首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Migrating insects use their sensory systems to acquire local and global cues about their surroundings. Previous research on tethered insects suggests that, in addition to vision and cephalic bristles, insects use antennal mechanosensory feedback to maintain their airspeeds. Owing to the large displacements of migratory insects and difficulties inherent in tracking single individuals, the roles of these sensory inputs have never been tested in freely migrating insects. We tracked individual uraniid moths (Urania fulgens) as they migrated diurnally over the Panama Canal, and measured airspeeds and orientation for individuals with either intact or amputated flagella. Consistent with prior observations that antennal input is necessary for flight control, 59 per cent of the experimental moths could not fly after flagella amputation. The remaining fraction (41%) was flight-capable and maintained its prior airspeeds despite severe reduction in antennal input. Thus, maintenance of airspeeds may not involve antennal input alone, and is probably mediated by other modalities. Moths with amputated flagella could not recover their proper migratory orientations, suggesting that antennal integrity is necessary for long-distance navigation.  相似文献   

2.
  总被引:1,自引:0,他引:1  
  相似文献   

3.
    
Many organisms show well‐defined latitudinal clines in morphology, which appear to be caused by spatially varying natural selection, resulting in different optimal phenotypes in each location. Such spatial variability raises an interesting question, with different prospects for the action of sexual selection on characters that have a dual purpose, such as locomotion and sexual attraction. The outermost tail feathers of barn swallows (Hirundo rustica) represent one such character, and their evolution has been a classic model subject to intense debate. In the present study, we examined individuals from four European populations to analyze geographical variation in the length and mass of tail feathers in relation to body size and wing size. Tail feather length differed between sexes and populations, and such variation was a result of the effects of natural selection, acting through differences in body size and wing size, as well as the effects of sexual selection that favours longer tails. The extra enlargement of the tail promoted by sexual selection (i.e. beyond the natural selection optimum) could be achieved by increasing investment in ornaments, and by modifying feather structure to produce longer feathers of lower density. These two separate processes accounting for the production of longer and more costly tail feathers and less dense feathers, respectively, are consistent with the hypothesis that both Zahavian and Fisherian mechanisms may be involved in the evolution of the long tails of male barn swallows. We hypothesize that the strength of sexual selection increases with latitude because of the need for rapid mating as a result of the short duration of the breeding season at high latitudes. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 925–936.  相似文献   

4.
The effect of wing flexibility on aerodynamic force production has emerged as a central question in insect flight research. However, physical and computational models have yielded conflicting results regarding whether wing deformations enhance or diminish flight forces. By experimentally stiffening the wings of live bumblebees, we demonstrate that wing flexibility affects aerodynamic force production in a natural behavioural context. Bumblebee wings were artificially stiffened in vivo by applying a micro-splint to a single flexible vein joint, and the bees were subjected to load-lifting tests. Bees with stiffened wings showed an 8.6 per cent reduction in maximum vertical aerodynamic force production, which cannot be accounted for by changes in gross wing kinematics, as stroke amplitude and flapping frequency were unchanged. Our results reveal that flexible wing design and the resulting passive deformations enhance vertical force production and load-lifting capacity in bumblebees, locomotory traits with important ecological implications.  相似文献   

5.
Aerodynamic theory and empirical observations of animals flying at similar Reynolds numbers (Re) predict that airflow over hummingbird wings will be dominated by a stable, attached leading edge vortex (LEV). In insects exhibiting similar kinematics, when the translational movement of the wing ceases (as at the end of the downstroke), the LEV is shed and lift production decreases until the energy of the LEV is re-captured in the subsequent half-cycle translation. We here show that while the hummingbird wing is strongly influenced by similar sharp-leading-edge aerodynamics, leading edge vorticity is inconsistent, varying from 0.7 to 26 per cent (mean 16%) of total lift production, is always generated within 3 mm of the dorsal surface of the wing, showing no retrograde (trailing to leading edge) flow, and does not increase from proximal to distal wing as would be expected with a conical vortex (class III LEV) described for hawkmoths. Further, the bound circulation is not shed as a vortex at the end of translation, but instead remains attached and persists after translation has ceased, augmented by the rotation (pronation, supination) of the wing that occurs between the wing-translation half-cycles. The result is a near-continuous lift production through wing turn-around, previously unknown in vertebrates, able to contribute to weight support as well as stability and control during hovering. Selection for a planform suited to creating this unique flow and nearly-uninterrupted lift production throughout the wingbeat cycle may help explain the relatively narrow hummingbird wing.  相似文献   

