首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since discovery and first use in the mid-1970s, evanescent wave fluorescence biosensors have developed into a diverse range of instruments, each designed to meet a particular detection need. In this review, we provide a brief synopsis of what evanescent wave fluorescence biosensors are, how they work, and how they are used. In addition, we have summarized the important patents that have impacted the evolution from laboratory curiosities to fully automated commercial products. Finally, we address the critical issues that evanescent wave fluorescence biosensors will face in the coming years.  相似文献   

2.
Since the development of the first whole-cell living biosensor or bioreporter about 15 years ago, construction and testing of new genetically modified microorganisms for environmental sensing and reporting has proceeded at an ever increasing rate. One and a half decades appear as a reasonable time span for a new technology to reach the maturity needed for application and commercial success. It seems, however, that the research into cellular biosensors is still mostly in a proof-of-principle or demonstration phase and not close to extensive or commercial use outside of academia. In this review, we consider the motivations for bioreporter developments and discuss the suitability of extant bioreporters for the proposed applications to stimulate complementary research and to help researchers to develop realistic objectives. This includes the identification of some popular misconceptions about the qualities and shortcomings of bioreporters.  相似文献   

3.
The lack of specific, low-cost, rapid, sensitive, and easy detection of biomolecules has resulted in the development of biosensor technology. Innovations in biosensor technology have enabled many biosensors to be commercialized and have enabled biomolecules to be detected onsite. Moreover, the emerging technologies of lab-on-a-chip microdevices and nanosensors offer opportunities for the development of new biosensors with much better performance. Biosensors were first introduced into the laboratory by Clark and Lyons. They developed the first glucose biosensor for laboratory conditions. Then in 1973, a glucose biosensor was commercialized by Yellow Springs Instruments. The commercial biosensors have small size and simple construction and they are ideal for point-of-care biosensing. In addition to glucose, a wide variety of metabolites such as lactate, cholesterol, and creatinine can be detected by using commercial biosensors. Like the glucose biosensors (tests) other commercial tests such as for pregnancy (hCG), Escherichia coli O157, influenza A and B viruses, Helicobacter pylori, human immunodeficiency virus, tuberculosis, and malaria have achieved success. Apart from their use in clinical analysis, commercial tests are also used in environmental (such as biochemical oxygen demand, nitrate, pesticide), food (such as glutamate, glutamine, sucrose, lactose, alcohol, ascorbic acid), and biothreat/biowarfare (Bacillus anthracis, Salmonella, Botulinum toxin) analysis. In this review, commercial biosensors in clinical, environmental, food, and biowarfare analysis are summarized and the commercial biosensors are compared in terms of their important characteristics. This is the first review in which all the commercially available tests are compiled together.  相似文献   

4.
《IRBM》2008,29(2-3):171-180
Three groups of the amperometric biosensors such as unmediated, mediated and based on direct transfer of electrons have been thoroughly described, and their advantages and disadvantages were shown. The amperometric biosensors are mostly utilized in commercial devices since they are studied to a greater extent and have some advantages. The modern commercial systems based on amperometric biosensors and its applications have been presented. The major field of employing biosensors is medical diagnostics where numerous commercial devices are currently functioning.  相似文献   

5.
Analysis of molecular recognition using optical biosensors.   总被引:2,自引:0,他引:2  
Optical biosensors have made the analysis of molecular interactions rapid and convenient. The field is still young, with commercial instrumentation having been available for less than ten years. For this reason instrument development is still an important factor and the past year has seen continuing advances in instrumentation and particularly in novel sensor surfaces.  相似文献   

