首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
测定了Hg2+、Cd2+、Cu2+、Pb2+单一重金属胁迫对拟南芥种子发芽和幼苗生长的影响.结果表明,重金属对幼苗生长的毒性大于对种子发芽的毒性,以抑制种子发芽的IC50为指标,4种重金属的毒性顺序为Hg2+>Cd2+>Pb2+/Cu2+,以幼苗生长为指标,则毒性顺序为:Cu2+>Hg2+>Cd2+/Pb2+,并随着胁迫时间延长,种子萌发率下降.此外,不同重金属在不同发芽时段对种子的毒性也不尽相同,Cd2+的毒性在种子吸水后的0~12 h大于12~24 h,而Hg2+毒性在12~24 h大于0~12 h,其中,种皮对减轻重金属毒性起着十分重要的作用.通过非毒性离子(Ca2+、Mg2+、K+、Na+)与重金属离子(Hg2+、Cd2+、Cu2+、Pb2+)交互作用对拟南芥种子发芽及幼苗生长效应的研究发现, mmol·L-1的Ca2+、Mg2+、K+、Na+可以增强Hg2+对种子发芽的毒性,但对Cd2+的毒性却没有影响.对于幼苗来说,Ca2+、Mg2+、K+、Na+可以显著增强Hg2+的毒性,Ca2+可以缓解Cd2+的毒性,但却增加Cu2+的毒性,K+可以缓解Pb2+对幼苗的毒害作用.最后,本文对重金属的毒害机理进行了探讨.  相似文献   

2.
K-stimulated (voltage-dependent) influx of 45Ca was measured in synaptosomes (isolated presynaptic nerve terminals) from rat brain. Influx was terminated at 1 s with a rapid-filtration technique, so that most of the Ca uptake was mediated by inactivating ("fast") Ca channels (Nachshen, D. A., and Blaustein, M. P., 1980, J. Gen. Physiol., 76:709- 728). This influx was blocked by multivalent cations with half- inhibition constants (K1) that clustered in three distinct groups: (a) K1 greater than 1 mM (Mg2+, Sr2+, and Ba2+); (b) K1 = 30-100 microM (Mn2+, Co2+, Ni2+, Cu2+, Zn2+, and Hg2+); (c) K1 less than 1 micro M (Cd2+, Y3+, La3+ and the trivalent lanthanides, and Pb2+). Most of these ions had very little effect on synaptosome steady state membrane potential, which was monitored with a voltage-sensitive fluorescent dye, or on the voltage dependence of Ca influx, which was assessed by measuring voltage-dependent Ca uptake at two levels of depolarization. The blockers inhibited Ca influx by competing with Ca for the channel site that is involved in the transport of divalent cations. Onset of fast channel inhibition by Mg, Co, Ni, Cu, Zn, Cd, La, Hg, and Pb was rapid, occurring within 1 s; inhibition was similar after 1 s or 30 min of exposure to these ions. The inhibition produced by Co, Cu, Zn, Cd, La, and Pb could be substantially reversed within 1 s by removing the inhibitory cation. The relative efficacies of the lanthanides as fast channel blockers were compared; there was a decrease in inhibitory potency with decreasing ionic radius. A model of the Ca channel binding site is considered, in which inhibitory polyvalent cation selectivity is determined primarily by coulombic interactions between the binding site and the different cations. The site is envisaged as consisting of two anions (radius 1 A) with a separation of 2 A between them. Small cations are unable to bind effectively to both anions. The selectivity sequences predicted for the alkaline earth cations, lanthanides, and transition metals are in substantial agreement with the selectivity sequences observed for inhibition of the fast Ca channel.  相似文献   

