首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The expression of CCL20 (MIP-3alpha), which chemoattracts leukocytes to sites of inflammation, has been shown in intestinal epithelial cells (IEC). Aim of this study was to analyze the role of the CCL20 receptor CCR6 in IEC and colorectal cancer (CRC) cells. Expression of CCR6 and CCL20 was analyzed by RT-PCR and immunohistochemistry. Signaling was investigated by Western blotting, proliferation by MTS assays and chemotactic cell migration by wounding assays. The effect of CCL20 on Fas-induced apoptosis was determined by flow cytometry. CCR6 and its ligand CCL20 are expressed in IEC. Moreover, CRC and CRC metastases express CCR6, which is upregulated during IEC differentiation. Stimulation of IEC with CCL20 and proinflammatory stimuli (TNF-alpha, IL-1beta, LPS) significantly upregulates CCL20 mRNA expression. CCL20 expression was significantly increased in inflamed colonic lesions in Crohn's disease and correlated significantly with the IL-8 mRNA expression in these lesions (r = 0.71) but was downregulated in CRC metastases. CCL20 activated Akt, ERK-1/2, and SAPK/JNK MAP kinases and increased IL-8 protein expression. The CCL20 mediated activation of these pathways resulted in a 2.6-fold increase of cell migration (P = 0.001) and in a significant increase of cell proliferation (P < 0.05) but did not influence Fas-induced apoptosis. In conclusion, IEC and CRC express CCL20 and its receptor CCR6. CCL20 expression is increased in intestinal inflammation, while CCR6 is upregulated during cell differentiation. CCR6 mediated signals result in increased IEC migration and proliferation suggesting an important role in intestinal homeostasis and intestinal inflammation by mediating chemotaxis of IEC but also in mediating migration of CRC cells.  相似文献   

2.
Although RhoA plays an important role in cell proliferation and in Ras transformation in fibroblasts and mammary epithelial cells, its role in intestinal epithelial cells (IEC) is unknown. In a previous study (Ray RM, Zimmerman BJ, McCormack SA, Patel TB, and Johnson LR. Am J Physiol Cell Physiol 276: C684-C691, 1999), we showed that polyamine depletion [dl-alpha-difluoromethylornithine (DFMO) treatment] strongly inhibits the proliferation of IEC. In this report, we examined the effect of RhoA on IEC-6 cell proliferation and whether polyamine depletion inhibits cell proliferation in the presence of constitutively active RhoA. Constitutively active RhoA and vector-transfected IEC-6 cell lines were grown in the presence or absence of DFMO, which causes polyamine depletion by inhibiting ornithine decarboxylase, the first rate-limiting step in polyamine synthesis. Constitutively active RhoA significantly increased the rate of cell proliferation. These cells also lost contact inhibition and formed conspicuous foci when they were fully confluent. Decreased p21Waf1/Cip1 expression and increased cyclin-dependent kinase (Cdk2) mRNA levels and activity accompanied the increased proliferation. The inhibition of p21Waf1/Cip1 was independent of p53. There was no activation of the Ras-Raf-MEK-ERK pathway in the RhoA-transfected cell line. Polyamine depletion totally prevented the effect of activated RhoA on IEC-6 cell proliferation, focus formation, and Cdk2 expression. The stability of mRNA and protein for Cdk2 and p21Waf1/Cip1 in V14-RhoA cells was not significantly different from that of vector-transfected cells. In conclusion, RhoA activation decreased p21Waf1/Cip1 expression and increased basal and serum-induced ornithine decarboxylase activity, Cdk2 expression, Cdk2 protein, and Cdk2 activity, leading to the stimulation of IEC proliferation and transformation. Polyamine depletion totally prevented RhoA's effect on proliferation by decreasing Cdk2 expression and activity.  相似文献   

