首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The results of precise measurements of rates of carbon dioxideassimilation at low external concentrations of carbon dioxideand of rates of carbon dioxide output into virtually carbondioxide-freeair show that linear extrapolations of the carbon dioxide intakecurve plotted against the external concentrations of carbondioxide give an exaggerated estimate of the rate of carbon dioxideoutput from illuminated leaves into carbon dioxide-free air. The shape of the exchange curve suggests that the rate of endogenousproduction of carbon dioxide changes at external concentrationsin the region of the carbon dioxide compensation point ().  相似文献   

2.
Cornic G  Woo KC  Osmond CB 《Plant physiology》1982,70(5):1310-1315
Intact spinach (Spinacia oleracea L.) chloroplasts, when pre-illuminated at 4 millimoles quanta per square meter per second for 8 minutes in a CO2-free buffer at 21% O2, showed a decrease (30-70%) in CO2-dependent O2 evolution and 14CO2 uptake. This photoinhibition was observed only when the O2 concentration and the quantum fluence rate were higher than 4% and 1 millimole per square meter per second, respectively. There was only a small decrease in the extent of photoinhibition when the CO2 concentration was increased from 0 to 25 micromolar during the treatment, but photoinhibition was abolished when the CO2 concentration was increased to 30 micromolar. Addition of small quantities of P-glycerate (40-200 micromolar) or glycerate (160 micromolar) was found to prevent photoinhibition. Other intermediates of the Calvin cycle (fructose-6-P, fructose-1,6-P, ribose-5-P, ribulose-5-P) also prevented photoinhibition to various extents. Oxaloacetate was not effective in preventing photoinhibition in these chloroplasts. The amount of O2 evolved during treatments with 3-P-glycerate or glycerate was no more than 65% of that measured in the presence of low CO2 concentrations (9-12 micromolar) which did not prevent photoinhibition. In all cases, the extent to which photoinhibition was prevented by these metabolites was not correlated to the amount of O2 evolved during the photoinhibitory treatment. It is concluded that in these chloroplasts the prevention of the O2-dependent photoinhibition of light saturated CO2 fixation capacity is not linked to the dissipation of excitation energy via the photosynthetic electron transport nor to ATP utilization. The requirement of O2 for photoinhibition of CO2 fixation capacity in isolated chloroplasts may be explained by an effect of O2 in allowing metabolic depletion of Calvin cycle intermediates.  相似文献   

3.
The Incorporation of d-Glucosamine-14C into Root Tissues of Higher Plants   总被引:4,自引:4,他引:0  
d-Glucosamine-1-(14)C was rapidly taken up from aqueous solution by both excised bean (Phaseolus vulgaris) and corn (Zea mays) root tips. The labeled glucosamine did not accumulate in the tissues, however, but was metabolized to N-acetyl-d-glucosamine, N-acetyl-d-glucosamine phosphates, and uridine diphosphate N-acetyl-d-glucosamine. Little or no label was detected in respiratory CO(2), glycolytic intermediates, or d-glucosamine 6-phosphate. Between 5 and 10% of the (14)C was recovered in high molecular weight ethanol-insoluble materials which could be solubilized readily with alkali or by treatment with proteases, and which yielded labeled glucosamine upon complete hydrolysis with HCl. Milder hydrolytic conditions released quantities of N-acetylglucosamine-(14)C plus labeled fragments of higher molecular weight. It is concluded that d-glucosamine-(14)C may be used to label specifically the amino sugar residues of plant as well as animal macromolecules. N-Acetyl-d-glucosamine acts similarly as a precursor, except that it is taken up at only about 1/10 the rate of glucosamine and hence is utilized less efficiently.  相似文献   

4.
Incorporation and release of 14C-label in prenylquinones of Chlorella was investigated under steady state conditions. After one hour of 14CO2-photosynthesis all plastid quinones investigated were labeled. The highest label was found in phylloquinone (18%) while -tocopherol exhibits the lowest label (0.38%). Among the plastoquinones, plastohydroquinone-9 shows a higher labeling degree (5.1%) and a faster labeling kinetic than plastoquinone-9 (1.6%). After replacement of 14CO2 against 12CO2 the total radioactivity in plastohydroquinone-9, -tocopherol and phylloquinone decreases but in -tocoquinone and plastoquinone-9 proceeds further. From this labeling kinetic we conclude, that newly synthesized [14C]-tocopherol molecules are converted to [14C]-tocoquinone and [14C]plastohydroquinone-9 molecules to [14C]plastoquinone-9. From their 14C-incorporation kinetic half-lives could be calculated for all prenylquinones in the same ranges as previously found for the chlorophylls and carotenoids (Grumbach et al., 1978). Half-lives are shorter in plastohydroquinone-9 (30 min) and plastoquinone-9 (40 min) than in phylloquinone (55 min), -tocoquinone (50 min) and -tocopherol (220 min). This means that all prenyl-lipids such as chlorophyll a, -and -carotene, plastohydroquinone-9 and plastoquinone-9 which are more directly involved in the process of photosynthesis are subject to a continuous and higher turnover than the xanthophyll and -tocopherol. From the fast labeling kinetic and short half-lives of -tocoquinone and especially phylloquinone with a labeling degree of 12% after one hour of 14CO2 photosynthesis we suppose that perhaps these two prenylquinones are also involved in the photosynthetic activity of chloroplasts.  相似文献   