3.
M K Pal  T C Ghosh  J K Ghosh 《Biopolymers》1990,30(3-4):273-277
Teichoic acid (TA) isolated from the gram-positive bacteria S. aureus binds cationic dyes like pinacyanol (PCYN), 1,9-dimethyl methylene blue, acridine orange, etc., depicting blue-shifted metachromasia, and they bind the cationic dye carbocyanine depicting the red-shifted J band. TAs do not show any uv absorption band, and exhibition of tailing CD in the short uv region hints at its chiral conformation. Chiral conformation of TA has been confirmed from the induction of strong biphasic CD in the TA-carbocyanine system. Relative affinities for Ca2+, Mg2+, and Na+ have been probed from the disruption of metachromasia of the TA-dye system by these ions. Results show Ca2+ and Mg2+ to be almost equally effective in destroying the metachromasia of the TA-PCYN system, thus not supporting the hypothesis of special affinity for Mg2+ ion.  相似文献   

4.
K+-stimulated 45Ca2+ influx was measured in rat brain presynaptic nerve terminals that were predepolarized in a K+-rich solution for 15 s prior to addition of 45Ca2+. This 'slow' Ca2+ influx was compared to influx stimulated by Na+ removal, presumably mediated by Na+-Ca2+ exchange. The K+-stimulated Ca2+ influx in predepolarized synaptosomes, and the Na+-removal-dependent Ca2+ influx were both saturating functions of the external Ca2+ concentration; and both were half-saturated at 0.3 mM Ca2+. Both were reduced about 50% by 20 microM Hg2+, 20 microM Cu2+ or 0.45 mM Mn2+. Neither the K+-stimulated nor the Na+-removal-dependent Ca2+ influx was inhibited by 1 microM Cd2+, La3+ or Pb2+, treatments that almost completely inhibited K+-stimulated Ca2+ influx in synaptosomes that were not predepolarized. The relative permeabilities of K+-stimulated Ca2+, Sr2+ or Ba2+ influx in predepolarized synaptosomes (10:3:1) and the corresponding selectivity ratio for Na+-removal-dependent divalent cation uptake (10:2:1) were similar. These results strongly suggest that the K+-stimulated 'slow' Ca2+ influx in predepolarized synaptosomes and the Na+-removal-dependent Ca2+ influx are mediated by a common mechanism, the Na+-Ca2+ exchanger.  相似文献   

5.
Yu J  Tong M  Sun X  Li B 《Bioresource technology》2008,99(7):2588-2593
Enhanced and selective removal of Pb2+ and Cu2+ in the presence of high concentration of K+, Na+, Ca2+ and Mg2+ were achieved by adsorption on biomass of baker's yeast modified with ethylenediaminetetraacetic dianhydride (EDTAD). The modified biomass was found to have high adsorption capacities and fast rates for Pb2+ and Cu2+, and it also displayed consistently high levels of metal uptake over the pH range from 2.7 to 6.0. From Langmuir isotherm, the adsorption capacities for Pb2+ and Cu2+ were found to be 192.3 and 65.0 mg g(-1), respectively, which are about 10 and 14 times higher than that of the unmodified biomass. Competitive biosorption experiments showed that the co-ions of K+, Na+, Ca2+ and Mg2+ had little effects on the uptake of Pb2+ and Cu2+ even at the concentration of 1.0 mol L(-1). The adsorbed Pb2+ and Cu2+ on the modified biomass could be effectively desorbed in an EDTA solution, and the regenerated biomass could be reused repeatedly with little loss of the adsorption capacity.  相似文献   

