首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P E Bougis  P Marchot  H Rochat 《Biochemistry》1986,25(22):7235-7243
The vast majority of Elapidae snake venoms, genus Naja, includes three classes of toxic polypeptides: alpha-neurotoxins, phospholipases A2, and cardiotoxins. A new experimental approach using reverse-phase high-performance liquid chromatography in particular has been developed, allowing their respective resolution, identification, and quantitation from milligram quantities of venom. First, definition of optimal chromatographic conditions for Naja mossambica mossambica toxins has been ascertained. Different column packing and solvent systems were compared for their efficiency, with particular attention to the ionic strength of the aqueous solvent. A medium-chain alkyl support (octyl) in conjunction with a volatile ammonium formate (0.15 M, pH 2.70)/acetonitrile solvent system was found to be particularly effective. All the components known until now from this venom could be resolved in a single step, and the elution order was alpha-neurotoxins, phospholipases A2, and cardiotoxins with a total recovery of absorbance and toxicity. Then, with these suitable conditions, we describe a new major cardiotoxin molecule in this venom by hydrophobic and not ionic-charge discrimination. Second, specific assays were designed to detect alpha-neurotoxin and phospholipase A2 activities in chromatographic fractions: alpha-neurotoxin activity was determined by competition for the binding of a radiolabeled alpha-neurotoxin to the acetylcholine receptor of the ray electric organ, and phospholipase A2 activity was defined by the enzymatic activity of these toxins with a fluorescent phospholipid as substrate. Finally, the applicability of these new methods to study other Naja snake venoms was demonstrated.  相似文献   

2.
Neurotoxins from snake venoms act as potent antagonists on the nicotinic acetylcholine receptors (nAChRs). Alpha-neurotoxins such as alpha-bungarotoxin (alpha-Btx) selectively bind to the skeletal muscle nAChRs among other subtypes, causing failure of the neuromuscular transmission. Through evolution, some species including snakes and mongoose have developed resistance to alpha-neurotoxins via specific amino acid substitutions in their muscle-type nAChR alpha1 subunit, which constitutes most of the toxin-binding site. Here we analyze these sequence variations in the context of our recent crystal structure of the extracellular domain of the mouse nAChR alpha1 bound to alpha-Btx. Our structure suggests that alpha-Btx has evolved as an extremely potent antagonist of muscle nAChR by binding the receptor tightly, blocking its ligand site, and locking its conformation in a closed state. Conversely, most toxin-resistant mutations occur at the alpha-Btx binding interface on nAChR alpha1 but away from the agonist binding site. These mutations can interfere with the binding of alpha-Btx without having deleterious effect on the gating function. These analyses not only help understand the structural determinants for neurotoxin sensitivity in muscle-type nAChR, but also shed light on its gating mechanism.  相似文献   

3.
Short term administration of the venoms of the snakes Naja haje, Naja nigricollis, and Cerastes vipera and of the scorpion Leiurus quinquestriatus on the mitotic index of the duodenal mucosal cells of the white rat, Rattus rattus, has been studied. All the venoms increased the number of dividing cells of the duodenal mucosa significantly. Naja haje crude venom was fractionated into three fractions. Fraction I had no effect on the mitotic index whereas fractions II and III increased it significantly. Treatment of rats with Naja haje venom fractions II and III after blocking the histamine or the serotonin receptors did not affect the stimulatory action of the two venom fractions on the mitotic index, which it increased significantly. It was suggested that the venoms of Naja haje, Naja nigricollis, Cerastes vipera, and Leiurus quinquestriatus and Naja haje venom fractions possessed a mitogenic activity. Fraction II of Naja haje venom acted through both the muscarinic and adrenergic receptors while fraction III acted on the adrenergic ones.  相似文献   

4.
Snake -neutotoxins of Elapidae venoms are grouped into two structural classes, short-chain and long-chain -neutotoxins. While these two classes share many chemical and biological characteristics, there are also distinct dissimilarities between them, including their binding site on the nicotinic acetylcholine receptor (nAChR), specificity among species of Chordata, and the associated pharmacological effects. In the present study we test the hypothesis that structural motifs that evolved to confer natural resistance against conspecific long-chain -neurotoxins in Elapidae snakes also interfere with the biological action of short-chain -neurotoxins. We expressed functional nAChRs that contains segments or single residues of the Elapidae nAChR ligand binding domain and tested the effect of short-chain -neurotoxin erabutoxin-a (ETX-a) from the Erabu sea snake Laticauda semifasciata on the acetylcholine-induced currents as measured by two-microelectrode voltage clamp. Our results show that the Elapidae nAChR subunit segment T154–L208 ligand binding domain has an inhibitory effect on the pharmacological action of ETX-a. This effect is primarily attributed to the presence of glycosylation at position N189. If the glycosylation is removed from the T154–L208 segment, the nAChR will be inhibited, however, to a lesser extent than seen in the mouse. This effect correlates with the variations in -neurotoxin sensitivity of different species and, importantly, reflects the evolutionary conservation of the binding site on the nAChR polypeptide backbone per se. Phylogenetic analysis of -neurotoxin resistance suggests that -neurotoxin-resistant nAChR evolved first, which permitted the evolution of snake venom -neurotoxins. A model describing -neurotoxin resistance in Elapidae snakes is presented. Present address: Schering-Plough Research Institute, CNS-CV Research, K-15 C205/2600, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA  相似文献   

