首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synapsis of DNA ends by DNA-dependent protein kinase   总被引:13,自引:0,他引:13  
The catalytic subunit of DNA-dependent protein kinase (DNA-PK(CS)) is required for a non-homologous end-joining pathway that repairs DNA double-strand breaks produced by ionizing radiation or V(D)J recombination; however, its role in this pathway has remained obscure. Using a neutravidin pull-down assay, we found that DNA-PK(CS) mediates formation of a synaptic complex containing two DNA molecules. Furthermore, kinase activity was cooperative with respect to DNA concentration, suggesting that activation of the kinase occurs only after DNA synapsis. Electron microscopy revealed complexes of two DNA ends brought together by two DNA-PK(CS) molecules. Our results suggest that DNA-PK(CS) brings DNA ends together and then undergoes activation of its kinase, presumably to regulate subsequent steps for processing and ligation of the ends.  相似文献   

2.
The DNA-dependent protein kinase catalytic subunit (DNA-PK(CS)) plays an important role during the repair of DNA double-strand breaks (DSBs). It is recruited to DNA ends in the early stages of the nonhomologous end-joining (NHEJ) process, which mediates DSB repair. To study DNA-PK(CS) recruitment in vivo, we used a laser system to introduce DSBs in a specified region of the cell nucleus. We show that DNA-PK(CS) accumulates at DSB sites in a Ku80-dependent manner, and that neither the kinase activity nor the phosphorylation status of DNA-PK(CS) influences its initial accumulation. However, impairment of both of these functions results in deficient DSB repair and the maintained presence of DNA-PK(CS) at unrepaired DSBs. The use of photobleaching techniques allowed us to determine that the kinase activity and phosphorylation status of DNA-PK(CS) influence the stability of its binding to DNA ends. We suggest a model in which DNA-PK(CS) phosphorylation/autophosphorylation facilitates NHEJ by destabilizing the interaction of DNA-PK(CS) with the DNA ends.  相似文献   

3.
DNA double-strand breaks are created by ionizing radiation or during V(D)J recombination, the process that generates immunological diversity. Breaks are repaired by an end-joining reaction that requires DNA-PKCS, the catalytic subunit of DNA-dependent protein kinase. DNA-PKCS is a 460 kDa serine-threonine kinase that is activated by direct interaction with DNA. Here we report its structure at 22 A resolution, as determined by electron crystallography. The structure contains an open channel, similar to those seen in other double-stranded DNA-binding proteins, and an enclosed cavity with three openings large enough to accommodate single-stranded DNA, with one opening adjacent to the open channel. Based on these structural features, we performed biochemical experiments to examine the interactions of DNA-PKCS with different DNA molecules. Efficient kinase activation required DNA longer than 12 bp, the minimal length of the open channel. Competition experiments demonstrated that DNA-PKCS binds to double- and single-stranded DNA via separate but interacting sites. Addition of unpaired single strands to a double-stranded DNA fragment stimulated kinase activation. These results suggest that activation of the kinase involves interactions with both double- and single-stranded DNA, as suggested by the structure. A model for how the kinase is regulated by DNA is described.  相似文献   

4.
DNA-dependent protein kinase (DNA-PK) is a DNA end-activated protein kinase composed of a catalytic subunit, DNA-PKcs, and a DNA binding subunit, Ku, that is involved in repair of DNA double-stranded breaks (DSBs). We have previously shown that DNA-PKcs interacts with single-stranded DNA (ssDNA) ends with a separate ssDNA binding site to be activated for its kinase activity. Here, the properties of the ssDNA binding site were examined by using DNA fragments with modified ssDNA extensions. DNA fragments with a wide range of ssDNA modifictations activated DNA-PKcs, indicating a relaxed specificity for the chemical structure of terminal nucleotides of a DSB. Methyl substitution of the phosphate backbone impaired kinase activation but not binding, indicating that interaction with the DNA backbone was involved in kinase activation. Experiments with RNA and RNA/DNA hybrid fragments suggested that the discrimination between RNA and DNA ends resides in the double-stranded DNA binding function of DNA-PKcs. DNA fragments exposing only one ssDNA end activated DNA-PKcs poorly, suggesting that DNA-PKcs distinguishes between DSBs and ssDNA breaks by simultaneous interaction with two ssDNA ends. These properties potentially explain how DNA-PKcs can be specifically activated by DSBs but still recognize the diverse chemical structures exposed when DSBs are introduced by ionizing radiation.  相似文献   

