首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The chromatin decondensation activity, thermal stability, and secondary structure of recombinant nucleoplasmin, of two deletion mutants, and of the protein isolated from Xenopus oocytes have been characterized. As previously reported, the chromatin decondensation activity of recombinant, unphosphorylated nucleoplasmin is almost negligible. Our data show that deletion of 50 residues at the C-terminal domain of the protein, containing the positively charged nuclear localization sequence, activates its chromatin decondensation ability and decreases its stability. Interestingly, both the decondensation activity and thermal stability of this deletion mutant resemble those of the phosphorylated protein isolated from Xenopus oocytes. Deletion of 80 residues at the C-terminal domain, containing the above-mentioned positively charged region and a poly(Glu) tract, inactivates the protein and increases its thermal stability. These findings, along with the effect of salt on the thermal stability of these proteins, suggest that electrostatic interactions between the positive nuclear localization sequence and the poly(Glu) tract, at the C-terminal domain, modulate protein activity and stability.  相似文献   

5.
The development of inhibitors of insulin-regulated aminopeptidase (IRAP), a membrane-bound zinc metallopeptidase, is a promising approach for the discovery of drugs for the treatment of memory loss such as that associated with Alzheimer's disease. There is, however, no consensus in the literature about the mechanism by which inhibition occurs. Sequence alignments, secondary structure predictions, and homology models based on the structures of recently determined related metallopeptidases suggest that the extracellular region consists of four domains. Partial proteolysis and mass spectrometry reported here confirm some of the domain boundaries. We have produced purified recombinant fragments of human IRAP on the basis of these data and examined their kinetic and biochemical properties. Full-length extracellular constructs assemble as dimers with different nonoverlapping fragments dimerizing as well, suggesting an extended dimer interface. Only recombinant fragments containing domains 1 and 2 possess aminopeptidase activity and bind the radiolabeled hexapeptide inhibitor, angiotensin IV (Ang IV). However, fragments lacking domains 3 and 4 possess reduced activity, although they still bind a range of inhibitors with the same affinity as longer fragments. In the presence of Ang IV, IRAP is resistant to proteolysis, suggesting significant conformational changes occur upon binding of the inhibitor. We show that IRAP has a second Zn(2+) binding site, not associated with the catalytic region, which is lost upon binding Ang IV. Modulation of activity caused by domains 3 and 4 is consistent with a conformational change regulating access to the active site of IRAP.  相似文献   

6.
Genes were synthesized to express two DNA binding domains of AraC connected by short linkers. The abilities of the resulting proteins to bind to DNA containing AraC half-sites separated by the usual four bases as well as an additional two or three helical turns of the DNA were measured. The inability of some of the protein constructs to bind to widely separated half-sites indicates that the C-terminal 14 amino acids of AraC are firmly bound to the rest of the DNA binding domain.  相似文献   

7.
BACKGROUND: Cohesin, a multisubunit protein complex conserved from yeast to humans, holds sister chromatids together from the onset of replication to their separation during anaphase. Cohesin consists of four core subunits, namely Smc1, Smc3, Scc1, and Scc3. Smc1 and Smc3 proteins are characterized by 50-nm-long anti-parallel coiled coils flanked by a globular hinge domain and an ABC-like ATPase head domain. Whereas Smc1 and Smc3 heterodimerize via their hinge domains, the kleisin subunit Scc1 connects their ATPase heads, and this results in the formation of a large ring. Biochemical studies suggest that cohesin might trap sister chromatids within its ring, and genetic evidence suggests that ATP hydrolysis is required for the stable association of cohesin with chromosomes. However, the precise role of the ATPase domains remains enigmatic. RESULTS: Characterization of cohesin's ATPase activity suggests that hydrolysis depends on the binding of ATP to both Smc1 and Smc3 heads. However, ATP hydrolysis at the two active sites is not per se cooperative. We show that the C-terminal winged-helix domain of Scc1 stimulates the ATPase activity of the Smc1/Smc3 heterodimer by promoting ATP binding to Smc1's head. In contrast, we do not detect any effect of Scc1's N-terminal domain on Smc1/Smc3 ATPase activity. CONCLUSIONS: Our studies reveal that Scc1 not only connects the Smc1 and Smc3 ATPase heads but also regulates their ATPase activity.  相似文献   