6.
Effects of Cd2+, Co2+, Pb2+, Fe2+ and Mg2+ (1-100 microM) on single-channel properties of the intermediate conductance Ca(2+)-activated K+ (CaK) channels were investigated in inside-out patches of human erythrocytes in a physiological K+ gradient. Cd2+, Co2+ and Pb2+, but not Fe2+ and Mg2+, were able to induce CaK channel openings. The potency of the metals to open CaK channels in human erythrocytes follows the sequence Pb2+, Cd2+ > Ca2+ > or = Co2+ > Mg2+, Fe2+. At higher concentrations Pb2+, Cd2+ and Co2+ block the CaK channel by reducing the opening frequency and the single-channel current amplitude. The potency of the metals to reduce CaK channel opening frequency follows the sequence Pb2+ > Cd2+, Co2+ > Ca2+, which differs from the potency sequence Cd2+ > Pb2+, Co2+ > Ca2+ to reduce the unitary single-channel current amplitude. Fe2+ reduced the channel opening frequency and enhanced the two open times of CaK channels activated by Ca2+, whereas up to 100 microM Mg2+ had no effect on any of the measured single-channel parameters. It is concluded that the activation of CaK channels of human erythrocytes by various metal ions occurs through an interaction with the same regulatory site at which Ca2+ activates these channels. The different potency orders for the activating and blocking effects suggest the presence of at least one activation and two blocking sites. A modulatory binding site for Fe2+ exists as well. In addition, the CaK channels in human erythrocytes are distinct from other subtypes of Ca(2+)-activated K+ channels in their sensitivity to the metal ions.  相似文献   

7.
The ATPase activity of purified coupling factor 1 (CF1) of spinach chloroplasts [EC 3.6.1.3] was reversibly enhanced in some aqueous organic solvents, notably methanol, ethanol, and acetone. Pretreatment of CF1 with 20% (v/v) methanol did not affect the subsequent activity. The activity depended entirely on the final concentration of methanol in the reaction mixture. In the presence of 20% methanol, the Km of Ca2+-ATPase from ATP was lowered from 0.4 mM to 0.2 mM. Not only Ca2+, but also Cd2+, Mg2+, Mn2+, and Zn2+ supported the ATPase activity at rates of higher than 7 mumol.mg protein-1 . min-1. Co2+, Ni2+, and Pb2+ supported the activity at rates of 0.5-1.0 mumol.mg protein-1 . min-1. The activities supported by the following cations, if any, were less than 0.2 mumol.mg protein-1 . min-1; Ba2+, Cu2+, Fe2+, Hg2+, Sn2+, and Sr2+. The optimum concentration of methanol for Ca2+-ATPase and Mg2+-ATPase activities was about 30% (v/v). The optimum pH values for Ca2+-ATPase and Mg2+-ATPase activities were about 8.0 and 8.8, respectively. The enhancing effect of organic solvents appears to be associated with their relative lipophilic character as defined by the octanol-water partition coefficient. The Ca2+-ATPase activities of th trypsin-activated and the heat-activated CF1 were inhibited and their Mg2+-ATPase activities were enhanced by the presence of methanol in the reaction mixture.  相似文献   

8.
We investigated membrane currents activated by intracellular divalent cations in two types of molluscan pacemaker neurons. A fast and quantitative pressure injection technique was used to apply Ca2+ and other divalent cations. Ca2+ was most effective in activating a nonspecific cation current and two types of K+ currents found in these cells. One type of outward current was quickly activated following injections with increasing effectiveness for divalent cations of ionic radii that were closer to the radius of Ca2+ (Ca2+ greater than Cd2+ greater than Hg2+ greater than Mn2+ greater than Zn2+ greater than Co2+ greater than Ni2+ greater than Pb2+ greater than Sr2+ greater than Mg2+ greater than Ba2+). The other type of outward current was activated with a delay by Ca2+ greater than Sr2+ greater than Hg2+ greater than Pb2+. Mg2+, Ba2+, Zn2+, Cd2+, Mn2+, Co2+, and Ni2+ were ineffective in concentrations up to 5 mM. Comparison with properties of Ca2(+)-sensitive proteins related to the binding of divalent cations suggests that a Ca2(+)-binding protein of the calmodulin/troponin C type is involved in Ca2(+)-dependent activation of the fast-activated type of K+ current. Th sequence obtained for the slowly activated type is compatible with the effectiveness of different divalent cations in activating protein kinase C. The nonspecific cation current was activated by Ca2+ greater than Hg2+ greater than Ba2+ greater than Pb2+ greater than Sr2+, a sequence unlike sequences for known Ca2(+)-binding proteins.  相似文献   

