首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
TCR stimulation by Ag or anti-receptor antibodies in murine T cells results in the activation of two independent protein kinases, protein kinase C (PKC) and a protein tyrosine kinase. Similarly, stimulation of murine Thy-1 or Ly-6 with mAb also results in activation of both of these kinase pathways. Tyrosine phosphorylation in all cases occurs on the TCR zeta-chain. It is known that Ag and anti-receptor antibodies activate PKC in human T cells. In this study we demonstrate that mitogen or anti-CD3 antibodies activate tyrosine phosphorylation of the human TCR-zeta-chain. PMA, which activates PKC, does not result in zeta-chain tyrosine phosphorylation. Stimulation of human T cells by antibodies that bind the CD2 molecule is an alternate mode of inducing T cell proliferation. These antibodies surprisingly do not induce tyrosine phosphorylation of the zeta-chain. Thus, different methods of cellular activation can result in distinguishable patterns of receptor-mediated biochemical signaling events.  相似文献   

2.
Activation of T cells through the TCR/CD3 receptor complex with either specific Ag or antibody results in tyrosine phosphorylation of intracellular protein substrates and phosphatidylinositol-phospholipase C (PLC) signaling, leading to the generation of PI breakdown products and the mobilization of intracellular calcium. Stimulation of the T cell surface receptor CD2 similarly propagates early signals through phosphatidylinositol-PLC activation. Previous reports have shown that CD3 activation leads to tyrosine phosphorylation of the PLC isozyme PLC gamma 1. In this report, we investigated the potential similarity between CD3-induced signaling through PLC gamma 1 and that induced by CD2. We show that stimulation of CD2 receptors on T cells caused tyrosine phosphorylation of PLC gamma 1. Cross-linking of CD2 with CD3 receptors augmented the phosphorylation of PLC gamma 1 on tyrosine, whereas ligation of the CD45 tyrosine phosphatase with CD2 receptors prevented PLC gamma 1 tyrosine phosphorylation. T cells stimulated by ligation of CD2 with its counter-receptor in the form of a soluble LFA-3/Ig fusion protein cross-linked on the cell surface, resulted in a low, but detectable level of PLC gamma 1 phosphorylation with prolonged kinetics, whereas that induced by cross-linking with anti-CD2 was stronger but transient. Co-ligation of LFA-3/Ig with suboptimal concentrations of anti-CD3 resulted in profound augmentation of PLC gamma 1 tyrosine phosphorylation, mobilization of intracellular calcium and T cell proliferation. To explore the relationship between CD3- and CD2-stimulated signaling, T cells were desensitized through 1 h incubation with anti-CD3. CD3 receptor modulation potently down-regulated CD2-induced PLC gamma 1 tyrosine phosphorylation and calcium mobilization. In contrast, PMA or ionomycin treatment did not alter CD2-stimulated tyrosine phosphorylation of PLC gamma 1, suggesting that tyrosine kinase inhibition by CD3 receptor modulation was not caused by signaling events downstream of PLC gamma 1. Taken together, these results support the hypothesis that CD2 provides a potent co-stimulatory signal for CD3-induced T cell activation that is associated with tyrosine kinase(s) and PLC gamma 1.  相似文献   

