首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A model of organ culture of 18 day old fetal rat intestine (Quaroni, 1985) was modified and characterized in the present work with the purpose of developing an in vitro model for the study of intestinal epithelial cell behaviour. Fragments of this intestine were kept in suspension culture for 7 days and then explanted onto collagen (type I) matrix. Within a day, the fragments became anchored to the substratum and a circular monolayer grew out to about 1 cm diameter. In the fragments, an outer layer of absorptive epithelial cells came to enclose a stroma, which was polarized into a loose (mesenchymal) and a dense portion. The dense portion contained a mixture of smooth muscle cells and primitive stem-type epithelial cells ('p-cells'). After explantation, at the contact point with the matrix, the epithelium broke up and the mesenchyme grew into the matrix and anchored the fragment. The epithelial edges now became continuous with the developing monolayer. Radioautography with tritiated thymidine indicated a constant cell renewal in epithelium and monolayer apparently from foci of p-cells, a reserve population of which was seen to be sequestered among the smooth muscle cells. Activated stem cells could differentiate into three mature epithelial phenotypes, each differentiation pathway apparently being determined by the type of underlying stroma. Immunohistochemistry using gold- and fluorescein-labeled monoclonal antibodies indicated that adult differentiation-specific markers (e.g. brush border enzymes) were present in the fragment epithelium but not in the monolayer cells. On the other hand, the monolayer cells could be induced to express some of these markers by contact with mesenchymal cells or by co-culturing with fibroblastic cell lines. Matrigel substratum mixed with collagen (type I) supported the appearance in monolayer of strands positive for amino-peptidase and lactase. The model thus appears to be suitable for the in vitro study of epithelial renewal and differentiation, and it has already provided some results in this respect.  相似文献   

2.
This report describes a novel in vivo model of intestinal differentiation. Fourteen day, undifferentiated fetal rat small intestine, stripped of the major part of its mesenchyme, suspended in a type I collagen gel and then xenografted into a nude mouse, undergoes small intestinal morphogenesis and cytodifferentiation. All four major epithelial lineages, namely Paneth, goblet, columnar and endocrine are present. Double-label nonisotopic in situ hybridization, employing biotinylated and digoxigenin-labelled whole rat DNA and whole mouse DNA probes, was performed to distinguish donor cells from host cell types. The outer longitudinal smooth muscle layer, and the major part of the lamina propria, including pericryptal fibroblasts, are of host mouse origin; the inner circular smooth muscle layer is of donor rat origin. Cells of the muscularis propria and lamina propria acquired smooth muscle alpha-actin, presumably under the influence of the donor endoderm. Furthermore, this xenograft develops a host vascular network, and cells with the morphological appearance of lymphocytes are present within the intestinal epithelium. The production of chemotactic factors by the endoderm is postulated because grafting of collagen gel alone results in a minimal invasion by stromal cells which do not express smooth muscle alpha-actin.  相似文献   

3.
Myometrial development from the prenatal to adult period was examined in rats and mice 1) by histologic and immunocytochemical methods with anti-actin, -vimentin, and -laminin to assess cytodifferentiation of smooth muscle and fibroblastic cells; and 2) by morphometric procedures to assess quantitatively the expression of cellular orientation in the emerging inner circular myometrial layer. Uterine mesenchymal cells initially were uniformly vimentin-positive, undifferentiated, and randomly oriented during the late fetal period. By the early neonatal period, three mesenchymal layers became recognizable histologically, the middle one of which (prospective circular myometrium) developed distinct circular orientation and differentiated into a layer composed of actin-positive smooth muscle cells. The cells of the inner mesenchymal layer initially exhibited radial orientation. By 10 days postpartum, the outer longitudinal mesenchymal layer differentiated into bundles of smooth muscle cells representing the longitudinal myometrium. The inner mesenchymal layer remained vimentin-positive and differentiated into the randomly ordered endometrial stroma. The cells of the middle and outer mesenchymal layers that were destined to form myometrium initially expressed vimentin throughout and then coexpressed vimentin and actin, but with time vimentin staining disappeared in the maturing smooth muscle cells as they expressed actin.  相似文献   