6.
Being one of the most commonly used electrochemical mediators for analytical applications, Prussian Blue has found a wide use in the biosensor field during the last years. Its particular characteristic of catalysing hydrogen peroxide reduction has been applied in the construction of a large number of oxidase enzyme-based biosensors for clinical, environmental and food analysis. By modifying an electrode surface with Prussian Blue, it is in fact possible to easily detect hydrogen peroxide at an applied potential around 0.0 V versus Ag/AgCl, thus making possible coupling with oxidase enzymes while also avoiding or reducing electrochemical interferences. Papers dealing with glucose, lactate, cholesterol and galactose biosensors that are based on the use of Prussian Blue have recently appeared in the most important analytical chemistry journals. Another recent trend is the use of a choline probe based on choline oxidase for pesticide determination to exploit the inhibition of acetylcholinesterase by these compounds. In addition, the use of Prussian Blue in the development of biosensors for food analysis has captured the interest of many research groups and led to improved methods for the detection of glutamate, galactose, alcohol, fructosyl amine, formate, lysine and oxalate. This review will focus on the biosensing aspects of Prussian Blue-based sensors giving a general overview of the advantages provided by such mediator as well as its drawbacks. A comprehensive bibliographic reference list is presented together with the most up to date research findings in this field and possible future applications. The commercial potential of sensors based on this mediator will also be discussed.  相似文献   

7.
场效应晶体管生物传感器因其灵敏度高、分析速度快、无标记、体积小、操作简单等特点而受到了很多关注,广泛应用于DNA、蛋白质、细胞、离子等生物识别物的检测。近年来,更有纳米材料和微电子技术在传感器设计中提高传感器的传感性能,场效应晶体管生物传感器朝着高灵敏、微型化、快速化以及多功能化的方向以令人惊叹的速度发展。研究场效应晶体管生物传感器工作原理,阐述近年来场效应晶体管生物传感器在生物医学检测领域中最新的研究进展与应用,探讨场效应晶体管生物传感器克服各种缺陷的应对策略,为该传感器在未来生物医学检测中的开发提供参考。  相似文献   

8.
The review discusses the diagnostic application of biosensors as point-of-care devices in the COVID-19 pandemic. Biosensors are important analytical tools that can be used for the robust and effective detection of infectious diseases in real-time. In this current scenario, the utilization of smart, efficient biosensors for COVID-19 detection is increasing and we have included a few smart biosensors such as smart and intelligent based biosensors, plasmonic biosensors, field effect transistor (FET) biosensors, smart optical biosensors, surface enhanced Raman scattering (SERS) biosensor, screen printed electrode (SPE)-based biosensor, molecular imprinted polymer (MIP)-based biosensor, MXene-based biosensor and metal–organic frame smart sensor. Their significance as well as the benefits and drawbacks of each kind of smart sensor are mentioned in depth. Furthermore, we have compiled a list of various biosensors which have been developed across the globe for COVID-19 and have shown promise as commercial detection devices. Significant challenges in the development of effective diagnostic methods are discussed and recommendations have been made for better diagnostic outcomes to manage the ongoing pandemic effectively.  相似文献   

9.
Despite the amount of resources that have been invested by national and international academic, government, and commercial sectors to develop affinity-based biosensor products, little obvious success has been realized through commercialization of these devices for specific applications (such as the enzyme biosensors for blood glucose analysis). Nevertheless, the fastest growing area in the biosensors research literature continues to involve advances in affinity-based biosensors and biosensor-related methods. Numerous biosensor techniques have been reported that allow researchers to better study the kinetics, structure, and (solid/liquid) interface phenomena associated with protein-ligand binding interactions. In addition, potential application areas for which affinity-based biosensor techniques show promise include clinical/diagnostics, food processing, military/antiterrorism, and environmental monitoring. The design and structural features of these devices—composed of a biological affinity element interfaced to a signal transducer—primarily determine their operational characteristics. This paper although not intended as a comprehensive review, will outline the principles of affinity biosensors with respect to potential application areas.  相似文献   

