首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Post-meiotic mutants affecting pollen development are fundamental tools for defining the genetic program controlling microsporogenesis and pollen function. An example of such mutants is gametophytic male sterile-1 (gaMS-1). Heterozygous plants gaMS-1/+ that have a normal phenotype and are female fertile, segregate 1:1 normal:sterile pollen grains and their selfed progeny segregates 1:1 normal:semi-sterile plants. With the final aim of isolating the gene, a positional cloning strategy was adopted. In this paper, we report the results of fine mapping GaMS-1 by different types of molecular markers. Two back crosses were used as mapping populations. They were obtained by crossing the line carrying the mutation with the inbred lines Mo17 and WF9, used as recurrent male parents. Linkage disequilibrium analysis allowed assigning GaMS-1 to the short arm of chromosome 2.By the combined use of SSR, AFLP, PCR markers and ESTs a region of 1 cM containing GaMS-1 was delimited. Received: 15 November 2000 / Revision accepted: 24 May 2001  相似文献   

2.
gaMS-2 is a gametophytic male-sterile mutant of maize, with sterile pollen grains developmentally blocked at the binucleate stage. To characterise differentially expressed proteins in gaMS-2 pollen, we compared protein profiles of anthers and mature pollen from heterozygous GaMS-2/gaMS-2 plants and wild type (wt) plants by two-dimensional electrophoresis (2-DE). A basic protein present at a greatly reduced level in GaMS-2/gaMS-2 anthers was subsequently identified by tandem mass spectrometry as Zea m 1 (a glycoprotein of 31 kDa), the major group-1 allergen of maize pollen and a member of the -expansin 1 family. Moreover, we show that Zea m 1 can be deglycosylated by peptide N-glycosidase F. After deglycosylation, four major isoforms—Zea m 1a (more acetic), Zea m 1b, Zea m1c and Zea m 1d (more basic)—can be discriminated in wt anther in 2-DE immunoblots probed with a monoclonal antibody against the group-1 pollen allergen, whereas all the isoforms, especially Zea m 1a, exist at reduced levels in GaMS-2/gaMS-2 anthers. Furthermore, the reduced Zea m 1 accumulation in the mutant appears to occur in immature pollen but not in anther sporophytic tissues. Finally, we separated sterile pollen grains (at the mononucleate stage) from fertile ones using 42% Percoll solution, and found that Zea m 1 is barely detectable in sterile pollen grains. Together, our results indicate that a reduced Zea m 1 level is associated with the sterile phenotype of gaMS-2.W. Wang and M. Scali contributed equally to this study  相似文献   

3.
4.
 In order to dissect the complex genetic system that controls pollen development, we have undertaken a program of transposon insertion mutagenesis, with the purpose of producing mutations in gametophytically acting genes that are important for this process. The present work reports the developmental cytology of one of the mutants isolated, gaMS-2 (gametophytic male sterile-2). A peculiar feature of the mutant grains was lack of differentiation between the vegetative and the generative nuclei, leading to alteration in number, conformation and placement of nuclei. At anthesis, the grains carrying the mutant allele are about 40% of the normal grain size, contain a very reduced amount of starch and exhibit various nuclear abnormalities. Received: 31 May 1996 / Revision accepted: 26 August 1996  相似文献   

5.
Summary The study of the formation of pollen in plants has been the focus of extensive morphologic and cytologic observations. This complex developmental process requires the coordinated activity of both gametophytic and sporophytic tissues. The events that occur during microspore development represent a carefully orchestrated program of physiologic, biochemical, and genetic activities. Genes expressed specifically in pollen or in sporophytic tissues that support pollen development have only recently been identified and desribed. In the present paper we describe several genes expressed during pollen development in the important oil seed speciesBrassica napus (oil seed rape/canola). The characterization of three gene families expressed during microspore development is reviewed which provides a basis for comparison with other genes expressed during pollen maturation. The, potential value of these genes for the development of novel plant breeding strategies and hybrid seed production is discussed. Presented in the Session-In-Depth In vitro, Gametophyte Biology at the 1991 World Congress on Cell and Tissue Culture held in Anaheim, CA, June 16–20, 1991.  相似文献   

6.
We have taken a mutational approach to identify genes important for male fertility in Arabidopsis thaliana and have isolated a number of nuclear male/ sterile mutants in which vegetative growth and female fertility are not altered. Here we describe detailed developmental analyses of four mutants, each of which defines a complementation group and has a distinct developmental end point. All four mutants represent premeiotic developmental lesions. In ms3, tapetum and middle layer hypertrophy result in the degeneration of microsporocytes. In ms4, microspore dyads persist for most of anther development as a result of impaired meiotic division. In ms5, degeneration occurs in all anther cells at an early stage of development. In ms15, both the tapetum and microsporocytes degenerate early in anther development. Each of these mutants had shorter filaments and a greater number of inflorescences than congenic male-fertile plants. The differences in the developmental phenotypes of these mutants, together with the non-allelic nature of the mutations indicate that four different genes important for pollen development, have been identified.  相似文献   

