首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A temperature-inducible mutant of temperate Bacillus bacteriophage phi105 was isolated and used to lysogenize a thymine-requiring strain of Bacillus subtilis 168. Synthesis of phage and bacterial deoxyribonucleic acid (DNA) was studied by sucrose gradient centrifugation and density equilibrium centrifugation of DNA extracted from induced bacteria. The distribution of DNA in the gradients was measured by differential isotope and density labeling of DNA before and after induction and by measuring the biological activity of the DNA in genetic transformation, in rescue of phage markers, and in infectivity assays. At early times after induction, but after at least one round of replication, phage DNA remains associated with high-molecular-weight DNA, whereas, later in the infection, phage DNA is associated with material of decreasing molecular weight. Genetic linkage between phage and bacterial markers can be demonstrated in replicated DNA from induced cells. Prophage induction is shown to affect replication of the bacterial chromosome. The overall rate of replication of prelabeled bacterial DNA is identical in temperature-induced lysogenics and in "mock-induced" wild-type phi105 lysogenics. The rate of replication of the bacterial marker phe-1 (and also of nia-38), located close to the prophage in direction of the terminus of the bacterial chromosome, is increased in induced cells, however, relative to other bacterial markers tested. In temperature-inducible lysogenics, where the prophage also carries a ts mutation which blocks phage DNA synthesis, replication of both phage and bacterial DNA stops after about 50% of the phage DNA has replicated once. The results of these experiments suggest that the prophage is not initially excised in induced cells, but rather it is specifically replicated in situ together with adjacent parts of the bacterial chromosome.  相似文献   

2.
PBSH, a defective phage of Bacillus subtilis strain 168, is described. Conditions are given for optimal induction of the prophage with mitomycin C. After a latent period of 90 min, cells were lysed and phage-like particles were released with a burst size of approximately 100 to 400 phage per bacterium. Since no known host supports phage replication after infection, burst size was determined by electron microscope count. Purification procedures and criteria for purity are described. The molecular weight of deoxyribonucleic acid (DNA) extracted from PBSH was estimated by length measurement and sedimentation. No circular DNA molecules were found by either technique. PBSH DNA molecules are linear, double-stranded, and of homogeneous molecular weight, about 12 x 10(6) daltons. There is no evidence for single-strand breaks. The majority of PBSH DNA molecules show a sedimentation behavior dependent on ionic strength. It is inferred that most of the DNA molecules are less hydrodynamically rigid than native DNA having a similar average base composition and molecular weight. Possible reasons for the sedimentation behavior are discussed.  相似文献   

3.
The adenine-16 (ade-16) marker (the marker nearest the chromosomal origin of Bacillus subtilis) in purified PBSH deoxyribonucleic acid (DNA) renatured more rapidly and to a greater extent than any other marker in the phage DNA, and more rapidly and to a greater extent than all markers, including ade-16, in bacterial DNA. The renaturation of the phage DNA ade-16 marker followed a first-order reaction, whereas renaturation of bacterial markers was initially a second-order reaction. No cross-linkages were detected in DNA molecules containing the ade-16 marker. Buoyant density measurements and inactivation by heat and micrococcal deoxyribonuclease of the ade-16 marker did not reveal large segments of clusters of the individual bases in these molecules. Alternative mechanisms for the unique renaturation behavior of the ade-16 marker are discussed.  相似文献   

4.
The induction of an excision-defective bacteriophage P22 lysogen results in the production of particles which carry a DNA molecule of normal length within a normal capsid, but which are nonetheless defective. The DNA content of these particles was characterized physically by a restriction enzyme analysis, and genetically by two marker rescue techniques. The particles carry DNA corresponding to one side of the prophage map as well as additional DNA, apparently derived from the host chromosome to one side of the prophage insertion site. Normally, mature P22 DNA molecules are derived from a concatemer by sequential cleavage of adjacent headful lengths, beginning at a genetically unique site, the encapsulation origin (Tye et al., 1974). The defective particles appear to contain DNA matured by the same sequential mechanisms, operating on the integrated prophage and neighboring bacterial chromosome, rather than on the normal concatemeric substrate. Both the initiation and directional specificities of normal maturation are maintained during the maturation of defective particle DNA. Sequential cleavage begins within the prophage at the encapsulation origin, a site near gene 3, and proceeds into the host chromosome on the proC side of the prophage. The initiation specificity of DNA encapsulation seems to reside in the morphogenetic machinery, rather than in the mechanism of DNA replication. Replication of an induced excision-defective prophage takes place in situ on the host chromosome, apparently without disruption of the linear integrity of the prophage. Further, the entire prophage, as well as adjacent bacterial DNA, is replicated, even though only a portion of this DNA is destined to be encapsulated.  相似文献   

