首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The poison sac of the fire ant Solenopsis invicta is the only identified glandular source of pheromones produced by a functional ant queen. This structure, which contains the poison gland, has previously been shown to be the source of a releaser pheromone that mediates queen recognition and tending by workers. The poison sac has also been demonstrated to be the source of a primer pheromone that inhibits winged, virgin queens from shedding their wings (dealating) and developing their ovaries. To determine if the poison sac was the only source of these pheromones, we excised the poison sac from queens and observed whether operated queens retained their pheromonal effects. In a first experiment, the poison sac was removed from functional (egg-laying) queens which were then paired with unoperated nestmate queens in small colonies. Counts of the workers surrounding each queen two weeks after the operation showed that queens without poison sac were as effective as their unoperated nestmates in attracting worker retinues. In a second experiment, we removed the poison sacs of virgin queens which had not yet begun laying eggs and thus had not begun producing queen pheromone. After allowing them to develop their ovaries, these individuals produced amounts of queen recognition pheromone comparable to those secreted by unoperated or sham operated virgin queens as determined by bioassay. Testing the head, thorax and abdomens of functional queens separately revealed that the head was the most attractive region in relation to its relative surface area. Bioassays of extracts of two cephalic glands-the mandibular gland and postpharyngeal gland-showed that the postpharyngeal gland is a second source of the queen recognition pheromone. Finally, we found that virgin queens whose poison sacs were removed before they began producing queen pheromone initiated production of a primer pheromone that inhibits winged virgin queens from dealating, indicating that this pheromonal effect also has an additional but as yet undetermined source. These results parallel those on the honey bee in which several of the pheromonal effects of functional queens appear to have multiple glandular sources.  相似文献   

2.
Abstract. In the fire ant Solenopsis invicta Buren, virgin females are capable of shedding their wings (dealation) and laying haploid eggs. However, dealation and reproduction are inhibited by a queen primer pheromone that depresses the release of Juvenile Hormone by the corpora allata. In an attempt to identify other neural signals that trigger the reproductive system, we measured the effect on brain biogenic amines of separation from the queen. Dopamine in the brain of virgin females increased from 552 ± 42 to 971 ± 65 fMol/brain when reproduction and dealation were stimulated by 15 days of separation. Octopamine and 5-hydroxytryptamine did not change significantly after the separation. Isolated virgin females fed with a tyrosine hydroxylase inhibitor 3-iodo- l -tyrosine mixed in sucrose for 15 days laid significantly fewer eggs and had fewer chorionated oocytes in their ovarioles than females fed with sucrose only. Restoring dopamine biosynthesis by adding l -dopa to the food also restored oogenesis and oviposition. Dealation was not affected by 3-iodo- l -tyrosine or l -dopa. The possible role of dopamine as the neural target of the queen pheromone regarding its potent allotoregulatory effect in other insects is discussed.  相似文献   

3.
Studies were conducted on the physiological and hormonal changes following the release of alates from developmentally suppressive pheromones produced by mature queens of the fire ant Solenopsis invicta Buren. Winged virgin queens were removed from the pheromonal signal and placed in colony fragments. The time for dealation, degree of ovarian development, and biosynthesis rate and whole body content of juvenile hormone (JH) were measured. The production rate and content of JH were highly correlated. Dealation and the initiation of oviposition corresponded to peak production of JH. JH production rose sharply following separation from the natal nest, peaking after 3 days. After 8 days of isolation, JH production gradually subsided to levels similar to that found in pre-release queens, but began to increase again after 12 days. Mature queens had highly elevated levels of JH relative to recently dealate females, probably reflecting the increased reproductive capability of these older females. The results support the hypothesis that the pheromone released by functional queens inhibits reproduction in virgin alates by suppressing corpora allata activity and the production of JH.  相似文献   