4.
The present study represents a first attempt to elucidate the regulatory properties displayed by the non-epithelial portion of the intestinal mucosa, growing as fibroblasts in monolayer cultures. Thus, we compared the inductive action of 6-day suckling rat duodenal fibroblasts with that displayed by chick embryonic intestinal mesenchyme on the heterotypic cytodifferentiation of 5 1/2-day chick embryonic gizzard endoderm. The latter, isolated by 0.03% collagenase, was surrounded by intestinal intramucosal fibroblastic cell sheets. As control experiments, fibroblastic cells derived from the intestinal muscle or from 20-day fetal rat skin and lung were used. Every type of association was grafted into the coelomic cavity of 3-day chick embryos for 11 to 12 days, a system providing their vascularization and growth. The results clearly demonstrate that the mucosal fibroblastic cells of rat intestine were as potent as embryonic intestinal mesenchyme in inducing brush-border enzymes like sucrase and maltase, in conformity with an induced intestinal morphology. In contrast, the control fibroblastic cells were completely ineffective.  相似文献   

5.
We report here that Glypican-6 (GPC6)-null mice display at birth small intestines that are 75% shorter than those of normal littermates. Notably, we demonstrate that the role of GPC6 in intestinal elongation is mediated by both Hedgehog (Hh) and non-canonical Wnt signaling. Based on results from in vitro experiments, we had previously proposed that GPC6 stimulates Hh signaling by interacting with Hh and Patched1 (Ptc1), and facilitating/stabilizing their interaction. Here we provide strong support to this hypothesis by showing that GPC6 binds to Ptc1 in the mesenchymal layer of embryonic intestines. This study also provides experimental evidence that strongly suggests that GPC6 inhibits the activity of Wnt5a on the intestinal epithelium by binding to this growth factor, and reducing its release from the surrounding mesenchymal cells. Finally, we show that whereas the mesenchymal layer of GPC6-null intestines displays reduced cell proliferation and a thinner smooth muscle layer, epithelial cell differentiation is not altered in the mutant gut.  相似文献   

6.
Summary Proventricular epithelium (PV epithelium) from 6-day chicken embryos was associated with cultured cells, derived from fetal rat small intestine, or with fetal rat or human skin fibroblasts. The cytodifferentiation of PV epithelium was investigated using antibodies to chicken pepsinogen, a marker protein of PV epithelium, and to chicken sucrase, a marker enzyme of the small-intestinal brush-border membrane. PV epithelium formed complex glands and produced pepsinogen in association with cultured gut mesenchymal cells and skin fibroblasts. Its development was comparable to that achieved under the influence of PV mesenchyme. PV epithelial development was severely inhibited, however, under the influence of intact chicken or rat intestinal mesenchyme. The data are consistent with the idea that during the first step of epithelial-mesenchymal interactions, the epithelium and not the mesenchyme may be responsible for the determination of the developmental fate.  相似文献   

7.
《The Journal of cell biology》1986,103(6):2787-2796
A monoclonal antibody (anti-alpha sm-1) recognizing exclusively alpha- smooth muscle actin was selected and characterized after immunization of BALB/c mice with the NH2-terminal synthetic decapeptide of alpha- smooth muscle actin coupled to keyhole limpet hemocyanin. Anti-alpha sm- 1 helped in distinguishing smooth muscle cells from fibroblasts in mixed cultures such as rat dermal fibroblasts and chicken embryo fibroblasts. In the aortic media, it recognized a hitherto unknown population of cells negative for alpha-smooth muscle actin and for desmin. In 5-d-old rats, this population is about half of the medial cells and becomes only 8 +/- 5% in 6-wk-old animals. In cultures of rat aortic media SMCs, there is a progressive increase of this cell population together with a progressive decrease in the number of alpha- smooth muscle actin-containing stress fibers per cell. Double immunofluorescent studies carried out with anti-alpha sm-1 and anti- desmin antibodies in several organs revealed a heterogeneity of stromal cells. Desmin-negative, alpha-smooth muscle actin-positive cells were found in the rat intestinal muscularis mucosae and in the dermis around hair follicles. Moreover, desmin-positive, alpha-smooth muscle actin- negative cells were identified in the intestinal submucosa, rat testis interstitium, and uterine stroma. alpha-Smooth muscle actin was also found in myoepithelial cells of mammary and salivary glands, which are known to express cytokeratins. Finally, alpha-smooth muscle actin is present in stromal cells of mammary carcinomas, previously considered fibroblastic in nature. Thus, anti-alpha sm-1 antibody appears to be a powerful probe in the study of smooth muscle differentiation in normal and pathological conditions.  相似文献   