3.
Antiphosphotyrosine immunoblots were used to characterize tyrosine phosphorylated proteins after stimulation of the human TCR. Increased tyrosine phosphorylation was evident on at least 12 substrates within 2 min after ligation of the TCR with mAb. Analysis of the time course for increased tyrosine phosphorylation revealed distinct patterns. Increased phosphorylation of 135-kDa and 100-kDa substrates was evident within 5 s, whereas increased phosphorylation of the TCR-zeta-chain required several minutes after treatment with anti-CD3 mAb. This rapid cellular tyrosine phosphorylation occurred independent of the cell cycle, as it occurred after stimulation of resting T cells, T cell blasts, and the Jurkat T cell leukemia line. When the TCR complex was cross-linked together with the CD4 receptor by heteroconjugate anti-CD3/CD4 mAb, an increased magnitude of tyrosine phosphorylation occurred, although no new substrates could be detected. The increased tyrosine phosphorylation of the 135-kDa and 100-kDa substrates was specific in that anti-HLA class I, anti-CD6, anti-CD7, and anti-CD28 antibodies did not cause increased tyrosine phosphorylation. Anti-CD4 stimulation of resting T cells did not cause increased tyrosine phosphorylation of pp100 and pp135, suggesting that the CD4-associated kinase, lck, does not account for the tyrosine phosphorylation observed after TCR stimulation. Similarly, pharmacologic treatment of cells with phorbol ester and calcium ionophore did not cause increased tyrosine phosphorylation of these substrates, indicating that activation of protein kinase C or phospholipase C does not account for these early increases in tyrosine phosphorylation. The time of onset of pp100 phosphorylation, and the magnitude of phosphorylation correlated with the magnitude of calcium mobilization when cells were stimulated with different forms of TCR stimulation. When cells were labeled with [3H]myoinositol and analyzed after stimulation by anti-CD3 mAb, increased tyrosine phosphorylation of the 135-kDa and 100-kDa substrates preceded the activation of phospholipase C, as measured by the appearance of inositol 1,4,5-trisphosphate. This occurred in both T cell blasts and in the Jurkat T cell line. Thus, these findings show that increased tyrosine phosphorylation is the earliest yet detected signal observed after ligation of the TCR complex, and furthermore suggest that tyrosine phosphorylation might link the TCR to the phosphatidylinositolbisphosphate hydrolysis signaling pathway.  相似文献   

4.
Activation of T lymphocytes leads to the production of the T cell growth factor IL-2 that regulates T cell proliferation. This activation is associated with several potential intracellular signalling events including increased activity of phospholipase C (PLC) and resultant increases in production of inositol phosphates and diacylglycerols. In addition, phosphorylation of specific intracellular proteins on serine, threonine, and tyrosine residues increases. The role of each of these events in IL-2 production is unclear. Using Western blotting with antiphosphotyrosine antibodies, we demonstrate that activation of murine T cells with mitogenic lectins or anti-CD3 antibodies leads to a rapid increase in tyrosine phosphorylation of proteins of 120, 72, 62, 55, and 40 kDa. Similar patterns of antiphosphotyrosine antibodies reactivity were observed in splenocytes, a T cell hybridoma, and a T lymphoma. Tyrosine phosphorylation was detectable within minutes of addition of mitogenic lectins and persisted for at least 6 h. Pretreatment of the cells with pertussis toxin did not inhibit tyrosine phosphorylation indicating that a pertussis toxin-sensitive G protein is not involved in signal transduction. Neither increasing cytosolic-free calcium nor activating protein kinase C mimicked the effects of mitogenic lectins suggesting that tyrosine phosphorylation was not a consequence of activation of PLC. This was confirmed by demonstrating that mitogenic lectins induced similar patterns of tyrosine phosphorylation in cells in which activation of the TCR leads to increased PLC activity and in cells in which PLC is not stimulated. To test whether tyrosine phosphorylation is linked to IL-2 secretion, we determined the effect of three specific tyrosine kinase inhibitors (tyrphostins) on tyrosine phosphorylation, IL-2 secretion, and cellular proliferation. The concentration dependence of inhibition of tyrosine phosphorylation and IL-2 production were similar. However, higher concentrations of the tyrphostins were required to inhibit constitutive proliferation of the T cell line indicating that inhibition of IL-2 secretion was not secondary to nonspecific toxic effects of the tyrphostins. Addition of the tyrphostins after mitogenic lectin decreased the amount of tyrosine phosphorylation and IL-2 secretion in parallel. This indicates that both tyrosine kinases and phosphatases are activated and that continuous tyrosine phosphorylation is likely required for IL-2 secretion. Therefore, tyrosine phosphorylation appears to represent an obligatory event in the transmembrane signaling processes that lead to IL-2 secretion.  相似文献   