4.
The mandibular glands of queen honeybees produce a pheromone that modulates many aspects of worker honeybee physiology and behavior and is critical for colony social organization. The exact chemical blend produced by the queen differs between virgin and mated, laying queens. Here, we investigate the role of mating and reproductive state on queen pheromone production and worker responses. Virgin queens, naturally mated queens, and queens instrumentally inseminated with either semen or saline were collected 2 days after mating or insemination. Naturally mated queens had the most activated ovaries and the most distinct chemical profile in their mandibular glands. Instrumentally inseminated queens were intermediate between virgins and naturally mated queens for both ovary activation and chemical profiles. There were no significant differences between semen- and saline-inseminated queens. Workers were preferentially attracted to the mandibular gland extracts from queens with significantly more activated ovaries. These studies suggest that the queen pheromone blend is modulated by the reproductive status of the queens, and workers can detect these subtle differences and are more responsive to queens with higher reproductive potential. Furthermore, it appears as if insemination substance does not strongly affect physiological characteristics of honeybee queens 2 days after insemination, suggesting that the insemination process or volume is responsible for stimulating these early postmating changes in honeybee queens.  相似文献   

5.
Summary Queen power inIridomyrmex humilis during six arbitrarily chosen physiological stages of queens (virgin winged queens at the time of emergence, the same 4–5 days old, mated winged queens 5–6 days old, mated queens at the time of dealation, young egg-laying queens, and old egg-laying queens) was tested with regard to workers. Tested workers and queens were nestmates. The results were as follows. 1) Power of the old queens remained rather constant throughout the reproductive season. 2) Young queens were always less attractive than older ones. No changes were observed from the time of emergence to dealation. 3) At the time of egg-laying, these young queens became markedly attractive for workers but never as much as old egg-laying queens. Therefore, insemination and dealation do not trigger the increase in queen power. In contrast, oogenesis ending by egg-laying produces a significant increase in queen power.  相似文献   

6.
Summary In the fire ant,Solenopsis invicta, some winged virgin queens are known to shed their wings (dealate) upon removal of the mated mother queen. These virgin queens then develop their ovaries and begin to lay eggs, thereby foregoing the option of leaving on mating flights and attempting to found their own colonies. Such a response of virgin queens to queenlessness has not been reported for other ants. In order to determine if virgin queens of some other fire ants (subgenusSolenopsis) would respond in the same way, experiments were conducted onS. richteri, hybridS. invicta/richteri andS. geminata, a member of a species complex different from that of the other taxa. Just as inS. invicta, virgin queens ofS. richteri and the hybrid dealated and began to lay eggs within days of the removal of the queen. In addition, workers executed many of the reproductively active virgin queens, a phenomenon also found inS. invicta. In contrast, virgin queens ofS. geminata did not dealate or quickly begin to lay eggs upon separation from the queen. Reasons for the variability in the response of virgin queens of the different species may be 1) higher probability of reproductive success for unmated dealated queens compared to normal claustral founding inS. invicta andS. richteri linked to relatively frequent loss of the mother queen; or 2) phylogenetic constraint.  相似文献   

7.
8.
In species with social hierarchies, the death of dominant individuals typically upheaves the social hierarchy and provides an opportunity for subordinate individuals to become reproductives. Such a phenomenon occurs in the monogyne form of the fire ant, Solenopsis invicta, where colonies typically contain a single wingless reproductive queen, thousands of workers and hundreds of winged nonreproductive virgin queens. Upon the death of the mother queen, many virgin queens shed their wings and initiate reproductive development instead of departing on a mating flight. Workers progressively execute almost all of them over the following weeks. To identify the molecular changes that occur in virgin queens as they perceive the loss of their mother queen and begin to compete for reproductive dominance, we collected virgin queens before the loss of their mother queen, 6 h after orphaning and 24 h after orphaning. Their RNA was extracted and hybridized against microarrays to examine the expression levels of approximately 10 000 genes. We identified 297 genes that were consistently differentially expressed after orphaning. These include genes that are putatively involved in the signalling and onset of reproductive development, as well as genes underlying major physiological changes in the young queens.  相似文献   