3.
4.
5.
Single epithelial-derived tumor cells have been shown to induce apical and basolateral (AB) polarity by expression of polarization-related proteins. However, physiological cues and molecular mechanisms for AB polarization of single normal epithelial cells are unclear. When intestinal epithelial cells 6 (IEC6 cells) were seeded on basement membrane proteins (Matrigel), single cells formed an F-actin cap on the upper cell surface, where apical markers accumulated, and a basolateral marker was localized to the rest of the cell surface region, in a Wnt5a signaling–dependent manner. However, these phenotypes were not induced by type I collagen. Rac1 activity in the noncap region was higher than that in the cap region, whereas Rho activity increased toward the cap region. Wnt5a signaling activated and inhibited Rac1 and RhoA, respectively, independently through Tiam1 and p190RhoGAP-A, which formed a tertiary complex with Dishevelled. Furthermore, Wnt5a signaling through Rac1 and RhoA was required for cystogenesis of IEC6 cells. These results suggest that Wnt5a promotes the AB polarization of IEC6 cells through regulation of Rac and Rho activities in a manner dependent on adhesion to specific extracellular matrix proteins.  相似文献   

6.
7.
F Xie  S Sun  A Xu  S Zheng  M Xue  P Wu  J H Zeng  L Bai 《Cell death & disease》2014,5(1):e1006
Advanced oxidation protein products (AOPPs), a novel protein marker of oxidative damage, have been confirmed to accumulate in patients with inflammatory bowel disease (IBD), as well as those with diabetes and chronic kidney disease. However, the role of AOPPs in the intestinal epithelium remains unclear. This study was designed to investigate whether AOPPs have an effect on intestinal epithelial cell (IEC) death and intestinal injury. Immortalized rat intestinal epithelial (IEC-6) cells and normal Sprague Dawley rats were treated with AOPP-albumin prepared by incubation of rat serum albumin (RSA) with hypochlorous acid. Epithelial cell death, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit activity, reactive oxygen species (ROS) generation, apoptosis-related protein expression, and c-jun N-terminal kinase (JNK) phosphorylation were detected both in vivo and in vitro. In addition, we measured AOPPs deposition and IEC death in 23 subjects with Crohn''s disease (CD). Extracellular AOPP-RSA accumulation induced apoptosis in IEC-6 cultures. The triggering effect of AOPPs was mainly mediated by a redox-dependent pathway, including NADPH oxidase-derived ROS generation, JNK phosphorylation, and poly (ADP-ribose) polymerase-1 (PARP-1) activation. Chronic AOPP-RSA administration to normal rats resulted in AOPPs deposition in the villous epithelial cells and in inflammatory cells in the lamina propria. These changes were companied with IEC death, inflammatory cellular infiltration, and intestinal injury. Both cell death and intestinal injury were ameliorated by chronic treatment with apocynin. Furthermore, AOPPs deposition was also observed in IECs and inflammatory cells in the lamina propria of patients with CD. The high immunoreactive score of AOPPs showed increased apoptosis. Our results demonstrate that AOPPs trigger IEC death and intestinal tissue injury via a redox-mediated pathway. These data suggest that AOPPs may represent a novel pathogenic factor that contributes to IBD progression. Targeting AOPP-induced cellular mechanisms might emerge as a promising therapeutic option for patients with IBD.  相似文献   

8.
Wnt signaling pathways regulate proliferation, motility, and survival in a variety of human cell types. Dickkopf-1 (Dkk-1) is a secreted Wnt antagonist that has been proposed to regulate tissue homeostasis in the intestine. In this report, we show that Dkk-1 is secreted by intestinal epithelial cells after wounding and that it inhibits cell migration by attenuating the directional orientation of migrating epithelial cells. Dkk-1 exposure induced mislocalized activation of Cdc42 in migrating cells, which coincided with a displacement of the polarity protein Par6 from the leading edge. Consequently, the relocation of the microtubule organizing center and the Golgi apparatus in the direction of migration was significantly and persistently inhibited in the presence of Dkk-1. Small interfering RNA-induced down-regulation of Dkk-1 confirmed that extracellular exposure to Dkk-1 was required for this effect. Together, these data demonstrate a novel role of Dkk-1 in the regulation of directional polarization of migrating intestinal epithelial cells, which contributes to the effect of Dkk-1 on wound closure in vivo.  相似文献   

9.
Protein kinase C betaII (PKC betaII) has been implicated in proliferation of the intestinal epithelium. To investigate PKC betaII function in vivo, we generated transgenic mice that overexpress PKC betaII in the intestinal epithelium. Transgenic PKC betaII mice exhibit hyperproliferation of the colonic epithelium and an increased susceptibility to azoxymethane-induced aberrant crypt foci, preneoplastic lesions in the colon. Furthermore, transgenic PKC betaII mice exhibit elevated colonic beta-catenin levels and decreased glycogen synthase kinase 3beta activity, indicating that PKC betaII stimulates the Wnt/adenomatous polyposis coli (APC)/beta-catenin proliferative signaling pathway in vivo. These data demonstrate a direct role for PKC betaII in colonic epithelial cell proliferation and colon carcinogenesis, possibly through activation of the APC/beta-catenin signaling pathway.  相似文献   