5.
Protein tyrosine kinases play fundamental roles in the transduction of signals that regulate cell growth, differentiation, and functional responses to a diversity of external stimuli. It is therefore likely that understanding protein tyrosine kinase activity in NK cells will be crucial in further defining the intracellular regulation of their unique and specialized functions. We investigated the role of protein tyrosine phosphorylation in receptor-mediated signal transduction using stimuli known to play major roles in regulating NK cell activation. Immunoblot analyses with antiphosphotyrosine antibodies demonstrated that IL-2, a potent stimulus for NK cell proliferation and an agent that enhances NK cytotoxic function, induced the tyrosine phosphorylation of at least eight proteins in clonal CD16+/CD3-human NK cells. In contrast, IL-4, which modulates NK cell function without inducing proliferation, had no apparent effect on protein tyrosine phosphorylation. Because protein kinase C (PKC) activation plays a prominent, yet distinct role in NK cell-mediated cytolytic reactions, we next investigated whether PKC activation affects NK cell protein tyrosine phosphorylation. Surprisingly, PKC-activating agents, including the phorbol esters 12-O-tetradecanoylphorbol-13-acetate and 4 beta-phorbol 12, 13-didecanoate, as well as the synthetic diacylglycerol,1-oleoyl-2-acetylglycerol, also induced the tyrosine phosphorylation of a distinct set of proteins. The 4 beta-phorbol 12,13-didecanoate homolog, 4 alpha-phorbol 12,13-didecanoate, which does not activate PKC, also failed to induce protein tyrosine phosphorylation. Further, the PKC inhibitor, 1-O-hexadecyl-2-O-methylglycerol blocked tyrosine phosphorylation induced by 1-oleoyl-2-acetylglycerol. In subsequent studies, both CD8+ and CD8- NK clones were found to express the src-family tyrosine kinase, p56lck, which was detected by immunoblot analysis with anti-p56lck antiserum. In both types of clonal NK cell lines, IL-2 and 12-O-tetradecanoyl-phorbol appeared to stimulate the differential phosphorylation of p56lck as evidenced by the appearance of higher molecular mass isoforms on SDS-polyacrylamide gels. Thus, our results identify and characterize a potential role for tyrosine phosphorylation and for the lymphocyte-specific tyrosine kinase p56lck in the signaling events that regulate NK cell activation.  相似文献   

6.
The tyrosine kinase ZAP-70 has been implicated as a critical intermediary between T-cell antigen receptor (TCR) stimulation and Erk activation on the basis of the ability of dominant negative ZAP-70 to inhibit TCR-stimulated Erk activation, and the reported inability of anti-CD3 antibodies to activate Erk in ZAP-70-negative Jurkat cells. However, Erk is activated in T cells receiving a partial agonist signal, despite failing to activate ZAP-70. This discrepancy led us to reanalyze the ZAP-70-negative Jurkat T-cell line P116 for its ability to support Erk activation in response to TCR/CD3 stimulation. Erk was activated by CD3 cross-linking in P116 cells. However, this response required a higher concentration of anti-CD3 antibody and was delayed and transient compared to that in Jurkat T cells. Activation of Raf-1 and MEK-1 was coincident with Erk activation. Remarkably, the time course of Ras activation was comparable in the two cell lines, despite proceeding in the absence of LAT tyrosine phosphorylation in the P116 cells. CD3 stimulation of P116 cells also induced tyrosine phosphorylation of phospholipase C-gamma1 (PLCgamma1) and increased the intracellular Ca(2+) concentration. Protein kinase C (PKC) inhibitors blocked CD3-stimulated Erk activation in P116 cells, while parental Jurkat cells were refractory to PKC inhibition. The physiologic relevance of these signaling events is further supported by the finding of PLCgamma1 tyrosine phosphorylation, Erk activation, and CD69 upregulation in P116 cells on stimulation with superantigen and antigen-presenting cells. These results demonstrate the existence of two pathways leading to TCR-stimulated Erk activation in Jurkat T cells: a ZAP-70-independent pathway requiring PKC and a ZAP-70-dependent pathway that is PKC independent.  相似文献   

7.
T lymphocyte activation through stimulation of the T cell receptor complex and co-stimulatory receptors is associated with acute tyrosine phosphorylation of intracellular proteins, which in turn mediate downstream signaling events that regulate interleukin-2 expression and cell proliferation. The extent of protein tyrosine phosphorylation is rapidly attenuated after only 1-2 min of stimulation as a means of tightly controlling the initial signaling response. Here we show that this attenuation of tyrosine phosphorylation of Shc, CrkL, and the proto-oncogene Cbl is mimicked by treatment of mouse T lymphocytes or cultured Jurkat cells with phorbol 12-myristate 13-acetate. This effect is blocked by the specific protein kinase C inhibitor GF109203X, but not by PD98059, an inhibitor of MEK1/2 kinase. Activation of protein kinase C by phorbol ester also causes rapid (t(1)/(2) = 2 min) dissociation of both CrkL and p85/phosphoinositide 3-kinase from Cbl concomitant with Cbl tyrosine dephosphorylation. More important, GF109203X treatment of Jurkat cells prior to T cell receptor stimulation by anti-CD3/CD4 antibodies results in an enhanced (2-fold) peak of Cbl phosphorylation compared with that observed in control cells. Furthermore, the rate of attenuation of both Cbl tyrosine phosphorylation and its association with CrkL following stimulation with anti-CD3/CD4 antibodies is much slower in Jurkat cells treated with GF109203X. Taken together, these data provide strong evidence that one or more isoforms of phorbol ester-responsive protein kinase C play a key role in a feedback mechanism that attenuates tyrosine phosphorylation of proteins and reverses formation of signaling complexes in response to T cell receptor activation.  相似文献   