5.
DNA-dependent protein kinase (DNA-PK) is an essential component of the nonhomologous end joining pathway (NHEJ), responsible for the repair of DNA double-strand breaks. Ku binds a DSB and recruits the catalytic subunit, DNA-PKcs, where it is activated once the kinase is bound to the DSB. The precise mechanism by which DNA activates DNA-PK remains unknown. We have investigated the effect of DNA structure on DNA-PK activation and results demonstrate that in Ku-dependent DNA-PKcs reactions, DNA-PK activation with DNA effectors containing two unannealed ends was identical to activation observed with fully duplex DNA effectors of the same length. The presence of a 6-base single-stranded extension resulted in decreased activation compared to the fully duplex DNA. DNA-PK activation using DNA effectors with compatible termini displayed increased activity compared to effectors with noncompatible termini. A strand orientation preference was observed in these reactions and suggests a model where the 3' strand of the terminus is responsible for annealing and the 5' strand is involved in activation of DNA-PK. These results demonstrate the influence of DNA structure and orientation on DNA-PK activation and provide a molecular mechanism of activation resulting from compatible termini, an essential step in microhomology-mediated NHEJ.  相似文献   

6.
V(D)J recombination is initiated by a coordinated cleavage reaction that nicks DNA at two sites and then forms a hairpin coding end and blunt signal end at each site. Following cleavage, the DNA ends are joined by a process that is incompletely understood but nevertheless depends on DNA-dependent protein kinase (DNA-PK), which consists of Ku and a 460-kDa catalytic subunit (DNA-PKCS or p460). Ku directs DNA-PKCS to DNA ends to efficiently activate the kinase. In vivo, the mouse SCID mutation in DNA-PKCS disrupts joining of the hairpin coding ends but spares joining of the open signal ends. To better understand the mechanism of V(D)J recombination, we measured the activation of DNA-PK by the three DNA structures formed during the cleavage reaction: open ends, DNA nicks, and hairpin ends. Although open DNA ends strongly activated DNA-PK, nicked DNA substrates and hairpin-ended DNA did not. Therefore, even though efficient processing of hairpin coding ends requires DNA-PKCS, this may occur by activation of the kinase bound to the cogenerated open signal end rather than to the hairpin end itself.  相似文献   

7.
DNA-PKcs and Ku are essential components of the complex that catalyzes non-homologous end joining (NHEJ) of DNA double-strand breaks (DSBs). Ku, a heterodimeric protein, binds to DNA ends and facilitates recruitment of the catalytic subunit, DNA-PKcs. We have investigated the effect of DNA strand orientation and sequence bias on the activation of DNA-PK. In addition, we assessed the effect of the position and strand orientation of cisplatin adducts on kinase activation. A series of duplex DNA substrates with site-specific cisplatin–DNA adducts placed in three different orientations on the duplex DNA were prepared. Terminal biotin modification and streptavidin (SA) blocking was employed to direct DNA-PK binding to the unblocked termini with a specific DNA strand orientation and cisplatin–DNA adduct position. DNA-PK kinase activity was measured and the results reveal that DNA strand orientation and sequence bias dramatically influence kinase activation, only a portion of which could be attributed to Ku-DNA binding activity. In addition, cisplatin–DNA adduct position resulted in differing degrees of inhibition depending on distance from the terminus as well as strand orientation. These results highlight the importance of how local variations in DNA structure, chemistry and sequence influence DNA-PK activation and potentially NHEJ.  相似文献   