9.
The effects of monovalent (Li+, Cs+) divalent (Cu2+, Ca2+, Sr2+, Ba2+, Zn2+, Cd2+, Hg2+, Pb2+, Mn2+, Fe2+, Co2+, Ni2+) and trivalent (Cr3+, Fe3+, Al3+) metals ions on hexokinase activity in rat brain cytosol were compared at 500 microM. The rank order of their potency as inhibitors of brain hexokinase was: Cr3+ (IC50 = 1.3 microM) greater than Hg2+ = Al3+ greater than Cu2+ greater than Pb2+ (IC50 = 80 microM) greater than Fe3+ (IC50 = 250 microM) greater than Cd2+ (IC50 = 540 microM) greater than Zn2+ (IC50 = 560 microM). However, at 500 microM Co2+ slightly stimulated brain hexokinase whereas the other metal ions were without effect. That inhibition of brain glucose metabolism may be an important mechanism in the neurotoxicity of metals is suggested.  相似文献   

10.
Cultured smooth muscle cells from rat aorta were loaded with Na+, and Na+/Ca2+ antiport was assayed by measuring the initial rates of 45Ca2+ influx and 22Na+ efflux, which were inhibitable by 2',4'-dimethylbenzamil. The replacement of extracellular Na+ with other monovalent ions (K+, Li+, choline, or N-methyl-D-glucamine) was essential for obtaining significant antiport activity. Mg2+ competitively inhibited 45Ca2+ influx via the antiporter (Ki = 93 +/- 7 microM). External Ca2+ or Sr2+ stimulated 22Na+ efflux as would be expected for antiport activity. Mg2+ did not stimulate 22Na+ efflux, which indicates that Mg2+ is probably not transported by the antiporter under the conditions of these experiments. Mg2+ inhibited Ca2+-stimulated 22Na+ efflux as expected from the 45Ca2+ influx data. The replacement of external N-methyl-D-glucamine with K+, but not other monovalent ions (choline, Li+), decreased the potency of Mg2+ as an inhibitor of Na+/Ca2+ antiport 6.7-fold. Other divalent cations (Co2+, Mn2+, Cd2+, Ba2+) also inhibited Na+/Ca2+ antiport activity, and high external potassium decreased the potency of each by 4.3-8.6-fold. The order of effectiveness of the divalent cations as inhibitors of Na+/Ca2+ antiport (Cd2+ greater than Mn2+ greater than Co2+ greater than Ba2+ greater than Mg2+) correlated with the closeness of the crystal ionic radius to that of Ca2+.  相似文献   

11.
Various metal ions were capable of aggregating and precipitating conglutin gamma, an oligomeric glycoprotein purified from Lupinus albus seeds, at neutral pH values. The most effective metal ions, at 60-fold molar excess to the protein, were Zn2+, Hg2+ and Cu2+; a lower influence on the physical status of conglutin gamma was observed with Cr3+, Fe3+, Co2+, Ni2+, Cd2+, Sn2+, and Pb2+, while Mg2+, Ca2+ and Mn2+ had no effect at all. The insolubilisation of the protein with Zn2+, which is fully reversible, strictly depended on both metal concentration and pH. with middle points of the sharp transitions at three-fold molar excess and pH 6.5, respectively. Conglutin gamma is also fully retained on a metal affinity chromatography column at which Zn2+ and Ni2+ were complexed. A drop of pH below 6.0 and the use of chelating agents, such as EDTA and imidazole, fully desorbed the protein. A slightly lower binding to immobilised Cu2+ and Co2+ and no binding with Mg2+, Cd2+ and Mn2+ were observed. The role of the numerous histidine residues of conglutin gamma in the binding of Zn2+ is discussed.  相似文献   