8.
TCR engagement can induce either T cell proliferation and differentiation or activation-induced T cell death (AICD) through apoptosis. The intracellular signaling pathways that dictate such a disparate fate after TCR engagement have only been partially elucidated. Non-FcR-binding anti-CD3 mAbs induce a partial agonist TCR signaling pattern and cause AICD on Ag-activated, cycling T cells. In this study, we examined TCR signaling during the induction of AICD by anti-CD3 fos, a non-FcR-binding anti-CD3 mAb. This mAb activates Fyn, Lck, and extracellular signal-regulated kinase, and induces phosphorylation of Src-like adapter protein, despite the inability to cause calcium mobilization or TCR polarization. Anti-CD3 fos also fails to effectively activate zeta-associated protein of 70 kDa or NF-kappaB. Using Ag-specific T cells deficient for Fyn or Lck, we provide compelling evidence that activation of Lck is required for the induction of AICD. Our data indicate that a selective and distinct TCR signaling pattern is required for AICD by TCR partial agonist ligands.  相似文献   

9.
The role of CD7, a T cell differentiation antigen, in T cell function is not known at present; this study evaluates the effect of anti-CD7 mAb in PMBC cultures activated with suboptimal concentrations of lectins, antigens, and anti-CD3 mAb. We found that the inclusion of anti-CD7 resulted in increased IL-2 production and IL-2R-alpha expression in these cultures. H-7, a protein kinase C (PKC) inhibitor, and genistein, a protein tyrosine kinase (PTK) inhibitor, significantly suppressed the proliferation of T cells in comitogenic assays. This suggested that the comitogenic effect mediated by CD7 molecule involved both the PKC and the PTK pathways of T cell activation. These drugs appeared to affect the CD7-mediated effects by inhibiting the IL-2 autocrine pathway, especially the up-regulation of IL-2R-alpha since inhibition was not relieved with exogenous rIL-2. Taken together, our results suggest that CD7 augments T cell function by up-regulating IL-2R-alpha expression and IL-2 production via multiple pathways of protein phosphorylation.  相似文献   

10.
11.
Human T lymphocytes are activated to proliferate after triggering the T Cell Antigen Receptor Complex. CD3-Ti, with either antigen, mitogenic lectins or monoclonal antibodies against its different subunits. Stimulation of Jurkat leukemic human T cells with anti-CD3 or anti-Ti monoclonal antibodies was found to induce, within 1 min, an increase in the phosphorylation of a set of cellular proteins that can be precipitated with anti-phosphotyrosine antibodies. Seven phosphotyrosine-containing proteins were separated with respective mol. wt of 21, 25, 38, 55, 70, 80 and 110 kDa, among which the 38 kDa species is predominant. Moreover, incubation of Jurkat T cells with sodium orthovanadate, a potent inhibitor of phosphotyrosine protein-phosphatases, was found to potentiate the effects of anti-CD3 mAb on tyrosine phosphorylation. In addition vanadate also induced IL-2 secretion in Jurkat cells when associated with the phorbol ester TPA, further demonstrating the importance of these phosphorylation reactions in the process of T cell activation. Our results therefore allow us to identify several protein substrates of a tyrosine kinase activity, whose stimulation appears to be an early event in human T cell activation through the antigen receptor pathway.  相似文献   