8.
Expression of actin isoforms in developing rat intestinal epithelium   总被引:1,自引:0,他引:1  
A minimum of six very similar but distinct actin isoforms are encoded by the mammalian genome. Developmental regulation of these genes results in a tissue-specific distribution of the isoforms in the adult. Using a panel of actin specific monoclonal antibodies (MAb), we recently reported the expression of two unique actin isoforms in adult rat intestinal brush border. In this report, we examine the developmental expression of these and other actin isoforms in rat intestinal epithelial cells. Isoforms containing the HUC 1-1 and/or C4 epitopes are present by day 15 of gestation and are continuously expressed throughout adult life. Unexpectedly, the gamma-enteric smooth muscle isoactin, defined by the B4 epitope, is transiently expressed in these non-muscle cells late in gestation. The alpha-vascular smooth muscle isoform, however, is not expressed in intestinal epithelial cells during development and, as previously reported, both smooth muscle isoforms are absent in epithelial cells of adult intestine. In addition, we demonstrate that although multiple isoforms are expressed simultaneously in these cells, they are not uniformly distributed at the subcellular level, suggesting that the cell recognizes the actin isoforms as functionally distinct entities.  相似文献   

9.
The intestinal subepithelial myofibroblasts (ISEMFs) are located in the lamina propria under the epithelial cells. ISEMFs are thought to have an important role in protecting and maintaining the integrity of the epithelial cell layer and also in the process of wound healing. In this study, we report that the membrane-bound proteoglycan NG2 is abundantly distributed in the ISEMF layer of the mouse and human intestines. NG2 immunostaining in this layer is distributed with similar intensity from the crypt to villi. NG2 is also immunolocalized along the membranes of smooth muscle cells in the intestinal muscle layer. However, skeletal and cardiac muscles are not immunostained for NG2, demonstrating selective expression of the proteoglycan by smooth muscle cells. Using electron microscopy, NG2 immunoreactivity was strongly observed along the cell membranes of ISEMF, with weak diffusion into the neighboring matrix, indicative of the presence of some “shed” NG2. This first report of NG2 proteoglycan expression by ISEMF provides insights into the nature of the interaction of these cells with extracellular matrix and/or intestinal epithelial cells.  相似文献   

10.
Immunohistochemistry of -smooth muscle actin and desmin, two markers of smooth muscle cell differentiation, and electron-microscopic observation of thick filaments of myosin were performed on the media of the developing rat hepatic portal vein to gain insights into the chronology of differentiation of its longitudinal and circular smooth muscles. In accordance with the ultrastructural distribution of thin filaments, staining of -smooth muscle actin is lightly positive in the myoblasts at postnatal day 1 and then extends in probably all muscle cells of the developing vessel. Desmin, which appears later than -smooth muscle actin in the two muscles, is distributed throughout the longitudinal layer at day 8, whereas the first arrangements of thick filaments are detectable in most longitudinal muscle cells; at this stage, desmin and thick filaments are absent from the poorly differentiated circular muscle cells. The longitudinal muscle cells differentiate in a strikingly synchronized way from day 8 onwards, conferring a homogeneous structure to the developing and mature longitudinal layer. Several desmin-positive cells and a heterogeneous distribution of thick filaments occur in the circular muscle at day 14; the subsequent extension of these filaments in this layer results in a persisting heterogeneous distribution in the young 7-week-old adult. Many features of the mature smooth muscle cells are established within the third week in the longitudinal muscle, approximately one week before those of the circular layer. These results are consistent with the function of the longitudinal muscle as a spontaneously contractile smooth muscle unit, and emphasize the need for its fast maturation to fulfil its major role in the control of portal blood flow.  相似文献   

