首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The small intestinal epithelium is continuously renewed through a balance between cell division and cell loss. How this balance is achieved is uncertain. Thus, it is unknown to what extent programmed cell death (PCD) contributes to intestinal epithelial cell loss. We have used a battery of techniques detecting the events associated with PCD in order to better understand its role in the turnover of the intestinal epithelium, including modified double- and triple-staining techniques for simultaneously detecting multiple markers of PCD in individual cells. Only a partial correlation between TUNEL positivity for DNA fragmentation, c-jun phosphorylation on serine-63, positivity for activated caspase-3 and apoptotic morphology was observed. Our results show that DNA fragmentation does not invariably correlate to activation of caspase-3. Moreover, many cells were found to activate caspase-3 early in the process of extrusion, but did not acquire an apoptotic nuclear morphology until late during the extrusion process. These observations show that the lack of consensus between different methods for detecting PCD may be explained both by different timing of appearance of PCD markers and, additionally, by the occurrence of different forms of PCD during the normal turnover of cells on small intestinal villi.  相似文献   

2.
Surface layer (S-layer) proteins are crystalline arrays of proteinaceous subunits present as the outermost component of the cell wall in several Lactobacillus species. The underlying mechanism for how S-layer proteins inhibit pathogen infections remains unclear. To gain insights into the mechanism of the antimicrobial activity of Lactobacillus S-layer proteins, we examined how Lactobacillus S-layer proteins impact Salmonella Typhimurium-induced apoptosis in vitro in Caco-2 human colon epithelial cells. When Caco-2 cells infected with Salmonella Typhimurium SL1344, we found that apoptosis was mediated by activation of caspase-3, but not caspase-1. When Salmonella Typhimurium SL1344 and S-layer proteins were coincubated simultaneously, Caco-2 cell apoptosis was markedly decreased and the cell damage was modified, as evaluated by flow cytometry and microscopy. Detailed analyses showed that the S-layer proteins inhibited the caspase-3 activity and activated the extracellular signal-regulated kinases 1 and 2 (ERK1/2) signaling pathway. Taken together, these findings suggest that Lactobacillus S-layer proteins protected against Salmonella-induced apoptosis through reduced caspase-3 activation. In addition, Salmonella-induced apoptotic cell damage was modified by S-layer proteins through the ERK1/2 signaling pathway. This mechanism may represent a novel approach for antagonizing Salmonella infection.  相似文献   

3.
Our recent study demonstrated that a phosphatidylinositol-3 kinase (PI3K)/Akt-dependent anti-inflammatory pathway was activated by Salmonella in intestinal epithelial cells. Salmonella virulence is dependent on the ability of the bacterium to invade nonphagocytic host cells and then survive and replicate within modified Salmonella-containing vacuoles where cholesterol accumulates. In addition, cholesterol in membrane lipid rafts is frequently a platform for the activation of downstream signaling pathways, including the PI3K/Akt pathway. However, the role of plasma membrane cholesterol in the Salmonella-induced anti-inflammatory response in intestinal epithelial cells has not been elucidated. Here, we show that the effect of plasma membrane cholesterol depletion on the inhibition of Akt activation allows sustained ERK activation and the subsequent upregulation of IL-8 expression. These results demonstrate that plasma membrane cholesterol plays a critical role in the PI3K-dependent anti-inflammatory pathway activated by Salmonella in intestinal epithelial cells.  相似文献   

4.
The PI3-kinase/Akt pathway promotes cell survival in many different cell types including intestinal epithelial cells. Increased AKT activation in polyamine depleted intestinal epithelial cells correlated well with the decrease in TNF-α-induced apoptosis. Increased Akt activation and GSK3β (Ser 9) phosphorylation without significant effect on Bad (Ser136) phosphorylation indicate that Akt-mediated protection is independent of Bad phosphorylation but may depend on GSK3β. Pretreatment of polyamine-depleted cells with LY294002 increased caspase-9 and caspase-3 activation and decreased basal levels of GSK-3β phosphorylation. Inhibition of GSK3β activity using AR-A014418 or lithium chloride or siRNA-mediated downregulation of its expression had no effect on apoptosis. Inhibition of PI3-kinase and over-expression of dominant negative Akt (DN-AKT), significantly increased apoptosis in polyamine depleted cells. DN-Akt expression reversed the protective effect of polyamine depletion on apoptosis. DN-Akt, as well as the PI3-kinase inhibitors, prevented Akt activation and subsequent translocation of NF-κB to the nucleus. Constitutively active Akt (CA-AKT) expression increased resistance to TNF-α-induced apoptosis. Constitutively active-Akt expression increased nuclear staining of NF-κB. Moreover, polyamine depletion of DN-Akt cells prevented basal and TNF-α-induced IκBα phosphorylation. Prevention of NF-κB activation in DN-IκBα-transfected cells increased apoptosis in control cells and restored it in polyamine-depleted cells to control levels. These data indicate that Akt regulates the mitochondrial pathway, preventing activation of caspase-9 and thereby caspase-3 via NF-κB and these effects are independent of GSK-3β activity.  相似文献   