10.
Epimorphin is a mesenchymal protein that regulates morphogenesis of epithelial cells. Our preliminary study suggested a novel function of epimorphin in enhancing survival of intestinal epithelial cells (IEC). Oxidative stress leads to cell injury and death and is suggested to be a key contributor to pathogenesis of inflammatory bowel disease. This study was conducted to determine whether epimorphin protects IEC from oxidative stress. Rat intestinal epithelial cell line IEC-6 was cultured with epimorphin (10 and 20 mug/ml), and the life span of IEC was assessed. The mean life span of IEC-6 cells was prolonged 1.9-fold (P < 0.0006) by treatment with epimorphin. We then examined the epimorphin signaling pathways. Epimorphin phosphorylated epidermal growth factor (EGF) receptor, activated the MEK/extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase and phosphatidylinositol 3 (PI3) kinase/Akt pathways, phosphorylated Bad, and induced Bcl-X(L) and survivin. Hydrogen peroxide (1 mM) induced cell death in 92% of IEC-6 cells, but epimorphin dramatically diminished (88.7%) cell death induced by hydrogen peroxide (P < 0.0001). This protective effect of epimorphin was significantly attenuated by inhibitors of MEK and PI3 kinase (P < 0.0001) or EGF receptor-neutralizing antibody (P = 0.0007). In wound assays, the number of migrated cells in the wound area decreased (72.5%) by treatment with 30 muM hydrogen peroxide, but epimorphin increased the number of migrated cells 3.18-fold (P < 0.0001). These results support a novel function of epimorphin in protecting IEC from oxidative stress. This anti-oxidative function of epimorphin is dramatic and is likely mediated by the activation of EGF receptors and the MEK/extracellular signal-regulated kinase and PI3 kinase/Akt signaling pathways and through the induction of anti-apoptotic factors.  相似文献   

11.
A 28-day feeding trial was carried out to characterise intestinal epithelial cell (IEC) turnover in Atlantic salmon (Salmo salar L.) post-smolts in seawater. Four groups of fish raised at two temperatures of 8°C or 12°C and fed two different diets were investigated. The diets included a reference maize gluten and fishmeal-based diet (FM) and an experimental enteropathy-causing diet containing 20% extracted soybean meal (SBM). IEC proliferation and migration were investigated by labelling cells with the in vivo proliferation marker 5-bromo-2′-deoxyuridine (BrdU). Proliferating cell nuclear antigen (PCNA) labelling was used as a control for identifying proliferating cells. Samples of the proximal (PI), mid (MI) and distal (DI) intestinal regions were collected at five time points (3 h–28 days) over the experimental period. Histologically, FM-fed fish had normal mucosa, whereas the SBM-fed fish developed DI enteropathy. Major zones of cell proliferation were observed in the mucosal fold bases for all intestinal regions. Over time, BrdU-labelled cells migrated up mucosal folds to the tips before being lost. Migration rates were dependent on intestinal region, temperature and diet. Highest migration rates were observed in the PI followed by the MI and DI for FM-fed fish. Diet and temperature barely affected migration in the PI and MI. Migration in the DI was most sensitive to diet and temperature, with both SBM and the higher water temperature increasing proliferation and migration rates. The slow IEC turnover in the DI might help to explain the sensitivity of this region to dietary SBM-induced enteropathy.  相似文献   