11.
The expression patterns of intermediate filament proteins in fetal and normal or nonpathological adult human lung tissues are described using (chain-specific) monoclonal antibodies. In early stages of development (9-10 weeks and 25 weeks of gestation) only so-called simple cytokeratins such as cytokeratins 7 (minor amounts). 8, 18 and 19 are detected in bronchial epithelial cells. At later stages of development, the cytokeratin expression patterns become more complex. The number of bronchial cells positive for cytokeratin 7 increases, but basal cells in the bronchial epithelium remain negative. These latter cells show, however, expression of cytokeratin 14 in the third trimester of gestation. Developing alveolar epithelial cells express cytokeratins 7, 8, 18 and 19. In adult human bronchial epithelium cytokeratins 4 (varying amounts), 7, 8, 13 (minor amounts), 14, 18 and 19 can be detected, with the main expression of cytokeratins 7, 8, and 18 in columnar cells and the main expression of cytokeratin 14 in basal cells. Vimentin is detected in all mesenchymal tissues. In addition, fetal lung expresses vimentin in bronchial epithelium, however, to a lesser extent with increasing age, resulting in the expression of vimentin in only few scattered bronchial cells at birth. Also in adult bronchial epithelium the expression of vimentin is noticed in part of the basal and columnar epithelial cells. Desmin filaments, present in smooth muscle cells of the lung, appear to alter their protein structure with age. In early stages of development smooth muscle cells surrounding blood vessels are partly reactive with some cytokeratin antibodies and with a polyclonal desmin antibody. At week 9-10 and week 25 of gestation a monoclonal antibody to desmin, however, is not reactive with blood vessel smooth muscle cells but is only reactive with smooth muscle cells surrounding bronchi. With increasing age the reactivity of cytokeratin antibodies with smooth muscle cells in blood vessels decreases, while the reactivity with the monoclonal desmin antibody increases. Our results show that during differentiation profound changes in the intermediate filament expression patterns occur in the different cell types of the developing lung.  相似文献   

12.
The media of the rat hepatic portal vein is composed of an internal circular muscular layer (CL) and an external longitudinal muscular layer (LL). These two perpendicular layers differentiate progressively from mesenchymal cells within the first month after birth. In this paper, we studied the development of calcitonin gene-related peptide (CGRP) innervation during post-natal differentiation of the vessel. We show that CGRP innervation is already present around the vessel at birth in the future adventitia but far from the lumen of the vessel. Progressively, CGRP immunoreactive fibers reached first LL then CL. CL by itself become only innervated at day 14 after birth. This corresponds to the time at which thick filaments (myosin) are visible in electron microscopy and desmin visualisable by immunocytochemistry. Furthermore, we provide evidence by autoradiography, that binding sites for CGRP are transiently expressed on the portal vein media at day 1 and 14 after birth. Vascular smooth muscle cells were transfected with constructs containing promoters for desmin or smooth muscle myosin heavy chain (smMHC). CGRP treatment of the cells significantly increased the expression of smMHC. Overall these results suggest that CGRP can potentially influence the differentiation of smooth muscle cells from the vessel wall.  相似文献   

13.
Among eight species of mammals in this study (cattle, sheep, pig-tail and rhesus monkeys, rabbit, pig, rat, and dog) four basic patterns of anatomical structure at the uterotubal junction are described. The classification of types is based upon the presence or absence of an intramural portion of the oviduct and of isthmal folds or plicae projecting into the lumen of the uterine cornu. Histological variations are reported for three tissues: epithelial and connective of the mucosa and smooth muscle of the tunica muscularis. In the epithelium during the estrous cycle the differences recorded include: (a) absence of ciliated cells in the distal end of the oviduct in rat and dog; (b) variations in ciliated and nonciliated cells in (1) cell height, (2) location, shape and stainability of the nucleus, and (3) in amount and stainability of apical cytoplasm; (c) presence of lymphoblast-like cells which appear to migrate through the epithelium from the lamina propria. The connective tissue of the mucosa, as a circular layer and as cores for the mucosal folds, shows variations in thickness and in relative density of cells and fibers of the matrix. Emphasis is given to the presence of an inner longitudinal layer of smooth muscle in the tunica muscularis of the distal oviduct in six of the eight species.  相似文献   

14.
Cellular networks of pacemaker activity in intestinal movements are still a matter of debate. Because gap-junctional intercellular communication in the intestinal wall may provide important clues for understanding regulatory mechanisms of intestinal movements, we have attempted to clarify the distribution patterns of three types of gap junction proteins. Using antibodies for connexin40, connexin43, connexin45, smooth muscle actin, and vimentin, immunocytochemical observations were made with the confocal laser scanning microscope on cryosections of fresh-frozen small intestine and colon of the dog and rat. Connexin 45 was localized along the deep muscular plexus of the small intestine in both dog and rat. Double labeling studies revealed that connexin45 overlapped with vimentin –, but not actin-positive areas, indicating the fibroblast-like nature of the cells, rather than their being smooth muscle-like. Connexin43 immunoreactivity appeared along the smooth muscle cell surface in the outer circular layer of the small intestine of both animals. Connexin 40 immunoreactivity was not observed in the muscle layer other than in the wall of large blood vessels. It is suggested that connexin45-expressing cells along the deep muscular plexus of dog and rat small intestine are likely to act as a constituent of a pacemaker system, which may include a conductive system, by forming a cellular network operating via specific types of gap junctions.  相似文献   