6.
7.
8.
9.
Stochastic effects of climate and weather have a pervasive influence on the induction, performance and evolution of migration. In wing-dimorphic species, their influence on habitat quality, and on rates of development of the migrant itself, maintains variation in responses to environmental cues determining wing-form and migratory behaviour. Migrants flying above their flight boundary layer rely on winds to disperse them across landscapes in which their habitats are distributed. Patterns of distribution of habitat patches, and the influence of changing windspeeds and direction on the displacements of migrants, result in selection for variation in migratory potential at each migration. In subsequent migrations, this variation and stochastic effects of the winds on groundtracks of individual migrants ensure that their destinations ‘sample’ the landscapes they travel over. The extent and resolution of this sampling, by which migrants reach favourable habitats, depend on the components of migratory potential, their mode of inheritance, and genetic correlations between them, as well as on the characteristics of the winds on which they travel.  相似文献   

10.
Insect wings are deformable structures that change shape passively and dynamically owing to inertial and aerodynamic forces during flight. It is still unclear how the three-dimensional and passive change of wing kinematics owing to inherent wing flexibility contributes to unsteady aerodynamics and energetics in insect flapping flight. Here, we perform a systematic fluid-structure interaction based analysis on the aerodynamic performance of a hovering hawkmoth, Manduca, with an integrated computational model of a hovering insect with rigid and flexible wings. Aerodynamic performance of flapping wings with passive deformation or prescribed deformation is evaluated in terms of aerodynamic force, power and efficiency. Our results reveal that wing flexibility can increase downwash in wake and hence aerodynamic force: first, a dynamic wing bending is observed, which delays the breakdown of leading edge vortex near the wing tip, responsible for augmenting the aerodynamic force-production; second, a combination of the dynamic change of wing bending and twist favourably modifies the wing kinematics in the distal area, which leads to the aerodynamic force enhancement immediately before stroke reversal. Moreover, an increase in hovering efficiency of the flexible wing is achieved as a result of the wing twist. An extensive study of wing stiffness effect on aerodynamic performance is further conducted through a tuning of Young's modulus and thickness, indicating that insect wing structures may be optimized not only in terms of aerodynamic performance but also dependent on many factors, such as the wing strength, the circulation capability of wing veins and the control of wing movements.  相似文献   

11.
1. The multivoltine butterfly Pieris brassicae (Linnaeus) inhabits most climatic zones in Europe and Asia. Its regional populations are adapted to the respective climatic conditions and hibernate in those regions. Yet how these adaptations are stabilised in spite of the species' regular migration events is unclear. 2. In this study, significant differences were found in the preferred flight direction of P. brassicae depending on the season and the butterfly's geographic origin. The individual flight behaviours indicated that flight direction is a heritable character. 3. The bivoltine population from northern Germany undertook a typical return flight in the second generation of the year. This reverse flight was induced by the developmental mode of the caterpillars. A diapause in the pupal stage triggered a northward migration, and a non‐diapause a southward migration. 4. In contrast to bivoltine populations, the second generation of multivoltine populations maintained the direction of the hibernating generation. 5. A unique situation was determined for the population from the northern coast of Spain. The North Sea seemed to be a migration barrier that forced an adaptation, with the first generation flying southeastward, and the second generation northeastward. 6. The flight pattern of at least some of the investigated populations suggests that, after their yearly migration, the descendants of a local population are able to reach the home range of their ancestors again.  相似文献   

12.
Tailwind drift compensation serves to maximize a migrant's flight distance on a given amount of energy, and crosswind drift compensation serves to hold a course true and minimize the distance flown. With full or part compensation, airspeeds are predicted to increase with greater crosswind drift. To test whether migrating dragonflies compensated for wind drift, I measured the velocity and heading of Pantala hymenaea and P. flavescens in natural flight over a lake and the ambient wind speed and direction. P. hymenaea flew north-easterly (58°), whereas P. flavescens flew significantly more east–north easterly (74°) throughout the day. Pantala spp. demonstrated part compensation for changes in crosswind drift within individuals (mean compensation = 54%, P = 0.0000), evidence for use of a ground reference to correct for drift when flying over water. Among individuals, P. flavescens compensated for crosswind drift. P. hymenaea overcompensated and then drifted downwind on one morning and compensated for crosswind drift on the next. As predicted from optimal migration theory, airspeed (5.0 m/s for both species with no tailwind) decreased with tailwind velocity both among individuals (data for both species pooled [n = 19], P < 0.0001) and within each individual as it crossed the lake (P = 0.0016).  相似文献   

13.
Seminal field studies led by C. G. Johnson in the 1940s and 1950s showed that aphid aerial density diminishes with height above the ground such that the linear regression coefficient, b, of log density on log height provides a single-parameter characterization of the vertical density profile. This coefficient decreases with increasing atmospheric stability, ranging from -0.27 for a fully convective boundary layer to -2.01 for a stable boundary layer. We combined a well-established Lagrangian stochastic model of atmospheric dispersal with simple models of aphid behaviour in order to account for the range of aerial density profiles. We show that these density distributions are consistent with the aphids producing just enough lift to become neutrally buoyant when they are in updraughts and ceasing to produce lift when they are in downdraughts. This active flight behaviour in a weak flier is thus distinctly different from the aerial dispersal of seeds and wingless arthropods, which is passive once these organisms have launched into the air. The novel findings from the model indicate that the epithet 'passive' often applied to the windborne migration of small winged insects is misleading and should be abandoned. The implications for the distances traversed by migrating aphids under various boundary-layer conditions are outlined.  相似文献   