8.
Lehman JA  Hoelz DJ  Turchi JJ 《Biochemistry》2008,47(15):4359-4368
Ionizing radiation induces DNA double-strand breaks which are repaired by the nonhomologous end joining (NHEJ) pathway. NHEJ is initiated upon Ku binding to the DNA ends and facilitating an interaction with the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). This heterotrimeric DNA-PK complex is then active as a serine/threonine protein kinase. The molecular mechanisms involved in DNA-PK activation are unknown. Considering the crucial role of Ku in this process, we therefore determined the influence of DNA binding on the structure of the Ku heterodimer. Chemical modification with NHS-biotin and mass spectrometry were used to identify sites of modification. Biotinylation of free Ku revealed several reactive lysines on Ku70 and Ku80 which were reduced or eliminated upon DNA binding. Interestingly, in the predicted C-terminal SAP domain of Ku70, biotinylation patterns were observed which suggest a structural change in this region of the protein induced by DNA binding. Limited proteolytic digests of free and DNA-bound Ku revealed a series of unique peptides, again, indicative of a change in the accessibility of the Ku70 and Ku80 C-terminal domains. A 10 kDa peptide was also identified which was preferentially generated under non-DNA-bound conditions and mapped to the C-terminus of Ku70. These results indicate a DNA-dependent movement or structural change in the C-terminal domains of Ku70 and Ku80 that may contribute to DNA-PKcs binding and activation. These results represent the first demonstration of DNA-induced changes in Ku structure and provide a framework for analysis of DNA-PKcs and the mechanism of DNA-PK activation.  相似文献   

9.
10.
Eukaryotic DNA is organized into nucleosomes and higher order chromatin structure, which plays an important role in the regulation of many nuclear processes including DNA repair. Non-homologous end-joining, the major pathway for repairing DNA double-strand breaks (DSBs) in mammalian cells, is mediated by a set of proteins including DNA-dependent protein kinase (DNA-PK). DNA-PK is comprised of a large catalytic subunit, DNA-PKcs, and its regulatory subunit, Ku. Current models predict that Ku binds to the ends of broken DNA and DNA-PKcs is recruited to form the active kinase complex. Here we show that DNA-PK can be activated by nucleosomes through the ability of Ku to bind to the ends of nucleosomal DNA, and that the activated DNA-PK is capable of phosphorylating H2AX within the nucleosomes. Histone acetylation has little effect on the steps of Ku binding to nucleosomes and subsequent activation of DNA-PKcs. However, acetylation largely enhances the phosphorylation of H2AX by DNA-PK, and this acetylation effect is observed when H2AX exists in the context of nucleosomes but not in a free form. These results suggest that the phosphorylation of H2AX, known to be important for DSB repair, can be regulated by acetylation and may provide a mechanistic basis on which to understand the recent observations that histone acetylation critically functions in repairing DNA DSBs.  相似文献   

11.
DNA double-strand breaks (DSBs) are a highly mutagenic and potentially lethal damage that occurs in all organisms. Mammalian cells repair DSBs by homologous recombination and non-homologous end joining, the latter requiring DNA-dependent protein kinase (DNA-PK). Werner syndrome is a disorder characterized by genomic instability, aging pathologies and defective WRN, a RecQ-like helicase with exonuclease activity. We show that WRN interacts directly with the catalytic subunit of DNA-PK (DNA-PK(CS)), which inhibits both the helicase and exonuclease activities of WRN. In addition we show that WRN forms a stable complex on DNA with DNA-PK(CS) and the DNA binding subunit Ku. This assembly reverses WRN enzymatic inhibition. Finally, we show that WRN is phosphorylated in vitro by DNA-PK and requires DNA-PK for phosphorylation in vivo, and that cells deficient in WRN are mildly sensitive to ionizing radiation. These data suggest that DNA-PK and WRN may function together in DNA metabolism and implicate WRN function in non-homologous end joining.  相似文献   

12.
DNA-dependent protein kinase (DNA-PK) is a serine/threonine kinase that has critical roles in DNA double-strand break repair, as well as B- and T-cell antigen receptor rearrangement. The DNA-PK enzyme consists of the Ku regulatory subunit and a 450-kDa catalytic subunit termed DNA-PK(CS). Both of these subunits are autoantigens associated with connective tissue diseases such as systemic lupus erythematosus (SLE) and scleroderma. In this report, we show that DNA-PK(CS) is cleaved during poliovirus infection of HeLa cells. Cleavage was visible as early as 1.5 h postinfection (hpi) and resulted in an approximately 40% reduction in the levels of native protein by 5.5 hpi. Consistent with this observation, the activity of the DNA-PK(CS) enzyme was also reduced during viral infection, as determined by immunoprecipitation kinase assays. Although it has previously been shown that DNA-PK(CS) is a substrate of caspase-3 in vitro, the protein was still cleaved during poliovirus infection of the caspase-3-deficient MCF-7 cell line. Cleavage was not prevented by infection in the presence of a soluble caspase inhibitor, suggesting that cleavage in vivo was independent of host caspase activation. DNA-PK(CS) is directly cleaved by a picornaviral 2A protease in vitro, producing a fragment similar in size to the cleavage product observed in vivo. Taken together, our results indicate that DNA-PK(CS) is cleaved by the 2A protease during poliovirus infection. Proteolytic cleavage of DNA-PK(CS) during poliovirus infection may contribute to inhibition of host immune responses. Furthermore, cleavage of autoantigens by viral proteases may target these proteins for the autoimmune response by generating novel, or "immunocryptic," protein fragments.  相似文献   