8.
9.
10.
Vacuolar H(+)-translocating inorganic pyrophosphatase (V-PPase; EC 3.6.1.1) is a homodimeric proton-translocase; it contains a single type of polypeptide of approximately 81kDa. A line of evidence demonstrated that the carboxyl terminus of V-PPase is relatively conserved in various plant V-PPases and presumably locates in the vicinity of the catalytic site. In this study, we attempt to identify the roles of the C-terminus of V-PPase by generating a series of C-terminal deletion mutants over-expressed in Saccharomyces cerevisiae, and determining their enzymatic and proton translocating reactions. Our results showed that the deletion mutation at last 5 amino acids in the C-terminus (DeltaC5) induced a dramatic decline in enzymatic activity, proton translocation, and coupling efficiency of V-PPase; but the mutant lacking last 10 amino acids (DeltaC10) retained about 60-70% of the enzymatic activity of wild-type. Truncation of the C-terminus by more than 10 amino acids completely abolished the enzymatic activity and proton translocation of V-PPase. Furthermore, the DeltaC10 mutant displayed a shift in T(1/2) (pretreatment temperature at which half enzymatic activity is observed) but not the optimal pH for PP(i) hydrolytic activity. The deletion of the C-terminus substantially modified apparent K(+) binding constant, but exert no significant changes in the Na(+)-, F(-)-, and Ca(2+)-inhibition of the enzymatic activity of V-PPase. Taken together, we speculate that the C-terminus of V-PPase may play a crucial role in sustaining enzymatic activity and is likely involved in the K(+)-regulation of the enzyme in an indirect manner.  相似文献   

11.
We have studied the stimulation of topoisomerase IV (Topo IV) by the C-terminal AAA+ domain of FtsK. These two proteins combine to assure proper chromosome segregation in the cell. Stimulation of Topo IV activity was dependent on the chirality of the DNA substrate: FtsK stimulated decatenation of catenated DNA and relaxation of positively supercoiled [(+)ve sc] DNA, but inhibited relaxation of negatively supercoiled [(−)ve sc] DNA. The DNA translocation activity of FtsK was not required for stimulation, but was required for inhibition. DNA chirality did not affect any of the activities of FtsK, suggesting that FtsK possesses an inherent Topo IV stimulatory activity that is presumably mediated by protein–protein interactions, the stability of Topo IV on the DNA substrate dictated the effect observed. Inhibition occurs because FtsK can strip distributively acting topoisomerase off (−)ve scDNA, but not from either (+)ve scDNA or catenated DNA where the enzyme acts processively. Our analyses suggest that FtsK increases the efficiency of trapping of the transfer segment of DNA during the catalytic cycle of the topoisomerase.  相似文献   

12.
Human endothelial nitric-oxide synthase (eNOS) is a complex enzyme, requiring binding of calmodulin (CaM) for electron transfer. The prevailing view is that calcium-activated CaM binds eNOS at the canonical binding site located at residues 493-510, which induces a conformational change to facilitate electron transfer. Here we demonstrated that the CaM enhances the rate of electron transfer from NADPH to FAD on a truncated eNOS FAD subdomain (residues 682-1204) purified from baculovirus-infected Sf9 cells, suggesting more complicated regulatory mechanism of CaM on eNOS. Metabolically 35S-labeled CaM overlay on fusion proteins spanning the entire linear sequence of eNOS revealed three positive 35S-CaM binding fragments: sequence 66-205, sequence 460-592, and sequence 505-759. Synthetic peptides derived from these fragments are tested for their effects on CaM binding and eNOS catalytic activities. Peptides corresponding to the proximal heme-binding site (E1, residues 174-193) and the CD1 linker connecting FAD/FMN subdomains (E4, residues 729-757) bind CaM at both high Ca2+ (Ca2+CaM) and low Ca2+ (apoCaM) concentrations, whereas peptide of the canonical CaM-binding helix (E2, residues 493-510) binds only Ca2+CaM. All three peptides E1, E2 and E4 significantly inhibit oxygenase activity in a concentration-dependent manner, but only E2 effectively inhibits reductase activity. Concurrent experiments with human iNOS showed major differences in the CaM binding properties between eNOS and iNOS. The results suggest that multiple regions of eNOS might interact with CaM with differential Ca2+ sensitivity in vivo. A possible mechanism in regulating eNOS activation and deactivation is proposed.  相似文献   