5.
Bacillus subtilis lysogenic for SPO2 wild type was induced under conditions preventing synthesis of both bacterial and phage DNA. The infectivity of phage DNA in transfection is strongly decreased under these conditions, whereas the activity of single phage genes as measured by marker rescue with superinfecting phage is unaffected. DNA from induced cells was sedimented in neutral sucrose gradients. After induction, phage DNA was detected at a position in the gradients, which was different from the bulk of the bacterial DNA, corresponding to linear double-stranded DNA of about 25 x 10(6) daltons. Similar results were obtained with bacteria lysogenic for a SPO2 prophage carrying a DNA-negative mutation. No separation of phage and bacterial DNA activity was detected when chloramphenicol was present during the induction period. These experiments show that prophage SPO2 can excise from the bacterial chromosome without previous replication.  相似文献   

6.
Growth of phage phi105 and its deoxyribonucleic acid (DNA) was studied in radiation-sensitive mutants of Bacillus subtilis. The recA gene is required for optimal prophage induction with mitomycin C and for infectivity of prophage DNA. rec B gene is required for marker rescue from mature DNA. The importance of bacterial genes for phage DNA activity seems to depend on phage DNA structure.  相似文献   

7.
A mutant of Bacillus subtilis, dna-1, which cannot initiate new rounds of DNA replication (obtained from N. Sueoka) was lysogenized with wild-type phi 105 and with the heat-inducible mutant phi 105 cts23. Bacteria were incubated at the permissive temperature in the presence of chloramphenicol and then shifted to the nonpermissive temperature where induction of phi 105 cts23 occurs. DNA made after the shift was labeled with a density label, and the distribution of bacterial and phage markers in replicated and unreplicated DNA was determined. Similar experiments were performed with nonlysogenic dna-1 infected with phage phi 105 cts23 after the temperature shift. The results show that after induction of phi 105 cts23 prophage, bacterial markers on either side of the prophage replicate at an increased rate compared to more distant markers. No selective stimulation of bacterial DNA synthesis was observed on infection or after shifting bacteria lysogenic for noninducible phage to the higher temperature. Attempts to suppress the initiation mutation dna-1 by phage phi 105 were unsuccessful.  相似文献   

8.
Bacillus subtilis mutants with lesions in PBSX prophage genes have been isolated. One of these appears to be a regulatory mutant and is defective for mitomycin C-induced derepression of PBSX; the others are defective for phage capsid formation. All of the PBSX structural proteins are synthesized during induction of the capsid defective mutants; however, several of these proteins exhibit abnormal serological reactivity with anti-PBSX antiserum. The two head proteins X4 and X7 are not immunoprecipitable in a mutant which fails to assemble phage head structures. In the tail mutant, proteins X5 and X6 are not immunoprecipitable, tails are not assembled, and a possible tail protein precursor remains uncleaved. The noninducible mutant does not synthesize any PBSX structural proteins after exposure to mitomycin C. The mutation is specific for PBSX since ø105 and SPO2 lysogens of the mutant are inducible. All of the known PBSX-specific mutations were shown to be clustered between argC and metC on the host chromosome. In addition, the metC marker was shown to be present in multiple copies in cells induced for PBSX replication. This suggests that the derepressed prophage replicates while still integrated and that replication extends into the adjacent regions of the host chromosome.  相似文献   

9.
Whole phages HP1 and HP3, vegetative-phage deoxyribonucleic acid (DNA), and single and tandem double prophage DNA were exposed to ultraviolet radiation and then assayed on a wild-type (DNA repair-proficient) Haemophilus influenzae Rd strain and on a repair-deficient uvr-1 strain. Host cell reactivation (DNA repair) was observed for whole-phage and vegetative-phage DNA but not for single and double prophage DNA. Competent (phage-resistant) Haemophilus parainfluenzae cells were normally transfected with H. influenzae-grown phage DNA and with tandem double prophage DNA but not at all with single prophage DNA. CaCl2-treated H. influenzae suspensions could be transfected with vegetative phage DNA and with double prophage DNA but not with single prophage DNA. These observations support the hypothesis that transfection with single prophage DNA occurs through prophage DNA single-strand insertion into the recipient chromosome (at the bacterial att site) followed by DNA replication and then prophage induction.  相似文献   