5.
Large slender-bodied snakes that forage actively for a generalized array of small vertebrates are conspicuous elements of the terrestrial snake fauna of most continents; the venomous elapid species fill this role in much of Asia, Africa and Australia. Our dissections of eight species of cobras from southern Africa Aspidelaps, Hemachatus, Naja; Serpentes and Elapidae (total of 1290 specimens) provide extensive data on sexual dimorphism, reproductive biology and food habits. Females grow larger than males in Aspidelaps lubricus and Naja nigricincta , but (perhaps reflecting selection on male body size due to male–male combat) males grow as large as females in Naja anchietae, Naja melanoleuca, Naja mossambica, Naja nivea and Hemachatus haemachatus , and males grow larger than females in Naja annulifera . Overall, the degree of male size superiority is higher in species with a larger absolute mean adult body size. Male cobras typically have larger heads and longer tails than conspecific females. Fecundity increases with maternal body size, and is higher in the viviparous rhinkals H. haemachatus than in the oviparous Naja species studied. Diets are broad in all eight species, comprising a wide variety of amphibians, reptiles, mammals and (less often) birds. Ontogenetic (size-related) shifts in dietary composition (amphibian to reptile to mammal) are significant within some taxa ( N. annulifera, N. nigricincta ) but absent in others (notably N. nivea , the most arid-adapted species). Overall, despite substantial interspecific variation among the eight study species, strong parallels are evident between the cobras of southern Africa and their ecological counterparts in other continents.  相似文献   

6.
alpha-Conotoxins, from cone snails, and alpha-neurotoxins, from snakes, are competitive inhibitors of nicotinic acetylcholine receptors (nAChRs) that have overlapping binding sites in the ACh binding pocket. These disulphide-rich peptides are used extensively as tools to localize and pharmacologically characterize specific nAChRs subtypes. Recently, a homology model based on the high-resolution structure of an ACh binding protein (AChBP) allowed the three-fingered alpha-neurotoxins to be docked onto the alpha7 nAChR. To investigate if alpha-conotoxins interact with the nAChR in a similar manner, we built homology models of human alpha7 and alpha3beta2 nAChRs, and performed docking simulations of alpha-conotoxins ImI, PnIB, PnIA and MII using the program GOLD. Docking revealed that alpha-conotoxins have a different mode of interaction compared with alpha-neurotoxins, with surprisingly few nAChR residues in common between their overlapping binding sites. These docking experiments show that ImI and PnIB bind to the ACh binding pocket via a small cavity located above the beta9/beta10 hairpin of the (+)alpha7 nAChR subunit. Interestingly, PnIB, PnIA and MII were found to bind in a similar location on alpha7 or alpha3beta2 receptors mostly through hydrophobic interactions, while ImI bound further from the ACh binding pocket, mostly through electrostatic interactions. These findings, which distinguish alpha-conotoxin and alpha-neurotoxin binding modes, have implications for the rational design of selective nAChR antagonists.  相似文献   

7.
Envenomation by hemotoxic enzymes continues to be a major cause of morbidity and mortality throughout the world. With regard to treatment, the gold standard to abrogate coagulopathy caused by these venoms is still the administration of antivenom; however, despite antivenom therapy, coagulopathy still occurs and recurs. Of interest, this laboratory has demonstrated in vitro and in vivo that coagulopathy inducing venom derived from snakes of the family Viperidae exposed to carbon monoxide (CO) is inhibited, potentially by an attached heme. The present investigation sought to determine if venoms derived from snakes of the Elapidae family (taipans and cobras) could also be inhibited with CO or with the metheme inducing agent, O-phenylhydroxylamine (PHA). Assessing changes in coagulation kinetics of human plasma with thrombelastography, venoms from Elapidae snakes were exposed in isolation to CO (five species) or PHA (one specie) and placed in human plasma to assess changes in procoagulant or anticoagulant activity. The procoagulant activity of two taipan venoms and anticoagulant activity of three cobra venoms were significantly inhibited by CO. The venom of the inland taipan was also inhibited by PHA. In sum, these data demonstrate indirectly that the biometal heme is likely bound to these disparate venoms as an intermediary modulatory molecule. In conclusion, CO may not just be a potential therapeutic agent to treat envenomation but also may be a potential modulator of heme as a protective mechanism for venomous snakes against injury from their own proteolytic venoms.  相似文献   