10.
压电生物传感器研究进展   总被引:5,自引:0,他引:5  
作为一项新兴综合型科学技术,生物传感器是近年来生物化学、分子生物学、传感器技术等领域的研究热点之一。本介绍了压电生物传感器的基本原理、组成、分类,并对近年来国内外的研究进展、生物识别元件的固定化技术以及压电生物传感器的发展趋势作综合评述。  相似文献   

11.
Current and emerging commercial optical biosensors.   总被引:5,自引:0,他引:5  
The field of commercial optical biosensors is rapidly evolving, with new systems and detection methods being developed each year. This review outlines the currently available biosensor hardware and highlights unique features of each platform. Affinity-based biosensor technology, with its high sensitivity, wide versatility and high throughput, is playing a significant role in basic research, pharmaceutical development, and the food and environmental sciences. Likewise, the increasing popularity of biosensors is prompting manufacturers to develop new instrumentation for dedicated applications. We provide a preview of some of the emerging commercial systems that are dedicated to drug discovery, proteomics, clinical diagnostics and routine biomolecular interaction analysis.  相似文献   

12.
Over the last decades, cholinesterase (ChE) biosensors have emerged as an ultra sensitive and rapid technique for toxicity analysis in environmental monitoring, food and quality control. These systems have the potential to complement or replace the classical analytical methods by simplifying or eliminating sample preparation protocols and making field testing easier and faster with significant decrease in costs per analysis. Over the years, engineering of more sensitive ChE enzymes, development of more reliable immobilization protocols and progress in the area of microelectronics could allow ChE biosensors to be competitive for field analysis and extend their applications to multianalyte screening, development of small, portable instrumentations for rapid toxicity testing, and detectors in chromatographic systems. In this paper, we will review the research efforts over the last 20 years in fabricating AChE biosensors and the recent trends and challenges encounter once the sensor is used outside research laboratory for in situ real sample applications. The review will discuss the generations of cholinesterase sensors with their advantages and limitations, the existing electrode configurations and fabrication techniques and their applications for toxicity monitoring. We will focus on low-cost electrochemical sensors and the approaches used for enzyme immobilization. Recent works for achieving high sensitivity and selectivity are also discussed.  相似文献   

13.
SPR生物传感器及其应用进展   总被引:9,自引:0,他引:9  
基于表面等离子体共振 (SPR)技术的光学生物传感器是进行生物分子相互作用分析的一种先进手段。与传统的超速离心、荧光法等相比 ,它具有实时检测、无需标记、耗样最少等特点 ,在药物筛选、临床诊断、食物及环境监控和膜生物学等领域中的新兴应用日益扩大 ,并且已成为生命科学和制药研究的一种标准的生物物理学工具。综述了近几年国际上生物传感器的应用进展情况 ,并简要展望了该技术的发展和应用前景  相似文献   

14.
The need for companion diagnostics, point-of-care testing (POCT) and high-throughput screening in clinical diagnostics and personalized medicine has pushed the need for more biological information from a single sample at extremely low concentrations and volumes. Optical biosensors based on semiconductor quantum dots (QDs) can answer these requirements because their unique photophysical properties are ideally suited for highly sensitive multiplexed detection. Many different biological systems have been successfully scrutinized with a large variety of QDs over the past decade but their future as widely applied commercial biosensors is still open. In this review, we highlight recent in vitro diagnostic and cellular imaging applications of QDs and discuss milestones and obstacles on their way toward integration into real-life diagnostic and medical applications.  相似文献   

15.
生物传感器在环境分析中的研究现状与前景   总被引:3,自引:0,他引:3  
论述生物传感器的发展现状与前景。在环境控制中,生物传感器作为广谱装置应用于废水或生化需氧量的检测以及特异性地对农药、重金属、硝酸盐、亚硝酸盐、除草剂和次氮基乙酸等环境污染物进行检测。讨论了各类生物传感器(如酶生物传感器、全细胞生物传感器、受体传感器和免疫传感器)在环境分析中的应用实例及其优缺点,并指出了急需解决的问题以阐明其应用趋势,以期在这一跨学科领域进行更多的研究。  相似文献   