10.
11.
Nat Sternberg 《Gene》1986,50(1-3):69-85
Generalized tranduction has for about 30 years been a major tool in the genetic manipulation of bacterial chromosomes. However, throughout that time little progress has been made in understanding how generalized transducing particles are produced. The experiments presented in this paper use phage λ to assess some of the factors that affect that process. The results of those experiments indicate: (1) the production of generalized transducing particles by bacteriophage λ is inhibited by the phage λ exonuclease (Exo). Also inhibited by λ Exo is the production of λdocR particles, a class of particles whose packaging is initiated in bacterial DNA and terminated at the normal phage packaging site, cos. In contrast, the production of λdocL particles, a class of particles whose packaging is initiated at cos and terminated in bacterial DNA, is unaffected by λ Exo; (2) λ-generalized transducing particles are not detected in induced lysis-defective (S) λ lysogens until about 60–90 min after prophage induction. Since wild-type λ would normally lyse cells by 60 min, the production of λ-generalized transducing particles depends on the phage being lysis-defective; (3) if transducing lysates are prepared by phage infection then the frequency of generalized transduction for different bacterial markers varies over a 10–20-fold range. In contrast, if transducing lysates are prepared by the induction of a λ lysogen containing an excision-defective prophage, then the variation in transduction frequency is much greater, and markers adjacent to, and on both sides of, the prophage are transduced with much higher frequencies than are other markers ; (4) if the prophage is replication-defective then the increased transduction of prophage-proximal markers is eliminated; (5) measurements of total DNA in induced lysogens indicate that part of the increase in transduction frequency following prophage induction can be accounted for by an increase in the amount of prophage-proximal bacterial DNA in the cell. Measurements of DNA in transducing particles indicate that the rest of the increase is probably due to the preferential packaging of the prophage-proximal bacterial DNA.

These results are most easily interpreted in terms of a model for the initiation of bacterial DNA packaging by λ, in which the proteins involved (Ter) do not recognize any particular sequence in bacterial DNA but rather  相似文献   


12.
Summary Lysates of P22 contain a small fraction of transducing particles with bacterial DNA replicated semiconservatively after the time of infection. It was demonstrated that the presence and relative amount of this class of transducing particles was unchanged, if infection of Salmonella occured under a condition nonpermissive for bacterial DNA replication. Analysis of particles with DNA fragments derived from different regions of the Salmonella chromosome indicated that the replication of the bacterial DNA carried by these transducing particles was not initiated specifically at the normal origin for bacterial chromosome replication.Abbreviations i.p. transducing particles - moi multiplicity of infection - i.p. intectious particles  相似文献   

13.
Early events in the replication of Mu prophage DNA.   总被引:15,自引:4,他引:11       下载免费PDF全文
To determine whether the early replication of Mu prophage DNA proceeds beyond the termini of the prophage into hose DNA, the amounts of both Mu DNA and the prophage-adjacent host DNA sequences were measured using a DNA-DNA annealing assay after induction of the Mu vegetative cycle. Whereas Mu-specific DNA synthesis began 6 to 8 min after induction, no amplification of the adjacent DNA sequences was observed. These data suggest that early Mu-induced DNA synthesis is constrained within the boundaries of the Mu prophage. Since prophage Mu DNA does not undergo a prophage lambda-like excision from its original site after induction (E. Ljungquist and A. I. Bukhari, Proc. Natl. Acad. Sci. U.S.A. 74:3143--3147, 1977), we propose the existence of a control mechanism which excludes prophage-adjacent sequences from the initial mu prophage replication. The frequencies of the Mu prophage-adjacent DNA sequences, relative to other Escherichia coli genes, were not observed to change after the onset of Mu-specific DNA replication. This suggests that these regions remain associated with the host chromosome and continue to be replicated by the chromosomal replication fork. Therefore, we conclude that both the Mu prophage and adjacent host sequences are maintained in the host chromosome, rather than on an extrachromosomal form containing Mu and host DNA.  相似文献   