7.
Summary An indirect approach was adopted to select viable mutants affecting the male gametophytic generation in maize. This approach consists of a selection of endosperm defective mutants followed by a test for gametophytic gene expression, based on the distortion from mendelian segregation and on the measurement of pollen size and pollen sterility. The material used consisted of 34 endosperm defective viable mutants introgressed in B37 genetic background. Complementation tests indicated that the mutation in the collection of mutants affected different genes controlling endosperm development. The study of the segregation in F2 revealed four classes of de (defective endosperm) mutants: (1) mutants in which the mutation does not affect either gametophytic development or function; (2) mutants in which the effect on the gametophyte affects pollen development processes; (3) mutants showing effects on both pollen development and function, and (4) mutants where only pollen tube growth rate is affected. Positive and negative interactions between pollen and style were detected by means of mixed pollination (pollen produced by de/de plants and pollen from an inbred line used as a standard and carrying genes for colored aleurone), on de/de and de/ + plants. Positive interactions were interpreted as methabolic complementation between defective pollen and normal styles.  相似文献   

8.
Seven new male-sterile mutants (ms7–ms13) of Arabidopsis thaliana (L.) Heynh. (ecotype columbia) are described that show a postmeiotic defect of microspore development. In ms9 mutants, microspores recently released from the tetrad appear irregular in shape and are often without exines. The earliest evidence of abnormality in ms12 mutants is degeneration of microspores that lack normal exine sculpturing, suggesting that the MS12 product is important in the formation of pollen exine. Teratomes (abnormally enlarged microsporocytes) are also occasionally present and each has a poorly developed exine. In ms7 mutant plants, the tapetal cytoplasm disintegrates at the late vacuolate microspore stage, apparently causing the degeneration of microspores and pollen grains. With ms8 mutants, the exine of the microspores appears similar to that of the wild type. However, intine development appears impaired and pollen grains rupture prior to maturity. In ms11 mutants, the first detectable abnormality appears at the mid to late vacuolate stage. The absence of fluorescence in the microspores and tapetal cells after staining with 4′,6-diamidino-2-phenylindole (DAPI) and the occasional presence of teratomes indicate degradation of DNA. Viable pollen from ms10 mutant plants is dehisced from anthers but appears to have surface abnormalities affecting interaction with the stigma. Pollen only germinates in high-humidity conditions or during in-vitro germination experiments. Mutant plants also have bright-green stems, suggesting that ms10 belongs to the eceriferum (cer) class of mutants. However, ms10 and cer6 are non-allelic. The ms13 mutant has a similar phenotype to ms10, suggesting is also an eceriferum mutation. Each of these seven mutants had a greater number of flowers than congenic male-fertile plants. The non-allelic nature of these mutants and their different developmental end-points indicate that seven different genes important for the later stages of pollen development have been identified. Received: 14 August 1997 / Accepted: 7 October 1997  相似文献   

9.
Anther developmental defects in Arabidopsis thaliana male-sterile mutants   总被引:3,自引:2,他引:1  
 We identified Arabidopsis thaliana sterility mutants by screening T-DNA and EMS-mutagenized lines and characterized several male-sterile mutants with defects specific for different anther processes. Approximately 44 and 855 sterile mutants were uncovered from the T-DNA and EMS screens, respectively. Several mutants were studied in detail with defects that included the establishment of anther morphology, microspore production, pollen differentiation, and anther dehiscence. Both non-dehiscencing and late-dehiscencing mutants were identified. In addition, pollenless mutants were observed with either apparent meiotic defects and/or abnormalities in cell layers surrounding the locules. Two mutant alleles were identified for the POLLENLESS3 locus which have defects in functional microspore production that lead to the degeneration of cells within the anther locules. pollenless3–1 contains a T-DNA insertion that co-segregates with the mutant phenotype and pollenless3–2 has a large deletion in the POLLENLESS3 gene. The POLLENLESS3 gene has no known counterparts in the GenBank, but encodes a protein containing putative nuclear localization and protein-protein interaction motifs. The POLLENLESS3 gene was shown recently to be the same as MS5, a previously described Arabidopsis thaliana male-sterility mutant. Three genes were identified in the POLLENLESS3 genomic region: GENEY, POLLENLESS3, and β9-TUBULIN. The segment of the Arabidopsis thaliana genome containing the POLLENLESS3 and β9-TUBULIN genes is duplicated and present on a different chromosome. Analysis of the POLLENLESS3 expression pattern determined that the 1.3-kb POLLENLESS3 mRNA is localized specifically within meiotic cells in the anther locules and that POLLENLESS3 mRNA is present only during late meiosis. Received: 15 October 1998 / Revision accepted: 19 November 1998  相似文献   