12.
13.
14.
Members of the epidermal growth factor (EGF) family of ligands and their receptors regulate migration and growth of intestinal epithelial cells. However, our understanding of the signal transduction pathways determining these responses is incomplete. In this study we tested the hypothesis that p38 is required for EGF-stimulated intestinal epithelial monolayer restitution. EGF-stimulated migration in a wound closure model required continuous presence of ligand for several hours for maximal response, suggesting a requirement for sustained signal transduction pathway activation. In this regard, prolonged exposure of cells to EGF activated p38 for up to 5 h. Furthermore genetic or pharmacological blockade of p38 signaling inhibited the ability of EGF to accelerate wound closure. Interestingly p38 inhibition was associated with increased EGF-stimulated ERK1/ERK2 phosphorylation and cell proliferation, suggesting that p38 regulates the balance of proliferation/migration signaling in response to EGF receptor activity. Activation of p38 in intestinal epithelial cells through EGF receptor was abolished by blockade of Src family tyrosine kinase signaling but not inhibition of phosphatidylinositol 3-kinase or protein kinase C. Taken together, these data suggest that Src family kinase-dependent p38 activation is a key component of a signaling switch routing EGF-stimulated responses to epithelial cell migration/restitution rather than proliferation during wound closure.  相似文献   

15.
Intestinal mucosal restitution occurs by epithelial cell migration, rather than by proliferation, to reseal superficial wounds after injury. Polyamines are essential for the stimulation of intestinal epithelial cell (IEC) migration during restitution in association with their ability to regulate Ca2+ homeostasis, but the exact mechanism by which polyamines induce cytosolic free Ca2+ concentration ([Ca2+]cyt) remains unclear. Phospholipase C (PLC)-gamma1 catalyzes the formation of inositol (1,4,5)-trisphosphate (IP3), which is implicated in the regulation of [Ca2+]cyt by modulating Ca2+ store mobilization and Ca2+ influx. The present study tested the hypothesis that polyamines are involved in PLC-gamma1 activity, regulating [Ca2+]cyt and cell migration after wounding. Depletion of cellular polyamines by alpha-difluoromethylornithine inhibited PLC-gamma1 expression in differentiated IECs (stable Cdx2-transfected IEC-6 cells), as indicated by substantial decreases in levels of PLC-gamma1 mRNA and protein and its enzyme product IP3. Polyamine-deficient cells also displayed decreased [Ca2+]cyt and inhibited cell migration. Decreased levels of PLC-gamma1 by treatment with U-73122 or transfection with short interfering RNA specifically targeting PLC-gamma1 also decreased IP3, reduced resting [Ca2+]cyt and Ca2+ influx after store depletion, and suppressed cell migration in control cells. In contrast, stimulation of PLC-gamma1 by 2,4,6-trimethyl-N-(meta-3-trifluoromethylphenyl)-benzenesulfonamide induced IP3, increased [Ca2+]cyt, and promoted cell migration in polyamine-deficient cells. These results indicate that polyamines are absolutely required for PLC-gamma1 expression in IECs and that polyamine-mediated PLC-gamma1 signaling stimulates cell migration during restitution as a result of increased [Ca2+]cyt.  相似文献   

16.
Lipopolysaccharide (LPS) is a bacterially-derived endotoxin that elicits a strong proinflammatory response in intestinal epithelial cells. It is well established that LPS activates this response through NF-κB. In addition, LPS signals through the mitogen-activated protein kinase (MAPK) pathway. We previously demonstrated that the Krüppel-like factor 5 [KLF5; also known as intestine-enriched Krüppel-like factor (IKLF)] is activated by the MAPK. In the current study, we examined whether KLF5 mediates the signaling cascade elicited by LPS. Treatment of the intestinal epithelial cell line, IEC6, with LPS resulted in a dose- and time-dependent increase in KLF5 messenger RNA (mRNA) and protein levels. Concurrently, mRNA levels of the p50 and p65 subunits of NF-κB were increased by LPS treatment. Pretreatment with the MAPK inhibitor, U0126, or the LPS antagonist, polymyxin B, resulted in an attenuation of KLF5, p50 and p65 NF-κB subunit mRNA levels from LPS treatment. Importantly, suppression of KLF5 by small interfering RNA (siRNA) resulted in a reduction in p50 and p65 subunit mRNA levels and NF-κB DNA binding activity in response to LPS. LPS treatment also led to an increase in secretion of TNF-α and IL-6 from IEC6, both of which were reduced by siRNA inhibition of KLF5. In addition, intercellular adhesion molecule-1 (ICAM-1) levels were increased in LPS-treated IEC6 cells and this increase was associated with increased adhesion of Jurkat lymphocytes to IEC6. The induction of ICAM-1 expression and T cell adhesion to IEC6 by LPS were both abrogated by siRNA inhibition of KLF5. These results indicate that KLF5 is an important mediator for the proinflammatory response elicited by LPS in intestinal epithelial cells.  相似文献   