8.
A novel "weak toxin" (WTX) from Naja kaouthia snake venom competes with [(125)I]alpha-bungarotoxin for binding to the membrane-bound Torpedo californica acetylcholine receptor (AChR), with an IC(50) of approximately 2.2 microm. In this respect, it is approximately 300 times less potent than neurotoxin II from Naja oxiana and alpha-cobratoxin from N. kaouthia, representing short-type and long-type alpha-neurotoxins, respectively. WTX and alpha-cobratoxin displaced [(125)I]alpha-bungarotoxin from the Escherichia coli-expressed fusion protein containing the rat alpha7 AChR N-terminal domain 1-208 preceded by glutathione S-transferase with IC(50) values of 4.3 and 9.1 microm, respectively, whereas for neurotoxin II the IC(50) value was >100 microm. Micromolar concentrations of WTX inhibited acetylcholine-activated currents in Xenopus oocyte-expressed rat muscle AChR and human and rat alpha7 AChRs, inhibiting the latter most efficiently (IC(50) of approximately 8.3 microm). Thus, a virtually nontoxic "three-fingered" protein WTX, although differing from alpha-neurotoxins by an additional disulfide in the N-terminal loop, can be classified as a weak alpha-neurotoxin. It differs from the short chain alpha-neurotoxins, which potently block the muscle-type but not the alpha7 AChRs, and is closer to the long alpha-neurotoxins, which have comparable potency against the above-mentioned AChR types.  相似文献   

9.
Cardiotoxins are small basic proteins (7 000 daltons) that are found in the venoms of Elapidae snakes. Although they are structurally close to alpha-neurotoxins present in the same secretions, their activity is related to their ability to interact with every cell membrane inducing, near micromolar concentration, the modification of its biological properties and/or physical structure. The mode of action of cardiotoxins, on a molecular level, is still under investigation. However, lipid-protein interactions are more and more involved in their binding to membrane and in their activities. Using new experimental data a better definition of phospholipid-cardiotoxin interaction is arrived at and a tentative molecular explanation of the pharmacological activities of these proteins is presented and discussed.  相似文献   

10.
Phospholipases A2 (PLA2s) are the most abundant family of snake venom proteins and play a significant role in prey envenomation. Their content in venoms is rather high. PLA2s not only have enzyme activity but exhibit other types of biological activities including neurotoxicity. We have earlier shown that a protein bitanarin from the venom of the puff adder Bitis arietans is capable to block the responses of Lymnaea stagnalis neurons to acetylcholine and represents an active PLA2 at the same time. Further investigation of PLA2s isolated from the venoms of snakes of two families revealed their capability to interact with nicotinic acetylcholine receptors (nAChRs): PLA2 from Vipera ursinii (Viperidae family), Naja kaouthia, and Bungarus fasciatus (Elapidae family) suppressed acetylcholine-induced current in identified neurons of L. staganlis. The effect was evident at PLA2 concentration in the range of tens micromoles. The data obtained suggest the presence in a PLA2 molecule of a site interacting with nAChR and a possible involvement of nAChR block in toxic action of PLA2s.  相似文献   

11.
Different snake venom neurotoxins block distinct subtypes of nicotinic acetylcholine receptors (nAChR). Short-chain alpha-neurotoxins preferentially inhibit muscle-type nAChRs, whereas long-chain alpha-neurotoxins block both muscle-type and alpha7 homooligomeric neuronal nAChRs. An additional disulfide in the central loop of alpha- and kappa-neurotoxins is essential for their action on the alpha7 and alpha3beta2 nAChRs, respectively. Design of novel toxins may help to better understand their subtype specificity. To address this problem, two chimeric toxins were produced by bacterial expression, a short-chain neurotoxin II Naja oxiana with the grafted disulfide-containing loop from long-chain neurotoxin I from N. oxiana, while a second chimera contained an additional A29K mutation, the most pronounced difference in the central loop tip between long-chain alpha-neurotoxins and kappa-neurotoxins. The correct folding and structural stability for both chimeras were shown by (1)H and (1)H-(15)N NMR spectroscopy. Electrophysiology experiments on the nAChRs expressed in Xenopus oocytes revealed that the first chimera and neurotoxin I blockalpha7 nAChRs with similar potency (IC(50) 6.1 and 34 nM, respectively). Therefore, the disulfide-confined loop endows neurotoxin II with full activity of long-chain alpha-neurotoxin and the C-terminal tail in neurotoxin I is not essential for binding. The A29K mutation of the chimera considerably diminished the affinity for alpha7 nAChR (IC(50) 126 nM) but did not convey activity at alpha3beta2 nAChRs. Docking of both chimeras toalpha7 andalpha3beta2 nAChRs was possible, but complexes with the latter were not stable at molecular dynamics simulations. Apparently, some other residues and dimeric organization of kappa-neurotoxins underlie their selectivity for alpha3beta2 nAChRs.  相似文献   