10.
Maize male reproductive development is complex and lengthy, and anther formation and pollen maturation are precisely and spatiotemporally regulated. Here, we document that callose, somatic, and microspore defect 1 (csmd1), a new male-sterile mutant, has both pre-meiotic somatic and post-meiotic gametophyte and somatic defects. Chromosome behavior and cell developmental events were monitored by nuclear staining viewed by bright field microscopy; cell dimensions were charted by Volocity analysis of confocal microscopy images. Aniline blue staining and quantitative assays were performed to record callose deposition, and expression of three callose synthase genes was measured by qRT-PCR. Despite numerous defects and unlike other maize male-sterile mutants that show growth arrest coincident with locular defects, csmd1 anther elongation is nearly normal. Pre-meiotically and during prophase I, there is excess callose surrounding the meiocytes. Post-meiotically csmd1 epidermal cells have impaired elongation but excess longitudinal divisions, and uninucleate microspores cease growth; the microspore nucleoli degrade followed by cytoplasmic vacuolization and haploid cell collapse. The single vascular bundle within csmd1 anthers senesces precociously, coordinate with microspore death. Although csmd1 anther locules contain only epidermal and endothecial cells at maturity, locules are oval rather than collapsed, indicating that these two cell types suffice to maintain an open channel within each locule. Our data indicate that csmd1 encodes a crucial factor important for normal anther development in both somatic and haploid cells, that excess callose deposition does not cause meiotic arrest, and that developing pollen is not required for continued maize anther growth.  相似文献   

11.
12.
13.
In order to understand the microspore and pollen development, recently, we have isolated a number of anther-specific genes in the model legume, Lotus japonicus. From these anther-specific genes, we identified one novel microspore-specific gene, LjImfb-c82. In order to determine the molecular characterization of LjImfb-c82, full-length cDNA clone was first isolated and sequenced. It encoded a protein of 286 amino acids (LjHIR1), which had sequence similarity to Hypersensitive-Induced Response like protein. LjHIR1 was specifically expressed in microspore on the in situ hybridization experiment. From the sequence similarity to prohibitin-domain protein, the LjHIR1 might be related to ion channel regulation in microspore development.  相似文献   

14.
Plant male reproductive development is a complex biological process, but the underlying mechanism is not well understood. Here, we characterized a rice (Oryza sativa L.) male sterile mutant. Based on map‐based cloning and sequence analysis, we identified a 1,459‐bp deletion in an adenosine triphosphate (ATP)‐binding cassette (ABC) transporter gene, OsABCG15, causing abnormal anthers and male sterility. Therefore, we named this mutant osabcg15. Expression analysis showed that OsABCG15 is expressed specifically in developmental anthers from stage 8 (meiosis II stage) to stage 10 (late microspore stage). Two genes CYP704B2 and WDA1, involved in the biosynthesis of very‐long‐chain fatty acids for the establishment of the anther cuticle and pollen exine, were downregulated in osabcg15 mutant, suggesting that OsABCG15 may play a key function in the processes related to sporopollenin biosynthesis or sporopollenin transfer from tapetal cells to anther locules. Consistently, histological analysis showed that osabcg15 mutants developed obvious abnormality in postmeiotic tapetum degeneration, leading to rapid degredation of young microspores. The results suggest that OsABCG15 plays a critical role in exine formation and pollen development, similar to the homologous gene of AtABCG26 in Arabidopsis. This work is helpful to understand the regulatory network in rice anther development.  相似文献   

15.
Plant intracellular Ras-group-related leucine-rich repeat proteins (PIRLs) are a plant-specific class of leucine-rich repeat (LRR) proteins related to animal and fungal LRRs that take part in developmental signaling and gene regulation. As part of a systematic functional study of the Arabidopsis thaliana PIRL gene family, T-DNA knockout mutants defective in the closely related PIRL1 and PIRL9 genes were identified and characterized. Pirl1 and pirl9 single mutants displayed normal transmission and did not exhibit an obvious developmental phenotype. To investigate the possibility of functional redundancy, crosses to generate double mutants were carried out; however, pirl1;pirl9 plants were not recovered. Reciprocal crosses between wild type and pirl1/PIRL1;pirl9 plants, which produce 50% pirl1;pirl9 gametophytes, indicated male-specific transmission failure of the double-mutant allele combination. Scanning electron microscopy and viability staining showed that approximately half of the pollen produced by pirl1/PIRL1;pirl9 plants was inviable and severely malformed. Tetrad analyses with qrt1 indicated that pollen defects segregated with the double-mutant allele combination, thus demonstrating that PIRL1 and PIRL9 function after meiosis. Pollen development was characterized with bright field, fluorescence, and transmission electron microscopy. Pirl1;pirl9 mutants stopped growing as microspores, failed to initiate vacuolar fission, aborted, and underwent cytoplasmic degeneration. Development consistently arrested at the late microspore stage, just prior to pollen mitosis I. Thus, PIRL1 and PIRL9 have redundant roles essential at a key transition point early in pollen development. Together, these results define a functional context for these two members of this distinct class of plant LRR genes.  相似文献   