13.
The DNA-dependent protein kinase (DNA-PK) is required for double-strand break repair in mammalian cells. DNA-PK contains the heterodimer Ku and a 460-kDa serine/threonine kinase catalytic subunit (p460). Ku binds in vitro to DNA termini or other discontinuities in the DNA helix and is able to enter the DNA molecule by an ATP-independent process. It is clear from in vitro experiments that Ku stimulates the recruitment to DNA of p460 and activates the kinase activity toward DNA-binding protein substrates in the vicinity. Here, we have examined in human nuclear cell extracts the influence of the kinase catalytic activity on Ku binding to DNA. We demonstrate that, although Ku can enter DNA from free ends in the absence of p460 subunit, the kinase activity is required for Ku translocation along the DNA helix when the whole Ku/p460 assembles on DNA termini. When the kinase activity is impaired, DNA-PK including Ku and p460 is blocked at DNA ends and prevents their processing by either DNA polymerization, degradation, or ligation. The control of Ku entry into DNA by DNA-PK catalytic activity potentially represents an important regulation of DNA transactions at DNA termini.  相似文献   

14.
The DNA-dependent protein kinase (DNA-PK) was identified as an activity and as its three component polypeptides 25 and 15 years ago, respectively. It has been exhaustively characterized as being absolutely dependent on free double stranded DNA ends (to which it is directed by its regulatory subunit, Ku) for its activation as a robust nuclear serine/threonine protein kinase. Here, we report the unexpected finding of robust DNA-PKcs activation by N-terminal constraint, independent of either DNA or its regulatory subunit Ku. These data suggest that an N-terminal conformational change (likely induced by DNA binding) induces enzymatic activation.  相似文献   

15.
16.
Lee SH  Kim CH 《Molecules and cells》2002,13(2):159-166
DNA-dependent protein kinase (DNA-PK) is a nuclear serine/threonine protein kinase that is activated upon DNA damage generated by ionizing radiation or UV-irradiation. It is a three-protein complex consisting of a 470-kDa catalytic subunit (DNA-PKcs) and the regulatory DNA binding subunits, Ku heterodimer (Ku70 and Ku80). Mouse and human cells deficient in DNA-PKcs are hypersensitive to ionizing radiation and defective in V(D)J recombination, suggesting a role for the kinase in double-strand break repair and recombination. The Ku heterodimer binds to double-strand DNA breaks produced by either DNA damage or recombination, protects DNA ends from degradation, orients DNA ends for re-ligation, and recruits its catalytic subunit and additional factors necessary for successful end-joining. DNA-PK is also involved in an early stage of damage-induced cell cycle arrest, however, it remains unclear how the enzyme senses DNA damage and transmits signals to downstream gene(s) and proteins.  相似文献   

17.
M Yaneva  T Kowalewski    M R Lieber 《The EMBO journal》1997,16(16):5098-5112
DNA-dependent protein kinase (DNA-PK or the scid factor) and Ku are critical for DNA end-joining in V(D)J recombination and in general non-homologous double-strand break repair. One model for the function of DNA-PK is that it forms a complex with Ku70/86, and this complex then binds to DNA ends, with Ku serving as the DNA-binding subunit. We find that DNA-PK can itself bind to linear DNA fragments ranging in size from 18 to 841 bp double-stranded (ds) DNA, as indicated by: (i) mobility shifts; (ii) crosslinking between the DNA and DNA-PK; and (iii) atomic-force microscopy. Binding of the 18 bp ds DNA to DNA-PK activates it for phosphorylation of protein targets, and this level of activation is not increased by addition of purified Ku70/86. Ku can stimulate DNA-PK activity beyond this level only when the DNA fragments are long enough for the independent binding to the DNA of both DNA-PK and Ku. Atomic-force microscopy indicates that under such conditions, the DNA-PK binds at the DNA termini, and Ku70/86 assumes a position along the ds DNA that is adjacent to the DNA-PK.  相似文献   