17.
Nutritional deficiency and stress can severely impair intestinal architecture, integrity and host immune defense, leading to increased susceptibility to infection and cancer. Although the intestine has an inherent capability to adapt to environmental stress, the molecular mechanisms by which the intestine senses and responds to malnutrition are not completely understood. We hereby report that intestinal cell kinase (ICK), a highly conserved serine/threonine protein kinase, is a novel component of the adaptive cell signaling responses to protein malnutrition in murine small intestine. Using an experimental mouse model, we demonstrated that intestinal ICK protein level was markedly and transiently elevated upon protein deprivation, concomitant with activation of prominent pro-proliferation and pro-survival pathways of Wnt/β-catenin, mammalian target of rapamycin (mTOR), mitogen-activated protein kinase (MAPK), and protein kinase B (PKB/Akt) as well as increased expression of intestinal stem cell markers. Using the human ileocecal epithelial cell line HCT-8 as an in vitro model, we further demonstrated that serum starvation was able to induce up-regulation of ICK protein in intestinal epithelial cells in a reversible manner, and that serum albumin partially contributed to this effect. Knockdown of ICK expression in HCT-8 cells significantly impaired cell proliferation and down-regulated active β-catenin signal. Furthermore, reduced ICK expression in HCT-8 cells induced apoptosis through a caspase-dependent mechanism. Taken together, our findings suggest that increased ICK expression/activity in response to protein deprivation likely provides a novel protective mechanism to limit apoptosis and support compensatory mucosal growth under nutritional stress.  相似文献   

18.
The migration of intestinalcells is important in the development and maintenance of normalepithelium, in a process that may be regulated by growth factors andcytokines. Although a number of growth factor receptors are expressedby intestinal cells, little progress has been made toward assignment offunctional roles for these ligand-receptor systems. This study comparesseveral growth factors and cytokines for their chemoattraction of the mouse small intestinal epithelial cell line. Epidermal and hepatocyte growth factors stimulated a rapid 30-fold chemotaxis of cells withdelayed threefold migration toward transforming growth factor-1. Despite stimulating proliferation, keratinocyte, fibroblast, or insulin-like growth factors did not stimulate directed migration. Chemotaxis required tyrosine kinase and phosphatidylinositolphospholipase C activities but not protein kinase C ormitogen-activated protein kinase activity. These findings suggest thatthe repertoire of growth factors capable of regulating directedintestinal epithelial cell migration is limited and that a divergenceexists in the signal transduction pathways for directed vs. nondirected migration.

  相似文献   

19.
We demonstrated previously that leukotriene D4 (LTD4) regulates proliferation of intestinal epithelial cells through a CysLT receptor by protein kinase C (PKC)epsilon-dependent stimulation of the mitogen-activated protein kinase ERK1/2. Our current study provides the first evidence that LTD4 can activate 90-kDa ribosomal S6 kinase (p90RSK) and cAMP-responsive element-binding protein (CREB) via pertussis-toxin-sensitive Gi protein pathways. Transfection and inhibitor experiments revealed that activation of p90RSK, but not CREB, is a PKCepsilon/Raf-1/ERK1/2-dependent process. LTD4-mediated CREB activation was not affected by expression of kinase-dead p90RSK but was abolished by transfection with the regulatory domain of PKCalpha (a specific dominant-inhibitor of PKCalpha). Kinase-negative mutants of p90RSK and CREB (K-p90RSK and K-CREB) blocked the LTD4-induced increase in cell number and DNA synthesis (thymidine incorporation). Compatible with these results, flow cytometry showed that LTD4 caused transition from the G0/G1 to the S+G2/M cell cycle phase, indicating increased proliferation. Similar treatment of cells transfected with K-p90RSK resulted in cell cycle arrest in the G0/G1 phase, consistent with a role of p90RSK in LTD4-induced proliferation. On the other hand, expression of K-CREB caused a substantial buildup in the sub-G0/G1 phase, suggesting a role for CREB in mediating LTD4-mediated survival in intestinal epithelial cells. Our results show that LTD4 regulates proliferation and survival via distinct intracellular signaling pathways in intestinal epithelial cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号