16.
In plants, normal anther and pollen development involves many important biological events and complex molecular regulatory coordination. Understanding gene regulatory relationships during male reproductive development is essential for fundamental biology and crop breeding. In this work, we developed a rice gene co‐expression network for anther development (RiceAntherNet) that allows prediction of gene regulatory relationships during pollen development. RiceAntherNet was generated from 57 rice anther tissue microarrays across all developmental stages. The microarray datasets from nine rice male sterile mutants, including msp1‐4, ostdl1a, gamyb‐2, tip2, udt1‐1, tdr, eat1‐1, ptc1 and mads3‐4, were used to explore and test the network. Among the changed genes, three clades showing differential expression patterns were constructed to identify genes associated with pollen formation. Many of these have known roles in pollen development, for example, seven genes in Clade 1 (OsABCG15, OsLAP5, OsLAP6, DPW, CYP703A3, OsNP1 and OsCP1) are involved in rice pollen wall formation. Furthermore, Clade 1 contained 12 genes whose predicted orthologs in Arabidopsis have been reported as key during pollen development and may play similar roles in rice. Genes in Clade 2 are expressed earlier than Clade 1 (anther stages 2–9), while genes in Clade 3 are expressed later (stages 10–12). RiceAntherNet serves as a valuable tool for identifying novel genes during plant anther and pollen development. A website is provided ( https://www.cpib.ac.uk/anther/riceindex.html ) to present the expression profiles for gene characterization. This will assist in determining the key relationships between genes, thus enabling characterization of critical genes associated with anther and pollen regulatory networks.  相似文献   

17.
Targeted mutagenesis using programmable DNA endonucleases has broad applications for studying gene function in planta and developing approaches to improve crop yields. Recently, a genetic method that eliminates the need to emasculate the female inbred during hybrid seed production, referred to as Seed Production Technology, has been described. The foundation of this genetic system relied on classical methods to identify genes critical to anther and pollen development. One of these genes is a P450 gene which is expressed in the tapetum of anthers. Homozygous recessive mutants in this gene render maize and rice plants male sterile. While this P450 in maize corresponds to the male fertility gene Ms26, male fertility mutants have not been isolated in other monocots such as sorghum and wheat. In this report, a custom designed homing endonuclease, Ems26+, was used to generate in planta mutations in the rice, sorghum and wheat orthologs of maize Ms26. Similar to maize, homozygous mutations in this P450 gene in rice and sorghum prevent pollen formation resulting in male sterile plants and fertility was restored in sorghum using a transformed copy of maize Ms26. In contrast, allohexaploid wheat plants that carry similar homozygous nuclear mutations in only one, but not all three, of their single genomes were male fertile. Targeted mutagenesis and subsequent characterization of male fertility genes in sorghum and wheat is an important step for capturing heterosis and improving crop yields through hybrid seed.  相似文献   

18.
19.
20.
Zhang ZS  Lu YG  Liu XD  Feng JH  Zhang GQ 《Genetica》2006,127(1-3):295-302
Pollen abortion is one of the major reasons causing the inter-subspecific F1 hybrid sterility in rice and is due to allelic interaction of F1 pollen sterility genes. The microsporogenesis and microgametogenesis of Taichung 65 and its three F1 hybrids were comparatively studied by using techniques of differential interference contrast microscopy, semi-thin section light microscopy, epifluorescence microscopy and TEM. The results showed that there were differences among the cytological mechanisms of pollen abortion due to allelic interaction at the three F1 pollen sterility loci. The allelic interaction at S-a locus resulted in microspores unable to extend the protoplasm membrane with the enlargement of the microspore at the middle microspore stage and finally producing empty abortive pollen. The allelic interaction at S-b locus caused asynchronous development of microspores at the middle microspore stage producing stainable abortive pollen. The allelic interaction at S-c locus mainly led to the non-dissolution of the generative cell wall and finally caused the hybrid F1 mainly producing stainable abortive pollen. Genotypic identification indicated that the abortive pollen were those with S j allele.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号