13.
14.
SMARCAL1 promotes the repair and restart of damaged replication forks. Either overexpression or silencing SMARCAL1 causes the accumulation of replication-associated DNA damage. SMARCAL1 is heavily phosphorylated. Here we identify multiple phosphorylation sites, including S889, which is phosphorylated even in undamaged cells. S889 is highly conserved through evolution and it regulates SMARCAL1 activity. Specifically, S889 phosphorylation increases the DNA-stimulated ATPase activity of SMARCAL1 and increases its ability to catalyze replication fork regression. A phosphomimetic S889 mutant is also hyperactive when expressed in cells, while a non-phosphorylatable mutant is less active. S889 lies within a C-terminal region of the SMARCAL1 protein. Deletion of the C-terminal region also creates a hyperactive SMARCAL1 protein suggesting that S889 phosphorylation relieves an auto-inhibitory function of this SMARCAL1 domain. Thus, S889 phosphorylation is one mechanism by which SMARCAL1 activity is regulated to ensure the proper level of fork remodeling needed to maintain genome integrity during DNA synthesis.  相似文献   

15.
16.
17.
H1 histones bind to DNA as they enter and exit the nucleosome. H1 histones have a tripartite structure consisting of a short N-terminal domain, a highly conserved central globular domain, and a lysine-and arginine-rich C-terminal domain. The C-terminal domain comprises approximately half of the total amino acid content of the protein, is essential for the formation of compact chromatin structures, and contains the majority of the amino acid variations that define the individual histone H1 family members. This region contains several cell cycle-regulated phosphorylation sites and is thought to function through a charge-neutralization process, neutralizing the DNA phosphate backbone to allow chromatin compaction. In this study, we use fluorescence microscopy and fluorescence recovery after photobleaching to define the behavior of the individual histone H1 subtypes in vivo. We find that there are dramatic differences in the binding affinity of the individual histone H1 subtypes in vivo and differences in their preference for euchromatin and heterochromatin. Further, we show that subtype-specific properties originate with the C terminus and that the differences in histone H1 binding are not consistent with the relatively small changes in the net charge of the C-terminal domains.  相似文献   

18.
Adenylyltransferase (GlnE) catalyzes the reversible adenylylation of glutamine synthetase. In this report we present, for the first time, evidence for a peroxiredoxin activity of Rhodospirillum rubrum GlnE, through the carboxyl-terminal AhpC/thiol-specific antioxidant (TSA) domain. The combination of GlnE and AhpC/TSA domains within the same polypeptide constitutes a unique domain architecture that has not previously been identified among proteobacteria.  相似文献   

19.
Chk1 is a protein kinase that is the effector molecule in the G2 DNA damage checkpoint. Chk1 homologues have an N-terminal kinase domain, and a C-terminal domain of ~200 amino acids that contains activating phosphorylation sites for the ATM/R kinases, though the mechanism of activation remains unknown. Structural studies of the human Chk1 kinase domain show an open conformation; the activity of the kinase domain alone is substantially higher in vitro than full-length Chk1, and coimmunoprecipitation studies suggest the C-terminal domain may contain an autoinhibitory activity. However, we show that truncation of the C-terminal domain inactivates Chk1 in vivo. We identify additional mutations within the C-terminal domain that activate ectopically expressed Chk1 without the need for activating phosphorylation. When expressed from the endogenous locus, activated alleles show a temperature-sensitive loss of function, suggesting these mutations confer a semiactive state to the protein. Intragenic suppressors of these activated alleles cluster to regions in the catalytic domain on the face of the protein that interacts with substrate, suggesting these are the regions that interact with the C-terminal domain. Thus, rather than being an autoinhibitory domain, the C-terminus of Chk1 also contains domains critical for adopting an active configuration.  相似文献   

20.
Adenylate cyclase toxin (CyaA) of Bordetella pertussis belongs to the RTX family of toxins. These toxins are characterized by a series of glycine- and aspartate-rich nonapeptide repeats located at the C-terminal half of the toxin molecules. For activity, RTX toxins require Ca2+, which is bound through the repeat region. Here, we identified a stretch of 15 amino acids (block A) that is located C-terminally to the repeat region and is essential for the toxic activity of CyaA. Block A is required for the insertion of CyaA into the plasma membranes of host cells. Mixing of a short polypeptide composed of block A and eight Ca2+ binding repeats with a mutant of CyaA lacking block A restores toxic activity fully. This in vitro interpolypeptide complementation is achieved only when block A is present together with the Ca2+ binding repeats on the same polypeptide. Neither a short polypeptide composed of block A only nor a polypeptide consisting of eight Ca2+ binding repeats, or a mixture of these two polypeptides, complement toxic activity. It is suggested that functional complementation occurs because of binding between the Ca2+ binding repeats of the short C-terminal polypeptide and the Ca2+ binding repeats of the CyaA mutant lacking block A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号