15.
The aim of the present study was to examine the effects of mesenchyme on the cytodifferentiation of the Dunning tumor (DT, R3327), a transplantable rat prostatic adenocarcinoma developed spontaneously from the dorsolateral prostate of a Copenhagen rat. Small pieces of DT were combined with mesenchyme of the rat urogenital sinus (18-day fetal, UGM) or seminal vesicle (0-day neonatal, SVM). Both types of combinations were grown under the kidney capsule of male athymic nude mice for 4 weeks. At harvest, the tissue recombinants were fixed and processed for electron microscopy. Grafts of parental DT were similarly processed for electron microscopy. The tumor was characterized by tubules lined by 2-3 layers of undifferentiated cells lacking secretory granules. The basal lamina was reduplicated, and epithelioid cells traversing gaps in the basal lamina were frequently observed. The stroma was composed of a mixture of fibroblastic and large epithelioid cells derived from the ductal lining epithelium through a process of micrometastasis. In UGM or SVM+DT combinations the mesenchyme influenced the differentiation and secretory activity of the DT epithelium. The induced DT epithelial cells exhibited a well-developed granular endoplasmic reticulum, a large Golgi apparatus and prominent secretory granules which were never observed in the parental DT. The basal lamina returned to normal, while the incidence of micrometastasis was decreased. The collagen content of the stroma was increased with a concurrent appearance of smooth muscle cells surrounding those tubules where secretory cytodifferentiation had occurred. While the mechanism involved in the mesenchyme-induced change in cytodifferentiation remains unknown, it is evident that the DT epithelial cells when associated with normal embryonic or neonatal mesenchyme can express a more normal cytodifferentiation and function. It is concluded (a) that the DT cells can be induced by mesenchyme to express more highly differentiated ultrastructural patterns and secretory cytodifferentiation, (b) that the induced secretory cytodifferentiation is associated with a reduction in invasiveness (micrometastasis) and a more normal-appearing basal lamina and (c) that the increased abundance of collagen fibers and the differentiation of smooth muscle in the stromal compartment are associated with secretory cytodifferentiation suggesting that reciprocal epithelial-mesenchymal interactions are involved in the regulation of the pathobiology of the DT.  相似文献   

16.
Vas deferens is a conduit for sperm and fluid from the epididymis to the urethra. The duct is surrounded by a thick smooth muscle layer. To map the actin cytoskeleton of the duct and its epithelium, we reacted sections of the proximal and distal regions with fluorescent phalloidin. Confocal microscopic imaging showed that the cylinder‐shaped epithelium of the proximal region has a thick apical border of actin filaments that form microvilli. The epithelium of the distal region is covered with tall stereocilia (13–18 µm) that extend from the apical border into the lumen. In both regions, the lateral and basal cell borders showed a thin lining of actin cytoskeleton. The vas deferens epithelium contains various channels to regulate the fluid composition in the lumen. We mapped the localization of the epithelial sodium channel (ENaC), aquaporin‐9 (AQP9), and cystic fibrosis transmembrane conductance regulator (CFTR) in the rat and mouse vas deferens. ENaC and AQP9 immunofluorescence were localized on the luminal surface and stereocilia and also in the basal and smooth muscle layers. CFTR immunofluorescence appeared only on the luminal surface and in smooth muscle layers. The localization of all three channels on the apical surface of the columnar epithelial cells provides clear evidence that these channels are involved concurrently in the regulation of fluid and electrolyte balance in the lumen of the vas deferens. ENaC allows the flow of Na+ ions from the lumen into the cytoplasm, and the osmotic gradient generated provides the driving force for the passive flow of water through AQP channels.  相似文献   