9.
Worker sterility in honeybees is neither absolute nor irreversible. Whether under queen or worker control, it is likely to be mediated by pheromones. Queen-specific pheromones are not exclusive to queens; workers with activated ovaries also produce them. The association between ovarian activation and queen-like pheromone occurrence suggests the latter as providing a reliable signal of reproductive ability. In this study we investigated the effect of queen pheromones on ovary development and occurrence of queen-like esters in workers' Dufour's gland. Workers separated from the queenright compartment by a double mesh behaved like queenless workers, activating their ovaries and expressing a queen-like Dufour's gland secretion, confirming that the pheromones regulating both systems are non-volatile. Workers with developed ovaries produced significantly more secretion than sterile workers, which we attribute primarily to increased ester production. Workers separated from the queenright compartment by a single mesh displayed a delayed ovarian development, which we attribute to interrupted transfer of the non-volatile pheromone between compartments. We suggest that worker expression of queen-like characters reflects a queen-worker arms race; and that Dufour's gland secretion may provide a reliable signal for ovarian activation. The associative nature between ovary development and Dufour's gland ester production remains elusive.  相似文献   

10.
Physical fights are the usual means of establishing dominance hierarchies in animal societies. This form of dominance behaviour is most strongly expressed in honeybee queens who engage in fights to the death to establish themselves in the colony. Workers can also compete for reproductive dominance resulting in the establishment of stable hierarchies. They do not engage each other physically, but use pheromones that mimic those produced by queens. The dynamics of pheromone production in paired workers suggests that they engage in a pheromonal contest. Because queen pheromones suppress ovary activation, the contest results in the sterility of the loser.  相似文献   

11.
The presence of the honey bee queen reduces worker ovary activation. When the queen is healthy and fecund, this is interpreted as an adaptive response as workers can gain fitness from helping the queen raise additional offspring, their sisters. However, when the queen is absent, workers activate their ovaries and lay unfertilized eggs that become males. Queen pheromones are recognised as a factor affecting worker ovary activation. Recent work has shown that queen mandibular pheromone composition changes with queen mating condition and workers show different behavioural responses to pheromone extracts from these queens. Here, we tested whether workers reared in colonies with queens of different mating condition varied in level of ovary activation. We also examined the changes in the chemical composition of the queen mandibular glands to determine if the pheromone blend varied among the queens. We found that the workers activated their ovaries when queens were unmated and had lower ovary activation when raised with mated queens, suggesting that workers detect and respond adaptively to queens of differing mating status. Moreover, variation in queen mandibular gland’s chemical composition correlated with the levels of worker ovary activation. Although correlative, this evidence suggests that queen pheromone may act as a signal of queen mating condition for workers, in response to which they alter their level of ovary activation.  相似文献   

12.
The queens of many social insects produce pheromones that influence the behaviour and physiology of colony members. Pheromones produced by queens have long been considered as the prime factor inhibiting the differentiation of new reproductive individuals. A volatile pheromone consisting of a blend of n‐butyl‐n‐butyrate and 2‐methyl‐1‐butanol comprises a queen pheromone that inhibits the differentiation of female neotenic reproductives (secondary queens) of a termite Reticulitermes speratus. 2‐Methyl‐1‐butanol is the first chiral molecule to be identified as a primer pheromone in social insects, which presents the intriguing question of whether enantiomeric composition plays a role in caste regulation. In the present study, we report that the (R)‐ and (S)‐enantiomers and the racemic mixture of 2‐methyl‐1‐butanol show significant inhibitory effects on the differentiation of new female neotenics in combination with n‐butyl‐n‐butyrate, whereas no significant difference in inhibitory activity is observed among them. These results suggests that termites recognize 2‐methyl‐1‐butanol as a queen signal but they do not distinguish between the stereostructures of the enantiomers.  相似文献   