5.
6.
Comparative 14CO2 pulse-12CO2 chase studies performed at CO2 compensation ()-versus air-concentrations of CO2 demonstrated a four-to eightfold increase in assimilation of 14CO2 into the C4 acids malate and aspartate by leaves of the C3-C4 intermediate species Panicum milioides Nees ex Trin., P. decipiens Nees ex Trin., Moricandia arvensis (L.) DC., and M. spinosa Pomel at . Specifically, the distribution of 14C in malate and aspartate following a 10-s pulse with 14CO2 increases from 2% to 17% (P. milioides) and 4% to 16% (M. arvensis) when leaves are illuminated at the CO2 compensation concentration (20 l CO2/l, 21% O2) versus air (340 l CO2/l, 21% O2). Chasing recently incorporated 14C for up to 5 min with 12CO2 failed to show any substantial turnover of label in the C4 acids or in carbon-4 of malate. The C4-acid labeling patterns of leaves of the closely related C3 species, P. laxum Sw. and M. moricandioides (Boiss.) Heywood, were found to be relatively unresponsive to changes in pCO2 from air to . These data demonstrate that the C3-C4 intermediate species of Panicum and Moricandia possess an inherently greater capacity for CO2 assimilation via phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) at the CO2 compensation concentration than closely related C3 species. However, even at , CO2 fixation by PEP carboxylase is minor compared to that via ribulosebisphosphate carboxylase (EC 4.1.1.39) and the C3 cycle, and it is, therefore, unlikely to contribute in a major way to the mechanism(s) facilitating reduced photorespiration in the C3-C4 intermediate species of Panicum and Moricandia.Abbreviations Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - PEP phosphoenolpyruvate - CO2 compensation concentration - 3PGA 3-phosphoglycerate - SuP sugar monophosphates - SuP2 sugar bisphosphates Published as Paper No. 8249, Journal Series, Nebraska Agricultural Research Division  相似文献   

7.
Shannon JC 《Plant physiology》1968,43(8):1215-1220
Shortly after Zea mays L. plants were exposed to 14CO2, most of the radioactivity in the kernel occurred in the free monosaccharides, glucose and fructose. Later the proportion of 14C in sucrose increased and that in the monosaccharides declined. These data have been interpreted as showing that the translocated sugar is hydrolyzed prior to or during its movement into the storage cells of the endosperm. This hydrolysis appears to occur in the “pedicel region” of the kernel. After entry into the endosperm tissue, sucrose was rapidly resynthesized from the monosaccharides prior to its utilization in starch synthesis.  相似文献   

8.
9.
Incorporation of 14CO2 in photosynthetic pigments of Chlorella pyrenoidosa   总被引:1,自引:1,他引:0  
Abscisic acid (ABA) caused a 7–8-fold increase in volume flow in excised bean root systems and this was coupled with an increase in 42K, 36Cl and 24Na flux into the xylem. The transport of 42K and 36Cl increased by a factor larger than the stimulation of volume flow, resulting in an increase in the concentration of those ions in the xylem exudate. Carbonyclcyanide-m-chlorophenyl hydrazone, on the other hand, eliminated ABA-stimulated 42K transport and caused a further inhibition of 42K flux, thus providing additional support for the proposition that ABA stimulation may involve an energised process of ion transport. ABA also increased the accumulation of 24Na and 36Cl in bean root tissue, but not that of 42K.  相似文献   

10.
11.
12.
Chlorophyll and nitrogen contents were highest in leaves of middle position, similarly as photosynthetic efficiency represented by 14C fixation (maxima in leaf 5 from the top). All the leaves lost 14C after 2 weeks of 14CO2 exposure. However, the reduction in radioactivity was less in young upper leaves than in the mature lower leaves. Leaves exported 14C-photosynthates to stem both above and below the exposed leaf. Very little radioactivity was recovered from the seeds of plants in which only first or second leaves were exposed to 14CO2 implying thereby that the carbon contribution of first two leaves to seed filling was negligible. The contribution of leaves to seed filling increased with the leaf position up to the sixth leaf from the top and after the seventh leaf their contribution to seed filling declined gradually.  相似文献   

13.
The survival of genetically engineered and wild-type Pseudomonas putida PpY101, that contained a recombinant plasmid pSR134 conferring mercury resistance, were monitored in andosol and sand microcosms. The survival of genetically engineered and wild-type P. putida was not significantly different in andosol. The population change of the two strains was dissimilar in andosol and sand. The survival of genetically engineered and wild-type P. putida strains was affected by the water content of andosol, and increased with the increment of the water content. The impact of the addition of genetically engineered and wild-type P. putida strains on indigenous bacteria and fungi was examined. Inoculation of both strains had no apparent effect on the density of indigenous microorganisms.  相似文献   