5.
6.
Typhoid is a life‐threatening febrile illness that affects ~24.2 million people worldwide and is caused by the intracellular bacteria Salmonella Typhi (S. Typhi). Intestinal epithelial invasion by S. Typhi is essential for the establishment of successful infection and is traditionally believed to depend on Salmonella pathogenicity island 1‐encoded type 3 secretion system 1 (T3SS‐1). We had previously reported that bacterial outer membrane protein T2942/STIV functions as a standalone invasin and contributes to the pathogenesis of S. Typhi by promoting epithelial invasion independent of T3SS‐1 (Cell Microbiol, 2015). Here, we show that STIV, by using its 20‐amino‐acid extracellular loop, interacts with receptor tyrosine kinase, Met, of host intestinal epithelial cells. This interaction leads to Met phosphorylation and activation of a downstream signalling cascade, involving Src, phosphatidylinositol 3‐kinase/Akt, and Rac1, which culminates into localized actin polymerisation and bacterial engulfment by the cell. Inhibition of Met tyrosine kinase activity severely limited intestinal invasion and systemic infection by S. Typhi in vivo, highlighting the importance of this invasion pathway in disease progression. This is the first report elucidating the mechanism of T3SS‐1‐independent epithelial invasion of S. Typhi, and this crucial host–pathogen interaction may be targeted therapeutically to restrict pathogenesis.  相似文献   

7.
To investigate the combinatorial effects using Salmonella and γ-radiation, the Salmonella typhimurium infection in combination with γ-radiation was investigated on melanoma. We showed that ROS expression and H2AX phosphorylation increased during stress by γ-radiation irrespective of Salmonella infection, inducing apoptosis by caspase-3 and bcl2 in tumor cells. In addition, tumor growth was suppressed by this combinatory therapy suggesting candidates for radiation therapy against melanoma.  相似文献   

8.
Escherichia coli (E. coli) infections play an important and growing role in the clinic. In the present study, we investigated the involvement of members of the mitogen-activated protein kinase (MAPK) superfamily, including extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK) and p38 MAPK, and caspase-3 and 9 activity in E. coli-induced apoptosis in human U937 cells. We found that E. coli induces apoptosis in U937 cell lines in a dose- and time-dependent manner, p38 MAPK and JNK were activated after 10 min of infection with E. coli. In contrast, ERK1/2 was down-regulated in a time-dependent manner. The levels of total (phosphorylation state-independent) p38 MAPK, JNK and ERK1/2 did not change in E. coli-infected U937 cells at all times examined. Moreover, exposure of U937 cells to E. coli led to caspase-3 and 9 activity. For the evaluation of the role of MAPKs, PD98059, SB203580 and SP600125 were used as MAPKs inhibitors for ERK1/2, p38 MAPK and JNK. Inhibition of ERK1/2 with PD98059 caused further enhancement in apoptosis and caspase-3 and 9 activity, while a selective p38 MAPK inhibitor, SB203580 and JNK inhibitor, SP600125 significantly inhibited E. coli-induced apoptosis and caspase-3 and 9 activity in U937 cells. The results were further confirmed by the observation that the caspase inhibitors Z-DEVD-FMK and Z-LEHD-FMK blocked E. coli-induced U937 apoptosis. Taken together, we have shown that E. coli increase p38 MAPK and JNK and decrease ERK1/2 phosphorylation and increase caspase-3 and 9 activity in U937 cells.  相似文献   