12.
A differential effect is found of various bivalent cations (Ba2+, Ca2+, Mg2+, Cd2+, Co2+, Mn2+, Ni2+, Zn2+ and Hg2+) on stability of intermolecular Py-Pu-Pu triplex with different sequence of base triads. Ca2+, Mg2+, Cd2+, Co2+, Mn2+, Ni2+ and Zn2+ do stabilize the d(C)n d(G)n d(G)n triplex whereas Ba2+ and Hg2+ do not. Ba2+, Ca2+, Mg2+ and Hg2+ destabilize the d(TC)n d(GA)n d(AG)n triplex whereas Cd2+, Co2+, Mn2+, Ni2+ and Zn2+ stabilize it. The complexes we observe are rather stable because they do not dissociate during time of gel electrophoresis in the co-migration experiments. Chemical probing experiments with dimethyl sulfate as a probe indicate that an arbitrary homopurine-homopyrimidine sequence forms triplex with corresponding purine oligonucleotide in the presence of Mn2+ or Zn2+, but not Mg2+. In the complex the purine oligonucleotide has antiparallel orientation with respect to the purine strand of the duplex. Specifically, we have shown the formation of the Py-Pu-Pu triplex in a fragment of human papilloma virus HPV-16 in the presence of Mn2+.  相似文献   

13.
The effect of Ca2+, Cd2+, Ba2+, Mg2+ and pH on the renal epithelial Na(+)-channel was investigated by measuring the amiloride-sensitive 22Na+ fluxes into luminal membrane vesicles from pars recta of rabbit proximal tubule. It was found that intravesicular Ca2+ as well as extravesicular Ca2+ substantially lowered the channel-mediated flux. Amiloride sensitive Na+ uptake was nearly completely blocked by 10 microM Ca2+ at pH 7.4. The inhibitory effect of Ca2+ was dependent on pH. Thus, 10 microM Ca2+ produced 90% inhibition of 22Na+ uptake at pH 7.4, and only 40% inhibition at pH 7.0. The tracer fluxes measured in the absence of Ca2+ were pH independent over the range from 7.0 to 7.4. All the cations Ca2+, Cd2+, Ba2+ except Mg2+ inhibited the 22Na+ influx drastically when added extravesicularly in millimolar concentrations. The cations Cd2+, Ba2+ and Mg2+ in the same concentrations intravesicularly inhibited the 22Na+ influx only slightly. A millimolar concentration of Ca2+ intravesicularly blocked the amiloride-sensitive 22Na+ flux completely. The data indicate that Ca2+ inhibits Na+ influx specifically by binding to sites composed of one or several deprotonated groups on the channel proteins.  相似文献   

14.
Cu(2+)-induced permeability of cytoplasmic membranes of Escherichia coli for different cations and neutral molecules of saccharose was estimated by studying their effect on cell plasmolysis during uncharged exchange of cytoplasmic K+ ions by periplasmic space cations. The addition of copper resulted in the exchange of K+ ions by periplasmic Na+, Tris+, streptomycin2+, Cu2+, Ca2+, Mg2+, Cd2+, and Mn2+. It is concluded that Cu(2+)-induced conducting pathways in bacterial membranes are hydrophilic channels with a radius of approximately 0.5 nm and a nonselective permeability for different cations.  相似文献   

15.
Leccinum scabrum sporocarps and associated topsoils from two areas in Poland have been characterized for contents and bioconcentration potential of Ag, Al, Ba, Ca, Cd, Co, Cu, Fe, Hg, K, Mg, Mn, Na, Ni, P, Pb, Rb, Sr and Zn. Topsoil and fruitbody element composition varied between the two study sites, most likely as a result of local soil geochemistry. Element content of the labile fraction in topsoil from both sites followed the ‘pseudo‐total’ fraction and median values (mg kg?1 dry matter) were: K 380 and 340, Mg 760 and 840, P 1100 and 920, Al 3800 and 8100, Ag 0.31 and 0.28, Ba 28 and 37, Ca 920 and 790, Cd 0.23 and 0.23, Co 2.0 and 1.7, Cu 3.2 and 3.6, Fe 2800 and 6300, Mn 280 and 180, Na 99 and 110, Ni 7.8 and 8.8, Pb 12 and 18, Rb 1.3 and 2.1, Sr 4.8 and 4.0 and Zn 22 and 19, respectively. Only for some elements such as K, Mg, Al, Ag, Ca, Co, Mn, Na, Ni, Sr and Zn we found concentration differences between the two study sites for the caps of sporocarps. With the exception of Al, Mn, Na and Pb, stipes showed a similar tendency. Caps had a higher concentration of K, Rb, P, Mg, Al, Ag, Cu, Fe, Zn, Cd, Pb and Ni compared to stipes, while Na, Ba and Sr contents were higher in stipes. The comparison of soil and fruitbody concentrations indicates that L. scabrum bioconcentrate some elements while others are bioexcluded.  相似文献   