13.
Vitellin (VN) and vitellogenin (VG) profiles were analyzed in monogyne and polygyne colonies of the red imported fire ant, Solenopsis invicta. Non-denaturing and SDS-polyacrylamide gel electrophoresis (PAGE) analyses indicated that the native VN was likely 350 kDa and comprised of two subunits in the molecular size range of 170-185 kDa. SDS-PAGE of hemolymph showed that the relative mobilities and subunit patterns of VG and VN were similar. VG was present in the hemolymph of reproductive queens; alate, virgin queens; and workers, but not in males. Anti-VN, prepared from polygyne egg homogenates, reacted with egg homogenates and with hemolymph VG from reproductive, monogyne and polygyne queens and alate, virgin polygyne queens. Analysis of circulating VG and ovarian development in alate, virgin queens showed that low levels of VG appeared by five days following adult eclosion, but egg development was not observed until seven weeks. VG was evident in newly inseminated queens, and increased steadily for the first three weeks following dealation. VG levels declined slightly near eclosion of the first workers (= nanitics) and dropped sharply after nanitic emergence at five weeks following dealation. Oocyte maturation peaked at days 15-25 following dealation, but otherwise remained low but steady. These studies provide the basis for future investigations into endocrine regulations of vitellogenesis in S. invicta queens.  相似文献   

14.
In social insects, resource allocation is a key factor that influences colony survival and growth. Optimal allocation to queens and brood is essential for maximum colony productivity, requiring colony members to have information on the total reproductive power in colonies. However, the mechanisms regulating egg production relative to the current labour force for brood care remain poorly known. Recently, a volatile chemical was identified as a termite queen pheromone that inhibits the differentiation of new neotenic reproductives (secondary reproductives developed from nymphs or workers) in Reticulitermes speratus. The same volatile chemical is also emitted by eggs. This queen pheromone would therefore be expected to act as an honest message of the reproductive power about queens. In this study, we examined how the queen pheromone influences the reproductive rate of queens in R. speratus. We compared the number of eggs produced by each queen between groups with and without exposure to artificial queen pheromone. Exposure to the pheromone resulted in a significant decrease in egg production in both single-queen and multiple-queen groups. This is the first report supporting the role of queen pheromones as a signal regulating colony-level egg production, using synthetically derived compounds in a termite.  相似文献   

15.
Summary Queen rearing is suppressed in honey bees (Apis mellifera L.) by pheromones, particularly the queen's mandibular gland pheromone. In this study we compared this pheromonally-based inhibition between temperate and tropically-evolved honey bees. Colonies of European and Africanized bees were exposed to synthetic queen mandibular gland pheromone (QMP) for ten days following removal of resident queens, and their queen rearing responses were examined. Queen rearing was suppressed similarly in both European and Africanized honey bees with the addition of synthetic QMP, indicating that QMP acts on workers of both races in a comparable fashion. QMP completely suppressed queen cell production for two days, but by day six, cells containing queen larvae were present in all treated colonies, indicating that other signals play a role in the suppression of queen rearing. In queenless control colonies not treated with QMP, Africanized bees reared 30% fewer queens than Europeans, possibly due to racial differences in response to feedback from developing queens and/or their cells. Queen development rate was faster in Africanized colonies, or they selected older larvae to initiate cells, as only 1 % of queen cells were unsealed after 10 days compared with 12% unsealed cells in European colonies.  相似文献   

16.
Understanding the determinants of reproductive skew (the partitioning of reproduction among co‐breeding individuals) is one of the major questions in social evolution. In ants, multiple‐queen nests are common and reproductive skew among queens has been shown to vary tremendously both within and between species. Proximate determinants of skew may be related to both queen and worker behaviour. Queens may attempt to change their reproductive share through dominance interactions, egg eating and by changing individual fecundity. Conversely, workers are in a position to regulate the reproductive output of queens when rearing the brood. This paper investigates queen behaviour at the onset of egg laying and the effect of queen fecundity and worker behaviour on brood development and reproductive shares of multiple queens in the ant Formica fusca. The study was conducted in two‐queen laboratory colonies where the queens produced only worker offspring. The results show that in this species reproductive apportionment among queens is not based on dominance behaviour and aggression, but rather on differences in queen fecundity. We also show that, although the queen fecundity at the onset of brood rearing is a good indicator of her final reproductive output, changes in brood composition occur during brood development. Our results highlight the importance of queen fecundity as a major determinant of her reproductive success. They furthermore suggest that in highly derived polygyne species, such as the Formica ants, direct interactions as a means for gaining reproductive dominance have lost their importance.  相似文献   