18.
We have determined the effect of cisplatin–DNA damage on the ability of the DNA-dependent protein kinase (DNA-PK) to interact with duplex DNA molecules in vitro. The Ku DNA binding subunits of DNA-PK display a reduced ability to translocate on duplex DNA containing cisplatin–DNA adducts compared to control, undamaged duplex DNA. The decreased rates of translocation resulted in a decrease in the association of the p460 catalytic subunit of DNA-PK (DNA-PKcs) with the Ku–DNA complex. In addition to a decrease in DNA-PKcs association, the DNA-PKcs that is bound with Ku at a DNA end containing cisplatin–DNA adducts has a reduced catalytic rate compared to heterotrimeric DNA-PK assembled on undamaged DNA. The position of the cisplatin–DNA lesion from the terminus also effects kinase activation, with maximal inhibition occurring when the lesion is closer to the terminus. These results are consistent with a model for DNA-PK activation where the Ku dimer translocates away from the DNA terminus and facilitates the association of DNA-PKcs which interacts with both Ku and DNA resulting in kinase activation. The presence of cisplatin adducts decreases the ability to translocate away from the terminus and results in the formation of inactive kinase complexes at the DNA terminus. The results are discussed with respect to the ability of cisplatin to sensitize cells to DNA damage induced by ionizing radiation and the ability to repair DNA double-strand breaks.  相似文献   

19.
DNA double strand breaks (DSBs) can be generated by endogenous cellular processes or exogenous agents in mammalian cells. These breaks are highly variable with respect to DNA sequence and structure and all are recognized in some context by the DNA-dependent protein kinase (DNA-PK). DNA-PK is a critical component necessary for the recognition and repair of DSBs via non-homologous end joining (NHEJ). Previously studies have shown that DNA-PK responds differentially to variations in DSB structure, but how DNA-PK senses differences in DNA substrate sequence and structure is unknown. Here we explore the enzymatic mechanisms by which DNA-PK is activated by various DNA substrates and provide evidence that the DNA-PK is differentially activated by DNA structural variations as a function of the C-terminal region of Ku80. Discrimination based on terminal DNA sequence variations, on the other hand, is independent of the Ku80 C-terminal interactions and likely results exclusively from DNA-dependent protein kinase catalytic subunit interactions with the DNA. We also show that sequence differences in DNA termini can drastically influence DNA repair through altered DNA-PK activation. These results indicate that even subtle differences in DNA substrates influence DNA-PK activation and ultimately the efficiency of DSB repair.  相似文献   

20.
The DNA-dependent protein kinase (DNA-PK) plays an essential role in nonhomologous DNA end joining (NHEJ) by initially recognizing and binding to DNA breaks. We have shown that in vitro, purified DNA-PK undergoes autophosphorylation, resulting in loss of activity and disassembly of the kinase complex. Thus, we have suggested that autophosphorylation of the DNA-PK catalytic subunit (DNA-PKcs) may be critical for subsequent steps in DNA repair. Recently, we defined seven autophosphorylation sites within DNA-PKcs. Six of these are tightly clustered within 38 residues of the 4,127-residue protein. Here, we show that while phosphorylation at any single site within the major cluster is not critical for DNA-PK's function in vivo, mutation of several sites abolishes the ability of DNA-PK to function in NHEJ. This is not due to general defects in DNA-PK activity, as studies of the mutant protein indicate that its kinase activity and ability to form a complex with DNA-bound Ku remain largely unchanged. However, analysis of rare coding joints and ends demonstrates that nucleolytic end processing is dramatically reduced in joints mediated by the mutant DNA-PKcs. We therefore suggest that autophosphorylation within the major cluster mediates a conformational change in the DNA-PK complex that is critical for DNA end processing. However, autophosphorylation at these sites may not be sufficient for kinase disassembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号