12.
The structures of the carbohydrate moieties of glycoproteins in snake venoms are largely unknown. In the present study, we have analyzed venoms of several species of snakes as well as plasma and tissue glycoproteins from one species of cobra (Naja naja kaouthia) by lectin affinity staining of Western blots. The data demonstrate that glycoproteins in cobra venom invariably contain terminal alpha-galactosyl residues with negligible proportions of sialic acids. Interestingly, however, terminal alpha-galactosyl residues are present in significantly lower proportions in cobra tissues such as brain, liver, lung, kidney, spleen, muscle, and totally absent in cobra plasma glycoproteins. In sharp contrast to cobras, venom glycoproteins of other snakes do not contain terminal alpha-galactosyl residues but do contain terminal 2,3- and/or 2,6-linked sialic acids as well as beta-galactosyl residues. Cobra venom also contains high molecular weight heavily glycosylated proteins bearing poly-N-acetyllactosaminyl oligosaccharides, the majority of which appear to be linked to the protein core via O-glycosidic bonds.  相似文献   

13.
Three-finger toxins (3FTXs), especially α-neurotoxins, are the most poorly neutralized elapid snake toxins by current antivenoms. In this work, the conserved structural similarity and motif arrangements of long-chain α-neurotoxins led us to design peptides with consensus sequences. Eight long-chain α-neurotoxins (also known as Type II) were used to generate a consensus sequence from which two peptides were chemically synthesized, LCP1 and LCP2. Rabbit sera raised against them were able to generate partially-neutralizing antibodies, which delayed mice mortality in neutralization assays against Naja haje, Dendrospis polylepis and Ophiophagus hannah venoms.  相似文献   

14.
菜花烙铁头蛇毒C-型凝集素基因的克隆与序列分析   总被引:2,自引:1,他引:1  
从菜花烙铁头蛇(Trimeresurus jerdonii)的毒腺中提取mRNA,采用RT-PCR技术进行体外扩增,将扩增产物克隆到PMD18-T载体中,最后筛选出一个编码凝集素的基因,命名为TJL。由TJL基因序列推导的氨基酸序列中包含分别由23和135个氨基酸残基组成的信号肽和成熟肽。氨基酸序列比较分析表明,TJL含有半乳糖结合位点和钙离子结合位点,与蝰科蛇毒凝集素TSL、PAL、APL和RSL的同源性较高(87.4%-90.4%),与眼镜蛇科蛇毒凝集素BML的同源性较低(61.5%)。  相似文献   

15.
The review is devoted to the competitive blockers of different nicotinic acetylcholine receptors, alpha-neurotoxins from snake venoms, and alpha-conotoxins from marine snails of the Conidae family. The relationship between the structure and function of these toxins is discussed. Recent data on the mechanism of alpha-neurotoxin and alpha-conotoxin interaction with the nicotinic acetylcholine receptor are presented.  相似文献   

16.
A polyhistidine tag was added to the N-terminus of alpha-bungarotoxin (Bgtx) recombinantly expressed in E. coli. The His-tagged Bgtx was identical to native, venom-derived Bgtx in its apparent affinity for the nicotinic acetylcholine receptor (nAChR) in Torpedo electric organ membranes. Furthermore, in a physiological assay involving mouse muscle nAChR expressed in Xenopus oocytes, the His-tagged Bgtx was as effective as authentic Bgtx at blocking acetylcholine-evoked currents. Ala-substitution mutagenesis of His-tagged Bgtx was used to evaluate the functional contribution of Arg36, a residue that is invariant among all alpha-neurotoxins. Replacement with Ala resulted in a 90-fold decrease in the apparent affinity for the Torpedo nAChR and a corresponding 150-fold increase in the IC50 for block of heterologously expressed mouse muscle nAChR, demonstrating the critical importance of this positive charge for the binding and functional activity of a long alpha-neurotoxin. The observed decrease in affinity corresponds to a DeltaDeltaG of 2.7 kcal/mol and indicates that Arg36 makes a major contribution to complex formation. This finding is consistent with the proposal that Arg36 mimics the positive charge found on acetylcholine and directs the toxin to interact with receptor sites normally involved in acetylcholine recognition. In comparison, Ala-substitution of the highly conserved Lys26 resulted in only a 9-fold decrease in apparent affinity. Truncation of the His-tagged Bgtx following residue 67 produces a toxin lacking the seven C-terminal residues including the two positively charged residues Lys70 and Arg72. Truncation leads to a 7-fold decrease in apparent binding affinity.  相似文献   

