CIV, and α5β3 on F. The activity of the integrins was demonstrated by the phosphorylation of focal adhesion kinase (FAK).

Conclusions

Adult rat RGCs can survive and grow in the presence of different ECM tested. Further studies should be done to elucidate the different molecular characteristics of the RGCs subtypes in order to understand the possible different sensitivity of different RGCs to damage in diseases like glaucoma in which not all RGCs die at the same time.  相似文献   

19.
Laminin is a potent stimulator ofneurite outgrowth. We have examined the signal transduction events involved in the neuronal cell response to laminin. Cyclic nucleotides, calcium, and sodium-proton exchange do not appear to be required for the transduction of the laminin signal during neurite outgrowth. Direct measurement of cAMP and cGMP levels shows no changes in NG108-15 cells when cultured on laminin. Exogenous cAMP alone had no effect on either the rate of process formation or process length, but did alter the morphology of laminin-induced neurites. A four-fold increase in the number of branches per neurite and a two-to-three-fold increase in the number of neurites per cell were observed in both NG108-15 and PC12 cells cultured on laminin when either 8-BrcAMP or forskolin was added. The cAMP-induced branching was also observed when PC12 cells were cultured on a laminin-derived synthetic peptide (PA22-2), which contains the neurite-promoting amino acid sequence IKVAV. By immunofluorescence analysis with axonal or dendritic markers, the PC12 processes on laminin and PA22-2 were axonal, not dendritic, and the cAMP-induced morphological changes were due to axonal branching. These data demonstrate that changes in cAMP are not involved in laminin-mediated neurite outgrowth, but cAMP can modulate the effects of laminin.  相似文献   

20.
The integrin alpha 6 beta 1 is a prominent laminin receptor used by many cell types. In the present work, we isolate clones and determine the primary sequence of the chick integrin alpha 6 subunit. We show that alpha 6 beta 1 is a prominent integrin expressed by cells in the developing chick retina. Between embryonic days 6 and 12, both retinal ganglion cells and other retinal neurons lose selected integrin functions, including the ability to attach and extend neurites on laminin. In retinal ganglion cells, we show that this is correlated with a dramatic decrease in alpha 6 mRNA and protein, suggesting that changes in gene expression account for the developmental regulation of the interactions of these neurons with laminin. In other retinal neurons the expression of alpha 6 mRNA and protein remains high while function is lost, suggesting that the function of the alpha 6 beta 1 heterodimer in these cells is regulated by posttranslational mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号