16.
简要概述了生物电化学的研究领域,包括生物体系和生物界面模拟、生物分子的电化学、生物电催化、光合作用模拟和活组织电化学;总结了生物电化学传感器、生物芯片和生物电化学反应器在环境监测中的应用现状,并提出了其发展趋势,即不断向商品化方向发展,实现环境污染物的在线检测;利用基因技术,创造出检测能力更强的生物传感器和生物芯片;与其他精密分析仪器相结合,向多功能、集成化、智能化、微型化方向发展。  相似文献   

17.
The realization of rapid, sensitive, and specific methods to detect foodborne pathogenic bacteria is central to implementing effective practice to ensure food safety and security. As a principle of transduction, the impedance technique has been applied in the field of microbiology as a means to detect and/or quantify foodborne pathogenic bacteria. The integration of impedance with biological recognition technology for detection of bacteria has led to the development of impedance biosensors that are finding wide-spread use in the recent years. This paper reviews the progress and applications of impedance microbiology for foodborne pathogenic bacteria detection, particularly the new aspects that have been added to this subject in the past few years, including the use of interdigitated microelectrodes, the development of chip-based impedance microbiology, and the use of equivalent circuits for analysis of the impedance systems. This paper also reviews the significant developments of impedance biosensors for bacteria detection in the past 5 years, focusing on microfabricated microelectrodes-based and microfluidic-based Faradaic electrochemical impedance biosensors, non-Faradaic impedance biosensors, and the integration of impedance biosensors with other techniques such as dielectrophoresis and electropermeabilization.  相似文献   

18.
Protein biosensors play increasingly important roles in cell and neurobiology and have the potential to revolutionise the way clinical and industrial analytics are performed. The gradual transition from multicomponent biosensors to fully integrated single chain allosteric biosensors has brought the field closer to commercial applications. We evaluate various approaches for converting constitutively active protein reporter domains into analyte operated switches. We discuss the paucity of the natural receptors that undergo conformational changes sufficiently large to control the activity of allosteric reporter domains. This problem can be overcome by constructing artificial versions of such receptors. The design path to such receptors involves the construction of Chemically Induced Dimerisation systems (CIDs) that can be configured to operate single and two-component biosensors.  相似文献   

19.
Optical fiber biosensors have attracted extensive research attention in fields such as public health research, environmental science, bioengineering, disease diagnosis and drug research. Accurate detection of biomolecules is essential to limit the extent of disease outbreaks and provide valuable guidance for regulatory agencies to take timely measures. Among many optical fiber sensors, optical fiber biosensors based on specialty fibers have the advantages of biocompatibility, small size, high measurement resolution, high stability and immunity to electromagnetic interference. In this paper, four types interferometer biosensors based on specialty fiber, namely Mach-Zehnder interferometer, Michelson interferometer, Fabry - Perot interferometer and Sagnac interferometer, are reviewed in terms of operating principles, sensing structure and application fields. The fiber types are further divided into micro-nano optical fiber, thin core fiber, polarization maintaining fiber, polymer fiber, microstructure optical fiber. Furthermore, this paper evaluates the advantages and disadvantages of these interferometer biosensors. Finally, main challenging problems and expectational development direction of specialty fiber interferometer biosensors are summarized. This text clearly shows the huge development potential of optical fiber biosensors in biomedical.  相似文献   

20.
生物传感器在环境分析中的研究现状与前景   总被引:1,自引:0,他引:1  
在环境控制中,生物传感器作为广谱装置应用于废水或生化需氧量的检测,特异性地对农药、重金属、硝酸盐、亚硝酸盐、除草剂和次氮基乙酸等环境污染物进行检测。讨论了各类生物传感器(酶生物传感器、全细胞生物传感器、受本传感器和免疫传感器)在环境分析中的应用实例及其优缺点,并指出了急需解决的问题以阐明其应用趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号