17.
18.
Snake venoms are complex mixtures of biologically active polypeptides that target a variety of vital physiological functions in mammals. alpha-Neurotoxins, toxins that cause paralysis by binding to the nicotinic receptors at the postsynaptic region of the neuromuscular junction have been widely studied in terms of their structure-function relationships as well as gene structure, organization and expression. In this review, we describe the structure of alpha-neurotoxin genes and discuss their evolutionary relationships. Almost all members of neurotoxins have been found to exhibit a common evolutionary origin. The importance of alpha-neurotoxins in therapy and research has also been discussed to highlight their potential applications especially in the area of drug discovery.  相似文献   

19.
The sequence segment 181-200 of the Torpedo nicotinic acetylcholine receptor (nAChR) alpha subunit forms a binding site for alpha-bungarotoxin (alpha-BTX) [e.g., see Conti-Tronconi, B. M., Tang, F., Diethelm, B. M., Spencer, S. R., Reinhardt-Maelicke, S., & Maelicke, A. (1990) Biochemistry 29, 6221-6230]. Synthetic peptides corresponding to the homologous sequences of human, calf, mouse, chicken, frog, and cobra muscle nAChR alpha 1 subunits were tested for their ability to bind 125I-alpha-BTX, and differences in alpha-BTX affinity were determined by using solution (IC50S) and solid-phase (KdS) assays. Panels of overlapping peptides corresponding to the complete alpha 1 subunit of mouse and human were also tested for alpha-BTX binding, but other sequence segments forming the alpha-BTX site were not consistently detectable. The Torpedo alpha 1(181-200) and the homologous frog and chicken peptides bound alpha-BTX with higher affinity (KdS approximately 1-2 microM, IC50s approximately 1-2 microM) than the human and calf peptides (Kds approximately 3-5 microM, IC50s approximately 15 microM). The mouse peptide bound alpha-BTX weakly when attached to a solid support (Kd approximately 8 microM) but was effective in competing for 125I-alpha-BTX in solution (IC50 approximately 1 microM). The cobra nAChR alpha 1-subunit peptide did not detectably bind alpha-BTX in either assay. Amino acid substitutions were correlated with alpha-BTX binding activity peptides from different species. The role of a putative vicinal disulfide bound between Cys-192 and -193, relative to the Torpedo sequence, was determined by modifying the peptides with sulfhydryl reagents. Reduction and alkylation of the peptides decreased alpha-BTX binding, whereas oxidation of the peptides had little effect. Modifications of the cysteine/cystine residues of the cobra peptide failed to induce alpha-BTX binding activity. These results indicate that while the adjacent cysteines are likely to be involved in forming the toxin/alpha 1-subunit interface a vicinal disulfide bound was not required for alpha-BTX binding.  相似文献   

20.
Characterizing and comparing developmental progress across different species helps to interpret how different or similar body forms evolved. We present an embryonic table for the oviparous African Sand Snake Psammophis sibilans from the Lamprophidae family, describing its postovipositional in ovo development. Psammophis is a good model of a genus that is widely distributed in Africa and Asia and includes 22 species. We describe ten embryonic stages based on the development of externally visible morphological characteristics such as; pharyngeal arches, facial processes, eyes, scales, body pigmentation and body colour pattern development. This study discusses the development of this snake and compares it with that of the closely related brown house snake Lamprophis fulliginosus (Lamprophidae) and the medically important venomous cobras Naja haje haje and Naja kaouthia from the sister lineage Elapidae. The distantly related basal snake Python sebae, which displays different morphology and behaviour, was chosen for deeper insight into the evolution of body structures within the snake clade. We found interspecific differences in the relative stage of development of embryonic structures at the time of oviposition and during postovipositional embryonic development. One of the outcomes of this study is that embryonic structures such as the pharyngeal processes, eye pigmentation and scales are interspecifically conservative in regard to timing of morphodifferentiation, while body pigmentation, colour and colour pattern are interspecifically plastic in their temporospatial development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号