9.
Inflammasomes are innate immune mechanisms that activate caspase-1 in response to a variety of stimuli, including Salmonella infection. Active caspase-1 has a potential to induce two different types of cell death, depending on the expression of the pyroptosis mediator gasdermin D (GSDMD); following caspase-1 activation, GSDMD-sufficient and GSDMD-null/low cells undergo pyroptosis and apoptosis, respectively. Although Bid, a caspase-1 substrate, plays a critical role in caspase-1 induction of apoptosis in GSDMD-null/low cells, an additional mechanism that mediates this cell death independently of Bid has also been suggested. This study investigated the Bid-independent pathway of caspase-1-induced apoptosis. Caspase-1 has been reported to process caspase-6 and caspase-7. Silencing of caspase-7, but not caspase-6, significantly reduced the activation of caspase-3 induced by caspase-1, which was activated by chemical dimerization, in GSDMD/Bid-deficient cells. CRISPR/Cas9-mediated depletion of caspase-7 had the same effect on the caspase-3 activation. Moreover, in the absence of GSDMD and Bid, caspase-7 depletion reduced apoptosis induced by caspase-1 activation. Caspase-7 was activated following caspase-1 activation independently of caspase-3, suggesting that caspase-7 acts downstream of caspase-1 and upstream of caspase-3. Salmonella induced the activation of caspase-3 in GSDMD-deficient macrophages, which relied partly on Bid and largely on caspase-1. The caspase-3 activation and apoptotic morphological changes seen in Salmonella-infected GSDMD/Bid-deficient macrophages were attenuated by caspase-7 knockdown. These results suggest that in addition to Bid, caspase-7 can also mediate caspase-1-induced apoptosis and provide mechanistic insights into inflammasome-associated cell death that is one major effector mechanism of inflammasomes.  相似文献   

10.
Hypoxia/reoxygenation stress induces the activation of specific signaling proteins and activator protein 1 (AP-1) to regulate cell cycle regression and apoptosis. In the present study, we report that hypoxia/reoxygenation stress activates AP-1 by increasing c-Jun phosphorylation and DNA binding activity through activation of Polo-like-kinase 3 (Plk3) resulting in apoptosis. The specific effect of hypoxia/reoxygenation stress on Plk3 activation resulting in c-Jun phosphorylation was the opposite of UV irradiation-induced responses that are meanly independent on activation of the stress-induced JNK signaling pathway in human corneal epithelial (HCE) cells. The effect of hypoxia/reoxygenation stress-induced Plk3 activation on increased c-Jun phosphorylation and apoptosis was also mimicked by exposure of cells to CoCl(2). Hypoxia/reoxygenation activated Plk3 in HCE cells to directly phosphorylate c-Jun proteins at phosphorylation sites Ser-63 and Ser-73, and to increase DNA binding activity of c-Jun, detected by EMSA. Further evidence demonstrated that Plk3 and phospho-c-Jun were immunocolocalized in the nuclear compartment of hypoxia/reoxygenation stress-induced cells. Increased Plk3 activity by overexpression of wild-type and dominantly positive Plk3 enhanced the effect of hypoxia/reoxygenation on c-Jun phosphorylation and cell death. In contrast, knocking-down Plk3 mRNA suppressed hypoxia-induced c-Jun phosphorylation. Our results provide a new mechanism indicating that hypoxia/reoxygenation induces Plk3 activation instead of the JNK effect to directly phosphorylate and activate c-Jun, subsequently contributing to apoptosis in HCE cells.  相似文献   

11.

Background

Extracellular ATP is an endogenous signaling molecule released by various cell types and under different stimuli. High concentrations of ATP released into the extracellular medium activate the P2X7 receptor in most inflammatory conditions. Here, we seek to characterize the effects of ATP in human intestinal epithelial cells and to evaluate morphological changes in these cells in the presence of ATP.

Methods

We treated human intestinal epithelial cells with ATP and evaluated the effects of this nucleotide by scanning and transmission electron microscopy analysis and calcium measurements. We used flow cytometry to evaluate apoptosis. We collected human intestinal explants for immunohistochemistry, apoptosis by the TUNEL approach and caspase-3 activity using flow cytometry analyses. We also evaluated the ROS production by flow cytometry and NO secretion by the Griess technique.

Results

ATP treatment induced changes characteristic of cell death by apoptosis and autophagy but not necrosis in the HCT8 cell line. ATP induced apoptosis in human intestinal explants that showed TUNEL-positive cells in the epithelium and in the lamina propria. The explants exhibited a significant increase of caspase-3 activity when the colonic epithelial cells were incubated with IFN-gamma followed by ATP as compared to control cells. In addition, it was found that antioxidants were able to inhibit both the ROS production and the apoptosis induced by ATP in epithelial cells.