12.
We previously reported the isolation of a cDNA encoding a T cell-specific adapter protein (TSAd). Its amino acid sequence contains an SH2 domain, tyrosines in protein binding motifs, and proline-rich regions. In this report we show that expression of TSAd is induced in normal peripheral blood T cells stimulated with anti-CD3 mAbs or anti-CD3 plus anti-CD28 mAbs. Overexpression of TSAd in Jurkat T cells interfered with TCR-mediated signaling by down-modulating anti-CD3/PMA-induced IL-2 promoter activity and anti-CD3 induced Ca2+ mobilization. The TCR-induced tyrosine phosphorylation of phospholipase C-gamma1, SH2-domain-containing leukocyte-specific phosphoprotein of 76kDa, and linker for activation of T cells was also reduced. Furthermore, TSAd inhibited Zap-70 recruitment to the CD3zeta-chains in a dose-dependent manner. Consistent with this, Lck kinase activity was reduced 3- to 4-fold in COS-7 cells transfected with both TSAd and Lck, indicating a regulatory effect of TSAd on Lck. In conclusion, our data strongly suggest an inhibitory role for TSAd in proximal T cell activation.  相似文献   

13.
Physiologic activation of protein kinase C limits IL-2 secretion   总被引:2,自引:0,他引:2  
Interaction of Ag, antibodies against the T cell receptor complex, or mitogenic lectins with T lymphocytes induces hydrolysis of membrane phospholipids leading to the production of diacylglycerol (DAG). DAG then activates the Ca2+- and phospholipid-dependent phosphotransferase, protein kinase C (PKC). Increases in DAG concentrations are transient as is the increase in PKC activity. Phorbol esters, which induce potent, prolonged activation of PKC, augment many T lymphocyte responses, including cell proliferation and secretion of the T cell growth factor IL-2. Therefore, it has been suggested that activation of PKC is a positive regulatory signal in T lymphocytes. We have determined the consequences of transient stimulation of PKC, and of depletion of PKC, on early cell activation signals and on production of IL-2 by the murine lymphoma line LBRM 331A5. When this cell line is depleted of PKC overnight incubation in high concentrations of phorbol esters, lectin-induced IL-2 secretion is augmented. Similarly, mitogen-induced changes in [Ca2+]i and phosphoinositide metabolism were augmented in these cells. In contrast, a short preactivation of PKC abrogated these early transmembrane signaling events. This suggested that normal physiologic activation of PKC may limit cell activation and decrease IL-2 production. We compared the effects of phorbol esters and mezerein, which produce prolonged activation of PKC, with those of diacylglycerol analogs, which induce transient activation of PKC. At concentrations that give similar levels of PKC activation, phorbol esters and mezerein, but not DAG analogs, increased IL-2 secretion. This suggests that prolonged, nonphysiologic activation of PKC is required to augment IL-2 secretion. Therefore, physiologic activation of PKC may not augment T cell activation but instead may function to decrease cell activation and limit IL-2 secretion.  相似文献   

14.
The TNF-related apoptosis-inducing ligand was shown to provide a costimulatory signal that cooperates with the TCR/CD3 complex to induce T cell proliferation and cytokine production. Although a number of signaling pathways were linked to the TCR/CD3 complex, it is not known how these two receptors cooperate to induce T cell activation. In this study, we show that TRAIL-induced costimulation of T cells depends on activation of the NF-κB pathway. TRAIL induced the NF-κB pathway by phosphorylation of inhibitor of κB factor kinase and protein kinase C in conjunction with anti-CD3. Furthermore, we demonstrated that TRAIL costimulation induced phosphorylation of the upstream TCR-proximal tyrosine kinases, Lck and ZAP70. Ligation of the TRAIL by its soluble receptor, DR4-Fc, alone was able to induce the phosphorylation of Lck and ZAP70 and to activate the NF-κB pathway; however, it was insufficient to fully activate T cells to support T cell proliferation. In contrast, TRAIL engagement in conjunction with anti-CD3, but not TRAIL ligation alone, induced lipid raft assembly and recruitment of Lck and PKC. These results demonstrate that TRAIL costimulation mediates NF-κB activation and T cell proliferation by lipid raft assembly and recruitment of Lck. Our results suggest that in TRAIL costimulation, lipid raft recruitment of Lck integrates mitogenic NF-κB-dependent signals from the TCR and TRAIL in T lymphocytes.  相似文献   