14.
HK022, a temperate coliphage related to lambda, forms lysogens by inserting its DNA into the bacterial chromosome through site-specific recombination. The Escherichia coli Fis and phage Xis proteins promote excision of HK022 DNA from the bacterial chromosome. These two proteins also act during lysogenization to prevent a prophage rearrangement: lysogens formed in the absence of either Fis or Xis frequently carried a prophage that had suffered a site-specific internal DNA inversion. The inversion is a product of recombination between the phage attachment site and a secondary attachment site located within the HK022 left operon. In the absence of both Fis and Xis, the majority of lysogens carried a prophage with an inversion. Inversion occurs during lysogenization at about the same time as prophage insertion but is rare during lytic phage growth. Phages carrying the inverted segment are viable but have a defect in lysogenization, and we therefore suggest that prevention of this rearrangement is an important biological role of Xis and Fis for HK022. Although Fis and Xis are known to promote excision of lambda prophage, they had no detectable effect on lambda recombination at secondary attachment sites. HK022 cIts lysogens that were blocked in excisive recombination because of mutation in fis or xis typically produced high yields of phage after thermal induction, regardless of whether they carried an inverted prophage. The usual requirement for prophage excision was bypassed in these lysogens because they carried two or more prophages inserted in tandem at the bacterial attachment site; in such lysogens, viable phage particles can be formed by in situ packaging of unexcised chromosomes.  相似文献   

15.
The effects of pTR2030 on the replication of four small isometric bacteriophages were examined in Streptococcus cremoris R1. Three lytic phages (652, 720, and 751), which were isolated independently over a 29-year period, were unable to form plaques on a pTR2030 transconjugant of S. cremoris R1. The fourth phage evaluated, phage r(1)t, was a temperate phage induced from S. cremoris R1 by treatment with mitomycin C. A prophage-cured derivative of S. cremoris R1, designated R1Cs, was isolated and served as a lytic indicator for phage r(1)t. Strain R1Cs and a derivative of this strain that was relysogenized with r(1)t, designated R1Cs(r(1)t), were used as conjugal recipients for transfer of the phage resistance plasmid pTR2030. pTR2030 transconjugants of strains R1Cs and R1Cs(r(1)t) were evaluated for sensitivity to r(1)t phage and induction of r(1)t prophage, respectively. The temperate phage r(1)t adsorbed eficiently but did not form plaques on the prophage-cured, pTR2030 transconjugant strain T-R1Cs. However, in the r(1)t lysogen [T-R1Cs(r(1)t)], pTR2030 did not inhibit prophage induction with mitomycin C, cell lysis, or production of infective r(1)t phage particles. The data demonstrated that pTR2030-induced resistance inhibited lytic infection by r(1)t phage from without but did not retard lytic development after prophage induction within the cell. It was suggested that pTR2030-encoded phage resistance to small isometric phages may, therefore, act at the cell surface or membrane to prevent phage DNA passage into the host cell or inhibit early events required for lytic replication of externally infecting phage.  相似文献   

16.
The prophage of coliphage N15 is not integrated into the bacterial chromosome but exists as a linear plasmid molecule with covalently closed ends. Upon infection of an Escherichia coli cell, the phage DNA circularizes via cohensive ends. A phage-encoded enzyme, protelomerase, then cuts at another site, telRL, and forms hairpin ends (telomeres). Purified protelomerase alone processes circular and linear plasmid DNA containing the target site telRL to produce linear double-stranded DNA with covalently closed ends in vitro. N15 protelomerase is necessary for replication of the linear prophage through its action as a telomere-resolving enzyme. Replication of circular N15-based miniplasmids requires the only gene repA that encodes multidomain protein homologous to replication proteins of bacterial plasmids replicated by theta-mechanism, particularly, phage P4 alpha-replication protein. Replication of the N15 prophage is initiated at an internal ori site located within repA. Bidirectional replication results in formation of the circular head-to-head, tail-to-tail dimer molecule. Then the N15 protelomerase cuts both duplicated telomeres generating two linear plasmid molecules with covalently closed ends. The N15 prophage replication thus appears to follow the mechanism distinct from that employed by poxviruses and could serve as a model for other prokaryotic replicons with hairpin ends, and particularly, for linear plasmids and chromosomes of Borrelia burgdorferi.  相似文献   