General significance

The activation of P2X7 receptors by ATP induces apoptosis and autophagy in human epithelial cells, possibly via ROS production, and this effect might have implications for gut inflammatory conditions.  相似文献   

12.
Expression of HSV-1 genes leads to the induction of apoptosis in human epithelial HEp-2 cells but the subsequent synthesis of infected cell protein prevents the process from killing the cells. Thus, viruses unable to produce appropriate prevention factors are apoptotic. We now report that the addition of either a pancaspase inhibitor or caspase-9-specific inhibitor prevented cells infected with an apoptotic HSV-1 virus from undergoing cell death. This result indicated that HSV-1-dependent apoptosis proceeds through the mitochondrial apoptotic pathway. However, the pancaspase inhibitor did not prevent the release of cytochrome c from mitochondria, implying that caspase activation is not required for this induction of cytochrome c release by HSV-1. The release of cytochrome c was first detected at 9 hpi while caspase-9, caspase-3 and PARP processing were detected at 12 hpi. Finally, Bax accumulated at mitochondria during apoptotic, but not wild type HSV-1 infection. Together, these findings indicate that HSV-1 blocks apoptosis by precluding mitochondrial cytochrome c release in a caspase-independent manner and suggest Bax as a target in infected human epithelial cells.  相似文献   

13.
沙门菌病(Salmonellosis)是全世界最普遍的食源性疾病之一,不仅对养殖业造成经济损失,还对人类安全构成威胁。禽沙门菌感染肠道后,可诱导肠上皮细胞表达多种TLRs和炎症反应的发生,在分泌的趋化因子作用下免疫效应细胞迁移到感染部位。细菌通过肠上皮细胞屏障后被巨噬细胞或树突状细胞吞噬,其中巨噬细胞是沙门菌的主要定殖场所。天然免疫系统将抗原递呈给淋巴细胞后,机体能够在2–3周内通过以Th1为主的免疫应答清除在肠道和深层组织中的沙门菌。而宿主特异性血清型鸡白痢沙门菌从肠道侵入后,在肝脾和其他器官中定殖,进而引发全身感染。早期感染阶段不会引起肠道炎症反应,主要诱导以Th2为主的免疫应答,而Th1型应答相对较弱,有利于鸡白痢沙门菌在机体内的持续存在和感染。本文围绕禽沙门菌的致病机理和免疫应答特性进行阐述,尤其对鸡白痢沙门菌免疫逃逸和持续载菌的特性进行深入分析,为禽沙门菌病的防控提供新靶标和新见解。  相似文献   

14.
Salmonella encounters various stresses in the environment and in the host during infection. The effects of cold (5°C, 48 h), peroxide (5 mM H2O2, 5 h) and acid stress (pH 4.0, 90 min) were tested on pathogenicity of Salmonella. Prior exposure of Salmonella to cold stress significantly (P < 0.05) increased adhesion and invasion of cultured intestinal epithelial (Caco-2) cells. This increased Salmonella-host cell association was also correlated with significant induction of several virulence-associated genes, implying an increased potential of cold-stressed Salmonella to cause an infection. In Caco-2 cells infected with cold-stressed Salmonella, genes involved in the electron transfer chain were significantly induced, but no simultaneous significant increase in expression of antioxidant genes that neutralize the effect of superoxide radicals or reactive oxygen species was observed. Increased production of caspase 9 and caspase 3/7 was confirmed during host cell infection with cold-stressed Salmonella. Further, a prophage gene, STM2699, induced in cold-stressed Salmonella and a spectrin gene, SPTAN1, induced in Salmonella-infected intestinal epithelial cells were found to have a significant contribution in increased adhesion and invasion of cold-stressed Salmonella in epithelial cells.  相似文献   

15.
16.

Background  

The Salmonella AvrA gene is present in 80% of Salmonella enterica serovar strains. AvrA protein mimics the activities of some eukaryotic proteins and uses these activities to the pathogen's advantage by debilitating the target cells, such as intestinal epithelial cells. Therefore, it is important to understand how AvrA works in targeting eukaryotic signaling pathways in intestinal infection in vivo. In this study, we hypothesized that AvrA interacts with multiple stress pathways in eukaryotic cells to manipulate the host defense system. A whole genome approach combined with bioinformatics assays was used to investigate the in vivo genetic responses of the mouse colon to Salmonella with or without AvrA protein expression in the early stage (8 hours) and late stage (4 days). Specifically, we examined the gene expression profiles in mouse colon as it responded to pathogenic Salmonella stain SL1344 (with AvrA expression) or SB1117 (without AvrA expression).  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号