15.
Co-stimulation of B lymphocytes with IL-4 plus nonmitogenic concentrations of anti-Ig antibodies, or protein kinase C (PKC) activators, drives resting B cells into DNA synthesis. Although cross-linking of the sIg receptors provokes the generation of the intracellular second messengers, inositol 1,4,5-trisphosphate (IP3) and diacylglycerol, the molecular mechanism utilized by IL-4R in murine B cells has not, as yet, been defined. In human B cells IL-4 has been shown to induce a transient rise in IP3 followed by a sustained elevation of cAMP. However, in murine B cells, IL-4 does not induce the release of IP3, Ca2+ mobilization, PKC translocation, or indeed modify signaling via the phosphoinositide pathway induced by ligation of sIg receptors. We now present evidence that, in murine B cells, IL-4 synergizes with nonmitogenic concentrations of anti-Ig to provoke translocation of PKC from the cytosol to membranes. In addition, the lymphokine up-regulates PKC levels and activity and prevents phorbol ester-induced PKC down-regulation in B cells. We therefore propose that (unknown) signals generated via IL-4R potentiate and/or prolong sIg-induced PKC activation. These observations may therefore provide a biochemical basis for explaining how IL-4 and anti-Ig synergize to induce B cell activation.  相似文献   

16.
This study was conducted on human Jurkat T cell lines to elucidate the role of EPA and DHA, n-3 PUFA, in the modulation of two mitogen-activated protein (MAP) kinases, that is, extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2). The n-3 PUFA alone failed to induce phosphorylation of ERK1/ERK2. We stimulated the MAP kinase pathway with anti-CD3 antibodies and phorbol 12-myristate 13-acetate (PMA), which act upstream of the MAP kinase (MAPK)/ERK kinase (MEK) as U0126, an MEK inhibitor, abolished the actions of these two agents on MAP kinase activation. EPA and DHA diminished the PMA- and anti-CD3-induced phosphorylation of ERK1/ERK2 in Jurkat T cells. In the present study, PMA acts mainly via protein kinase C (PKC) whereas anti-CD3 antibodies act via PKC-dependent and -independent mechanisms. Furthermore, DHA and EPA inhibited PMA-stimulated PKC enzyme activity. EPA and DHA also significantly curtailed PMA- and ionomycin-stimulated T cell blastogenesis. Together these results suggest that EPA and DHA modulate ERK1/ERK2 activation upstream of MEK via PKC-dependent and -independent pathways and that these actions may be implicated in n-3 PUFA-induced immunosuppression.  相似文献   

17.
Ligation of the CD3 receptor induces multiple signal transduction events that modify the activation state of the T cell. We have compared two lines that express biologically active CD3 receptors but differ in their biochemical activation pathways during ligation of this receptor. Jurkat cells respond to anti-CD3 with Ca2+ mobilization, PKC activation, induction of protein tyrosine phosphorylation, and activation of newly characterized lymphoid microtubule associated protein-2 kinase (MAP-2K). MAP-2K itself is a 43-kDa phosphoprotein that requires tyrosine phosphorylation for activation. Although ligation of the CD3 receptor in HPB-ALL could stimulate tyrosine phosphorylation of a 59- kDa substrate, there was no associated induction of [Ca2+]i flux, PKC, or MAP-2K activation. A specific PKC agonist, PMA, which bypasses the CD3 receptor, could, however, activate MAP-2K in HPB-ALL cells. This implies that defective stimulation of PKC by the CD3 receptor is responsible for its failure to activate MAP-2K in HPB-ALL. The defect in PKC activation is likely distal to the CD3 receptor as A1F14- failed to activate MAP-2K in HPB-ALL but was effective in Jurkat cells. The stimulatory effect of PMA on MAP-2K activity in HPB-ALL was accompanied by tyrosine phosphorylation of this kinase which implies that PKC may, in some way, regulate tyrosine phosphorylation of MAP-2K. A candidate for this role is pp56lck which underwent posttranslational modification (seen as mobility change on SDS-PAGE) during anti-CD3 and PMA stimulation in Jurkat or PMA treatment in HPB-ALL. There was, in fact, exact coincidence between induction of PKC activity, posttranslational modification of lck and tyrosine phosphorylation/activation of MAP-2K. Lck kinase activity in an immune complex kinase assay was unchanged during PMA treatment. An alternative explanation is that modification of lck may alter its substrate profile. We therefore looked at the previously documented ability of PKC to dissociate lck from the CD4 receptor and found that PMA could reduce the stoichiometry of the lck interaction with CD4 in HPB-ALL and to a lesser extent in Jurkat cells. These results imply the existence of a kinase cascade that is initiated by PKC and, in the course of which, lck and MAP-2K may interact.  相似文献   