16.
The concentrations of metals (Mn, Pb, Fe, Zn, Cu, Cd,Co, Ni, Cr, Na, K, Ca, Mg) were determined in thegreen alga Ulva rigida, in the sediment andseawater of Thermaikos Gulf (Greece) during monthlysamplings in 1994–1995. This Gulf is the recipientof domestic and industrial effluents. Pb, Fe, Cu, Coand Cr concentrations in U. rigida at the studyarea were higher than those 13 years earlier andapparently came from different sources than those forZn, Cd and Ni. The relative abundance of metals inthe alga decreased in the order: Mg > Na > K >Ca > Pb > Fe > Mn > Zn > Cr, Cu > Ni >Co > Cd. Only Cu concentrations in the alga fromKalochori and Cd ones from Viamyl showed significantseasonal changes. Cu and Cd concentrations ingeneral followed the same pattern of variation, withminimum values in winter-spring. This pattern isdiscussed in relation to growth dynamics and tissueage. Only Pb concentrations in the alga showed asignificant positive correlation with concentrationsin the seawater. There were both positive andnegative correlations among some metals in the alga. It is concluded that U. rigida can be used as anindicator species, especially for Pb.  相似文献   

17.
猪红细胞膜Ca~(2+)-ATP酶是一种钙调蛋白(CaM)依赖酶,其活力又依赖巯基的完整性。实验应用Ca~(2+)-ATP酶这一模型体系观察到重金属离子,Pb~(2+)、Cd~(2+)和Hg~(2+)都能替代Ca~(2+),激活CaM,从而激活Ca~(2+)-ATP酶;其最大刺激活力分别为85%、80%和30%,半刺激浓度分别为32、27和0.7μmol/L。当三种重金属离子的浓度增加时,则与Ca~(2+)-ATP酶的巯基结合,抑制酶的活力,Pb2~(2+)、Cd~(2+)和Hg~(2+)的半抑制浓度分别为370、440和2μmol/L。抑制作用为渐进性过程,而刺激作用为即时效应。抑制作用可为巯基化物,特别是二巯基化物所逆转。研究结果提示,CaM可能是重金属中毒最初作用的靶分子,而重金属中毒不仅使CaM“开关”失灵,还可能导致细胞内Ca~(2+)的调节全面失控。  相似文献   

18.
The effect of divalent cations on bovine sperm adenylate cyclase activity was studied. Mn2+, Co2+, Cd2+, Zn2+, Mg2+ and Ca2+ were found to satisfy the divalent cation requirement for catalysis of the bovine sperm adenylate cyclase. These divalent cations in excess of the amount necessary for the formation of the metal-ATP substrate complex were found to stimulate the enzyme activity to various degrees. The magnitude of stimulation at saturating concentrations of the divalent cations was strikingly greater with M2+ than with either Ca2+, Mg2+, Zn2+, Cd2+ or Co2+. The apparent Km was lowest for Zm2+ (0.1 - 0.2 mM) than for any of the other divalent cations tested (1.2 - 2.3 mM). The enzyme stimulation by Mn2+ was decreased by the simultaneous addition of Co2+, Cd2+, Ni2+ and particularly Zn2+ and Cu2+. The antagonism between Mn2+ and Cu2+ or Zn2+ appeared to have both competitive and non-competitive features. The inhibitory effect of Cu2+ on Mn2+-stimulated adenylate cyclase activity was prevented by 2,3-dimercaptopropanol, but not by dithiothreitol, L-ergothioneine, EDTA, EGTA or D-penicillamine. Ca2+ at concentrations of 1-5 mM was found to act synergistically with Mg2+, Zn2+, Co2+ and Mn2+ in stimulating sperm adenylate cyclase activity. The Ca2+ augmentation of the stimulatory effect of Zn2+, Co2+, Mg2+ and Mn2+ appeared to be specific.  相似文献   