14.
Shelled green peas (ripening seeds of Pisum sativum var. Onward)were kept in the dark for 2 or 3 days in an atmosphere, eitherof air or 10 per cent carbon dioxide in air, containing 14CO2.Samples were removed at intervals, the acids of the T.C.A.C.extracted, estimated, and their content of 14C measured. Incorporationof 14C was mainly into the carboxyl carbon atoms of the acidswhich, with the exception of citrate, rose in specific activityrapidly for the first 4–6 h and then levelled off androse slowly for the rest of the experiment. The final valuesattained, again with the exception of C-6 of citrate, were muchbelow that of the tissue carbon dioxide. The cause of this failureto equilibrate with tissue carbon dioxide is discussed. Twomain carboxylation reactions are proposed, one from pyruvate(or other three carbon acid) to malate and the other from -oxoglutarateto oxalsuccinate and so to C-6 of citrate. The value of thevelocity constant of the first of these reactions was shownto be markedly decreased by increase in tissue carbon dioxidewhile that for the second carboxylation was unaffected. 14Cmoved into soluble amino-acids rapidly at first and then moreslowly; protein received 14C at a high rate throughout the experimentsmainly by isotopic exchange reactions. Calculations were madeof the rate of movement of carbon in the T.C.A.C. which wouldhave been required to give the observed changes in specificactivity of the metabolites but no scheme tested fitted allthe results satisfactorily.  相似文献   

15.
Multifactorial experiments were performed to study the diurnal dynamics of CO2 exchange in intact cucumber plants (Cucumis sativus L.). Based on experimental data, we analyzed the models of net photosynthesis, night respiration, and biomass accumulation. This analysis allowed us to resolve the growth component of respiration and to determine the diurnal temperature pattern that is optimal for biomass accumulation. It was found that the most profound transformation of assimilates into the biomass occurs under the maximum ratio of growth respiration to maintenance respiration. Under the experimental conditions used, this requirement was fulfilled at a temperature of 25°C during the photoperiod (optimum of net photosynthesis) and at subsequent gradual cooling to a hardening temperature (13°C by the end of the night).  相似文献   

16.
The activity of the enzyme ribulose bisphosphate carboxylase(RuBPCase) was estimated after rapidly extracting it from intactwheat leaves pretreated under different light and CO2 levels.No HCO3 was added to the extraction buffer since it isshown to inhibit RuBPCase. The activity increased as light intensityor CO2 concentration during pretreatment was increased. Enzymeactivity increased as temperature during pretreatment was decreased.Light activation did not affect the affinity of RuBPCase forCO2. A Km of 30 µM CO2 under air level O2 was determined.CO2, light and temperature are three main limiting factors ofphotosynthesis. It seems that the activity of RuBPCase is regulatedby these factors according to the requirements for CO2 fixation.  相似文献   

17.
18.
A method is presented which uses the 13C and 14C isotope abundance in CO2-enriched greenhouse crops to determine the percentage of plant organic carbon derived from artificially added CO2. In a greenhouse experiment with CO2 concentrations elevated to 1100 ± 100 microliters per liter during part of the daylight hours and maintained at normal atmospheric concentrations (340 microliters per liter) during the rest of the time, it was shown by 14C analysis that between 41% and 42% of the carbon in tomato plants (Lycopersicon esculentum var 4884) came from the artificially added CO2. Similar results were obtained from 13C analyses when the CO2 pressure-dependent isotope separation was taken into account.  相似文献   

19.
Mächler, F., Lehnherr, B., Schnyder, H. and Nösberger,J. 1985. A CO2 concentrating system in leaves of higher C3-plantspredicted by a model based on RuBP carboxylase/oxygenase kineticsand 14CO2/12CO2 exchange.–J. exp. Bot. 36: 1542–1550. A model is presented which compares the ratio of the two activitiesof the enzyme nbulose bisphosphate carboxylase/oxygenase asdetermined in vitro with the ratio of photosynthesis to photorespirationin leaves as determined from differential 14CO2/12CO2 uptakeor from CO2 compensation concentration. Discrepancies betweenmeasurements made in vitro and in vivo are attributed to theeffect of a CO2 concentrating system in the leaf cells. Interferencefrom dark respiration is discussed. A CO2 concentrating systemis postulated which is efficient mainly at low temperature andlow CO2 concentration. Key words: —Photosynthesis, photorespiration, ribulose bisphosphate carboxylase/oxygenase  相似文献   

20.
1. Chloroplasts prepared by the non-aqueous technique will, after fragmentation by ultrasonic treatment, incorporate [2-(14)C]mevalonic acid into phytoene, the first C(40) compound formed in the biosynthetic sequence to coloured carotenoids. 2. With suspensions containing 3.5mg. of chlorophyll, the optimum amounts of cofactor required were ATP (10mumoles), magnesium chloride (20mumoles) and glutathione (20mumoles); neither NAD(+) nor NADP(+) was required. 3. Very small amounts of squalene are also formed and synthesis is stimulated by addition of NADH or NADPH. Phytoene synthesis was not affected by the presence of these cofactors and no lycopersene (the C(40) homologue of squalene) was detected. 4. The phytol side chain of chlorophyll is also labelled under these conditions. 5. Preparations of developing chloroplasts are more active than preparations of mature chloroplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号