17.
The prophage of coliphage N15 is not integrated into the chromosome but exists as a linear plasmid molecule with covalently closed hairpin ends (telomeres). Upon infection the injected phage DNA circularizes via its cohesive ends. Then, a phage-encoded enzyme, protelomerase, cuts the circle and forms the hairpin telomeres. N15 protelomerase acts as a telomere-resolving enzyme during prophage DNA replication. We characterized the N15 replicon and found that replication of circular N15 miniplasmids requires only the repA gene, which encodes a multidomain protein homologous to replication proteins of bacterial plasmids replicated by a theta-mechanism. Replication of a linear N15 miniplasmid also requires the protelomerase gene and telomere regions. N15 prophage replication is initiated at an internal ori site located within repA and proceeds bidirectionally. Electron microscopy data suggest that after duplication of the left telomere, protelomerase cuts this site generating Y-shaped molecules. Full replication of the molecule and subsequent resolution of the right telomere then results in two linear plasmid molecules. N15 prophage replication thus appears to follow a mechanism that is distinct from that employed by eukaryotic replicons with this type of telomere and suggests the possibility of evolutionarily independent appearances of prokaryotic and eukaryotic replicons with covalently closed telomeres.  相似文献   

18.
Defective bacteriophage PBSX, a resident of all Bacillus subtilis 168 chromosomes, packages fragments of DNA from all portions of the host chromosome when induced by mitomycin C. In this study, the physical process for DNA packaging of both chromosomal and plasmid DNAs was examined. Discrete 13-kilobase (kb) lengths of DNA were packaged by wild-type phage, and the process was DNase I resistant and probably occurred by a head-filling mechanism. Genetically engineered isogenic host strains having a chloramphenicol resistance determinant integrated as a genetic flag at two different regions of the chromosome were used to monitor the packaging of specific chromosomal regions. No dramatic selectivity for these regions could be documented. If the wild-type strain 168 contains autonomously replicating plasmids, especially pC194, the mitomycin C induces an increase in size of resident plasmid DNA, which is then packaged as 13-kb pieces into phage heads. In strain RB1144, which lacks substantial portions of the PBSX resident phage region, mitomycin C treatment did not affect the structure of resident plasmids. Induction of PBSX started rolling circle replication on plasmids, which then became packaged as 13-kb fragments. This alteration or cannibalization of plasmid replication resulting from mitomycin C treatment requires for its function some DNA within the prophage deletion of strain RB1144.  相似文献   

19.
DNA fusion product of phage P2 with plasmid pBR322: a new phasmid   总被引:2,自引:0,他引:2  
The chromosome of the temperate bacteriophage P2 and that of the plasmid pBR322 have been joined in vitro after treatment with restriction endonuclease EcoRI. The fusion product - a phasmid - can behave as a plasmid, as a phage and as a prophage. It can replicate its DNA under the control of either the specific replication mechanism of the parent phage in a polA mutant or that of the parent plasmid in a rep mutant. Several interesting interactions between the two replication modes are indicated. In particular, phage particles may be produced even when the phage mode of DNA replication is blocked, and this throws new light on the involvement of the early gene A in the regulation of late gene expression in phage P2.  相似文献   

20.
Prophages are viruses, which have integrated their genomes into the genome of a bacterial host. The status of the prophage genome can vary from fully intact with the potential to form infective particles to a remnant state where only a few phage genes persist. Prophages have impact on the properties of their host and are therefore of great interest for genomic research and strain design. Here we present a genome- and next generation sequencing (NGS)-based approach for identification and activity evaluation of prophage regions. Seven prophage or prophage-like regions were identified in the genome of Bacillus licheniformis DSM13. Six of these regions show similarity to members of the Siphoviridae phage family. The remaining region encodes the B. licheniformis orthologue of the PBSX prophage from Bacillus subtilis. Analysis of isolated phage particles (induced by mitomycin C) from the wild-type strain and prophage deletion mutant strains revealed activity of the prophage regions BLi_Pp2 (PBSX-like), BLi_Pp3 and BLi_Pp6. In contrast to BLi_Pp2 and BLi_Pp3, neither phage DNA nor phage particles of BLi_Pp6 could be visualized. However, the ability of prophage BLi_Pp6 to generate particles could be confirmed by sequencing of particle-protected DNA mapping to prophage locus BLi_Pp6. The introduced NGS-based approach allows the investigation of prophage regions and their ability to form particles. Our results show that this approach increases the sensitivity of prophage activity analysis and can complement more conventional approaches such as transmission electron microscopy (TEM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号