17.
18.
The cell types of the gut expressing Toll-like receptor 4, which recognizes specifically bacterial lipopolysaccharides, as well as the functionality of this receptor, have remained controversial. We aimed to clarify these issues. Mouse and human intestinal specimens were stained immunohistochemically to detect Toll-like receptor 4 expression. Smooth muscle and myenteric plexus cells but not enterocytes revealed receptor expression. Murine intestinal smooth muscle and myenteric plexus cells but not enterocytes showed nuclear translocation of nuclear factor-kappaB after in vivo stimulation with lipopolysaccharide. Moreover, lipopolysaccharide added to human jejunum biopsies free of epithelial cells induced release of interleukin-8 (IL-8). We can conclude that Toll-like receptor 4 is not expressed in epithelial layer, but rather on smooth muscle and myenteric plexus cells and that expression is functional. The expression of Toll-like receptor 4 on smooth muscle and myenteric plexus cells is consistent with the possibility that these cells are involved in intestinal immune defense; the low or absent expression of Toll-like receptor 4 on enterocytes might explain the intestinal epithelium hyporesponsiveness to the abundance of LPS in the intestinal lumen.  相似文献   

19.
Laminins are extracellular matrix glycoproteins that are involved in various cellular functions, including adhesion, proliferation, and differentiation. In this study, we examine the expression patterns and the cellular origins of the laminin alpha2, alpha4, and alpha5 chains in the developing mouse intestine and in in vitro mouse/chick or chick/mouse interspecies hybrid intestines. In situ hybridization and Northern blot analysis revealed that mRNA levels for all three laminin alpha chains are highest in the fetal intestine undergoing intense morphogenetic movements. Laminin alpha4 mRNA and polypeptide are associated with mesenchyme-derived cell populations such as endothelium and smooth muscle. In contrast, laminin alpha2 and alpha5 chains participate in the structural organization of the subepithelial basement membrane and, in the mature intestine, show a complementary pattern of expression. All three laminin alpha chains occur in the smooth muscle basement membrane, with a differential expression of laminin alpha5 chain in the circular and longitudinal smooth muscle layers. The cellular origin of laminin alpha2 and alpha5 chains found in the subepithelial cell basement membrane was studied by immunocytochemical analysis of mouse/chick or chick/mouse interspecies hybrid intestines at various stages of development using mouse-specific antibodies. Laminin alpha2 was found to be deposited into the basement membrane exclusively by mesenchymal cells, while the laminin alpha5 chain was deposited by both epithelial and mesenchymal cells in an apparently developmentally regulated pattern. We conclude that (1) multiple laminin alpha chains are expressed in the intestine, implying specific roles for individual laminin isoforms during intestinal development, and (2) reciprocal epithelial/mesenchymal interactions are essential for the formation of a structured subepithelial basement membrane.  相似文献   

20.
In rodents, the intestinal tract progressively acquires a functional regionalization during postnatal development. Using lactase-phlorizin hydrolase as a marker, we have analyzed in a xenograft model the ontogenic potencies of fetal rat intestinal segments taken prior to endoderm cytodifferentiation. Segments from the presumptive proximal jejunum and distal ileum grafted in nude mice developed correct spatial and temporal patterns of lactase protein and mRNA expression, which reproduced the normal pre- and post-weaning conditions. Segments from the fetal colon showed a faint lactase immunostaining 8-10 d after transplantation in chick embryos but not in mice; it is consistent with the transient expression of this enzyme in the colon of rat neonates. Heterotopic cross-associations comprising endoderm and mesenchyme from the presumptive proximal jejunum and distal ileum developed as xenografts in nude mice, and they exhibited lactase mRNA and protein expression patterns that were typical of the origin of the endodermal moiety. Endoderm from the distal ileum also expressed a normal lactase pattern when it was associated to fetal skin fibroblasts, while the fibroblasts differentiated into muscle layers containing alpha-smooth- muscle actin. Noteworthy, associations comprising colon endoderm and small intestinal mesenchyme showed a typical small intestinal morphology and expressed the digestive enzyme sucrase-isomaltase normally absent in the colon. However, in heterologous associations comprising lung or stomach endoderm and small intestinal mesenchyme, the epithelial compartment expressed markers in accordance to their tissue of origin but neither intestinal lactase nor sucrase-isomaltase. A thick intestinal muscle coat in which cells expressed alpha-smooth- muscle actin surrounded the grafts. The results demonstrate that: (a) the temporal and positional information needed for intestinal ontogeny up to the post-weaning stage results from an intrinsic program that is fixed in mammalian fetuses prior to endoderm cytodifferentiation; (b) this temporal and positional information is primarily carried by the endodermal moiety which is also able to change the fate of heterologous mesodermal cells to form intestinal mesenchyme; and (c) the small intestinal mesenchyme in turn may deliver instructive information as shown in association with colonic endoderm; yet this effect is not obvious with nonintestinal endoderms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号