14.
Flight in insects can be long-range migratory flights, intermediate-range dispersal flights, or short-range host-seeking flights. Previous studies have shown that flight mills are valuable tools for the experimental study of insect flight behavior, allowing researchers to examine how factors such as age, host plants, or population source can influence an insects'' propensity to disperse. Flight mills allow researchers to measure components of flight such as speed and distance flown. Lack of detailed information about how to build such a device can make their construction appear to be prohibitively complex. We present a simple and relatively inexpensive flight mill for the study of tethered flight in insects. Experimental insects can be tethered with non-toxic adhesives and revolve around an axis by means of a very low friction magnetic bearing. The mill is designed for the study of flight in controlled conditions as it can be used inside an incubator or environmental chamber. The strongest points are the very simple electronic circuitry, the design that allows sixteen insects to fly simultaneously allowing the collection and analysis of a large number of samples in a short time and the potential to use the device in a very limited workspace. This design is extremely flexible, and we have adjusted the mill to accommodate different species of insects of various sizes.  相似文献   

15.
吴迅 《华东昆虫学报》2007,16(4):315-320
本文设计了利用微机记录昆虫飞行状态的实验装置,这种装置由两部分组成,一部分是设计和制作一个飞行磨供昆虫飞行,另一部分是制作光电传感器和微机检测系统,记录信号并把信号进行识别、分析、归类,送往计算机显示和打印。介绍了其工作原理和使用方法。  相似文献   

16.
ABSTRACT. Flight durations of tethered female Anticarsia gemmatalis moths recorded in the laboratory were interpreted by Wales et al. as indicating a capacity for significant inter-reproductive displacements in the field. Indications that their data may not support this conclusion are discussed and evidence is presented that, in tethered Spodoptera exempta , prolonged flights starting early in the night represent migratory behaviour while those of similar durations starting after midnight do not.  相似文献   

17.
18.
The flight of pterosaurs and the extreme sizes of some taxa have long perplexed evolutionary biologists. Past reconstructions of flight capability were handicapped by the available aerodynamic data, which was unrepresentative of possible pterosaur wing profiles. I report wind tunnel tests on a range of possible pterosaur wing sections and quantify the likely performance for the first time. These sections have substantially higher profile drag and maximum lift coefficients than those assumed before, suggesting that large pterosaurs were aerodynamically less efficient and could fly more slowly than previously estimated. In order to achieve higher efficiency, the wing bones must be faired, which implies extensive regions of pneumatized tissue. Whether faired or not, the pterosaur wings were adapted to low-speed flight, unsuited to marine style dynamic soaring but adapted for thermal/slope soaring and controlled, low-speed landing. Because their thin-walled bones were susceptible to impact damage, slow flight would have helped to avoid injury and may have contributed to their attaining much larger sizes than fossil or extant birds. The trade-off would have been an extreme vulnerability to strong or turbulent winds both in flight and on the ground, akin to modern-day paragliders.  相似文献   

19.
Bitterling fishes deposit their eggs on the gills of living mussels using a long ovipositor. We examined whether ovipositor length (OL) and egg shape correlated with differences in host mussel species in the family Unionidae among populations of the tabira bitterling (Acheilognathus tabira) in Japan. Bitterling populations that use mussels in the sub-family Anodontinae possessed longer ovipositors and more elongated eggs than those using mussels of Unioninae, as expected from the difference in host size between the sub-families (anodontine mussels are larger than unionine mussels). Based on a robust phylogeny of A. tabira populations, we demonstrated that the evolution of both OL and egg shape were correlated with host differences, but not with each other, suggesting that these traits have been selected for independently. Our study demonstrates how adaptive traits for brood parasitism may diverge with host shift due to different host availability and/or interspecific competition for hosts.  相似文献   

20.
Similar to insects, birds and pterosaurs, bats have evolved powered flight. But in contrast to other flying taxa, only bats are furry. Here, we asked whether flight is impaired when bat pelage and wing membranes get wet. We studied the metabolism of short flights in Carollia sowelli, a bat that is exposed to heavy and frequent rainfall in neotropical rainforests. We expected bats to encounter higher thermoregulatory costs, or to suffer from lowered aerodynamic properties when pelage and wing membranes catch moisture. Therefore, we predicted that wet bats face higher flight costs than dry ones. We quantified the flight metabolism in three treatments: dry bats, wet bats and no rain, wet bats and rain. Dry bats showed metabolic rates predicted by allometry. However, flight metabolism increased twofold when bats were wet, or when they were additionally exposed to rain. We conclude that bats may not avoid rain only because of sensory constraints imposed by raindrops on echolocation, but also because of energetic constraints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号