18.
The T cell receptor (TCR)-CD3 complex and the costimulatory molecule CD28 are critical for T cell function. Both receptors utilize protein tyrosine kinases (PTKs) for the phosphorylation of various signaling molecules, a process that is critical for the function of both receptors. The PTKs of the focal adhesion family, Pyk2 and Fak, have been implicated in the signaling of TCR and CD28. We show here evidence for the regulation of TCR- and CD28-induced tyrosine phosphorylation of the focal adhesion PTKs by protein kinase C (PKC). Thus, treating Jurkat T cells with the PKC activator phorbol 12-myristate 13-acetate (PMA) rapidly and strongly reversed receptor-induced tyrosine phosphorylation of the focal adhesion PTKs. In contrast, PMA did not affect TCR-induced tyrosine phosphorylation of CD3zeta or the PTKs Fyn and Zap-70. However, PMA induced a strong and rapid dephosphorylation of the linker molecule for activation of T cells. PMA failed to induce the dephosphorylation of proteins in PKC-depleted cells or in cells pretreated with the PKC inhibitor Ro-31-8220, confirming the role of PKC in mediating the PMA effect on receptor-induced protein tyrosine phosphorylation. The involvement of protein tyrosine phosphatases (PTPases) in mediating the dephosphorylation of the focal adhesion PTKs was confirmed by the failure of PMA to dephosphorylate Pyk2 in cells pretreated with the PTPase inhibitor orthovanadate. These results implicate PKC in the regulation of receptor-induced tyrosine phosphorylation of the focal adhesion PTKs in T cells. The data also suggest a role for PTPases in the PKC action.  相似文献   

19.
Rhesus monkey rhadinovirus (RRV) is a gamma-2 herpesvirus that exhibits a considerable degree of similarity to the human Kaposi's sarcoma-associated herpesvirus (KSHV). The R1 protein of RRV is distantly related to the K1 protein of KSHV, and R1, like K1, can contribute to cell growth transformation. In this study we analyzed the ability of the cytoplasmic tail of R1 to function as a signal transducer. The cytoplasmic domain of the R1 protein contains several tyrosine residues whose phosphorylation is induced in cells expressing Syk kinase. Expression of a CD8 chimera protein containing the extracellular and transmembrane domains of CD8 fused to the cytoplasmic domain of R1 mobilized intracellular calcium and induced cellular tyrosine phosphorylation in B cells upon stimulation with anti-CD8 antibody. None of the CD8-R1 cytoplasmic deletion mutants tested were able to mobilize intracellular calcium or to induce tyrosine phosphorylation to a significant extent upon addition of anti-CD8 antibody. Expression of wild-type R1 protein activated nuclear factor of activated T lymphocytes (NFAT) eightfold in B cells in the absence of antibody stimulation; expression of the CD8-R1C chimera strongly induced NFAT activity (60-fold) but only upon the addition of anti-CD8 antibody. We conclude that the cytoplasmic domain of R1 is capable of transducing signals that elicit B-lymphocyte activation events. The signal-inducing properties of R1 appear to be similar to those of K1 but differ in that the required sequences are distributed over a much longer stretch of the cytoplasmic domain (>150 amino acids). In addition, the induction of calcium mobilization was considerably longer in duration and stronger with R1 than with K1.  相似文献   

20.
Resting T lymphocytes proliferate in response to a combination of a calcium ionophore and a phorbol ester. This observation suggests that an increase in intracellular calcium free ion concentration [Ca2+]i and activation of protein kinase C (PKC) are sufficient signaling events for the initiation of T cell proliferation. In contrast, an accessory cell-generated costimulatory signal, acting independently of the rise in [Ca2+]i and PKC activation, is required for Ag-induced proliferation of type I T cell clones. We now report that this costimulatory signal is unexpectedly also being delivered via a cell-cell interaction during the response to ionomycin and phorbol ester. In the absence of this signal (at limiting cell numbers), T cells fail to divide. We also demonstrate that proliferation in response to immobilized anti-CD3 mAb requires the cell-cell interaction. These results suggest a model of T cell stimulation in which activation of a costimulatory signaling pathway is important in the regulation of the IL-2 gene, and only in the presence of this (third) signal can an increase in [Ca2+]i and PKC activity induce T cell proliferation. Such a model predicts that IL-2-dependent expansion of T cell clones in vivo in response to Ag receptor occupancy requires the delivery of an independent accessory cell-derived co-stimulatory signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号