19.
BackgroundBiomedical application is based on the use of LIBS-derived data on chemical contents of tissues in diagnosis of diseases, forensic investigation, as well as a mechanism for providing online feedback for laser surgery. Although LIBS has certain advantages, the issue of correlation of LIBS-derived data on chemical element content in different human and animal tissues with other methods, and especially ICP-MS, remains pertinent. The objective of the present review was to discuss the application of laser-induced breakdown spectroscopy (LIBS) for elemental analysis of human biosamples or tissues from experimental models of human diseases. Methods. A systematic search in the PubMed-Medline, Scopus, and Google Scholar databases using the terms laser-induced breakdown spectroscopy, LIBS, metals, trace elements, minerals, and names of particular chemical elements was performed up through 25 February, 2023. Of all extracted studies only those dealing with human subjects, human tissues, in vivo animal and in vitro cell line models of human diseases were reviewed in detail. Results. The majority of studies revealed a wide number of metals and metalloids in solid tissues including teeth (As, Ag, Ca, Cd, Cr, Cu, Fe, Hg, Mg, Ni, P, Pb, Sn, Sr, Ti, and Zn), bones (Al, Ba, Ca, Cd, Cr, K, Mg, Na, Pb, Sr), and nails (Al, As, Ca, Fe, K, Mg, Na, P, Pb, Si, Sr, Ti, Zn). At the same time, LIBS was also used for estimation of trace element and mineral content in hair (Ca, Cu, Fe, K, Mg, Na, Zn), blood (Al, Ca, Co, Cd, Cu, Fe, Mg, Mn, Ni, Pb, Si, Sn, Zn), cancer tissues (Ca, Cu, Fe, Mg, K, Na, Zn) and other tissues. Single studies revealed satisfactory correspondence between quantitative LIBS and ICP-OES/MS data on the level of As (81–93 %), Pb (94–98 %), Cd (50–94 %) in teeth, Cu (97–105 %), Fe (117 %), Zn (88–117 %) in hair, Ca (97–99 %), Zn (90–95 %), and Pb (61–82 %) in kidney stones. LIBS also estimated specific patterns of trace element and mineral content associated with multiple pathologies, including caries, cancer, skin disorders, and other systemic diseases including diabetes mellitus type 2, osteoporosis, hypothyroidism, etc. Data obtained from in situ tissue LIBS analysis were profitably used for discrimination between tissue types. Conclusions. Taken together, the existing data demonstrate the applicability of LIBS for medical studies, although further increase in its sensitivity, calibration range, cross-validation, and quality control is required.  相似文献   

20.
T R Cassity  B J Kolodziej 《Microbios》1984,41(160):117-125
A study was undertaken to determine if the capsule produced by Bacillus megaterium ATCC 19213 was capable of binding metallic ions. For non-toxic metallic ions, this was accomplished by determining the relative concentrations of Fe2+, Ca2+, Zn2+, Mg2+, and Mn2+ removed from a chemically defined medium by the normally capsulated parent strain and two mutants with much smaller capsules. For toxic metals, the rates of respiration of the parent strain and a small capsule mutant in the presence of Cu2+, Hg2+, and Ag1+ were compared. It was found that the parent strain accumulated more Ca2+, Mg2+, and Mn2+. Accumulation of Fe2+ and Zn2+ was similar for the parent strain and the small capsule mutants. Respiration of the parent strain was less inhibited by Cu2+, Hg2+, and Ag1+, indicating that these metals are also bound to the capsule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号