17.
Anarchistic queen honey bees have normal queen mandibular pheromones   总被引:3,自引:0,他引:3  
Summary. Anarchistic honey bees are a line developed by recurrent selection in which workers frequently lay eggs. In unselected colonies, workers refrain from reproduction in response to pheromonal signals that indicate the presence of brood and a queen. We show that queen type (anarchistic or wild type) has no effect on rates of ovary activation of anarchistic or wild type workers. In addition, we show that an important component of the queens signalling system, the queen mandibular gland pheromone, is similar in wild type and anarchistic queens. Anarchistic larvae do not inhibit worker ovary development to the same degree as wild type larvae, however all colonies in this experiment contained only wild type larvae. Anarchistic workers had greater rates of ovary activation than wild type workers in colonies headed by either queen type. We therefore conclude that there must be differences in the transmission or reception of queen pheromones, or worker sensitivity to these compounds. These results clearly demonstrate that anarchy is a complex syndrome, not simply the result of reduced pheromone production by anarchist queens and larvae.Received 23 December 2003; revised 14 May 2004; accepted 1 June 2004.  相似文献   

18.
Alarm pheromones of social insects are best known for their role in the defence and maintenance of colony integrity. Previous studies with the fire ant Solenopsis invicta Buren (Hymenoptera: Formicidae) demonstrate that the mandibular glands of workers (sterile females) and male and female sexuals produce an alarm pheromone, 2‐ethyl‐3,6‐dimethylpyrazine. The function of alarm pheromones in worker ants is well understood and divergent from the function of these compounds in the winged sexual forms. The present study quantifies the amount of pyrazine in the mandibular glands from male and female alate sexuals, as well as queens. Pyrazine production in female alates starts in the late pupal stage and increases until they reach mating flight‐ready maturity; however, after mating flight participation, the pyrazine level declines by >50%. Interestingly, mature male alates lose >85% of their mandibular gland pyrazine during mating flight activity. The results of the present study indicate that male and female sexuals use mandibular gland secretions for mating flight initiation and during mating flights. Furthermore, the ontogeny of mandibular gland products (pyrazine as the marker) from newly‐mated queens to mature colony queens shows a more than two‐fold increase in the amount of pyrazine by 6 months after mating. However, this is followed by a decline to trace amounts in mature colony queens (>2 years old), suggesting a function for mandibular gland products during colony development. Multifunctional use of social insect pheromones is well documented and data are reported in the present study suggesting new roles for mandibular gland products in fire ants.  相似文献   

19.
The behaviour of queen honeybees and their attendants   总被引:1,自引:0,他引:1  
Abstract. The behaviour of queen and worker honeybees (Apis mellifera L.) was observed using small colonies in observation hives. Workers paid more attention to queens which had been mated for 2 months or more than to those which were newly mated; virgin queens received least attention. Queens received most attention when they were stationary and least when they were walking over the comb; virgin queens were most active. Queen cells had as many attendants as virgin queens and queen larvae were inspected almost continuously. The queen pheromone component 9–oxo-trans-2–decenoic acid stimulated 'court' behaviour when presented on small polyethylene blocks, but workers responded aggressively to complete extracts of queens' heads. Both the heads and abdomens of mated queens received much attention from court workers but the abdomens were palpated by more workers for longer and were licked much more. The queens' thoraces were least attended. Abdominal tergites posterior to tergite glands were licked for longer than those anterior to the glands. Only worker bees very near to the queen reacted to her and joined her 'court'.
No evidence was found of a diel periodicity in the behaviour of a queen or her 'court'. During the winter the queen's court was smaller than in summer and she walked less and laid fewer eggs. When colonies were fed with sucrose syrup in winter, their queens laid more eggs and workers reared more brood but there was no change in the attention received by the queens.
The implications of these findings for the secretion and distribution of queen pheromones are discussed.  相似文献   

20.
Newly produced queens from monogyne (single-queen) coloniesof the ant Solenopsis invicta usually initiate reproductionindependently, that is, without worker assistance. However,some recently mated queens attempt to bypass this risky phaseof new colony foundation by entering established nests to reproduce,although it is unclear how often these queens are successfulin natural populations. We surveyed a mature monogyne populationof S. invicta in both 1995 and 1996 for colonies headed by queensincapable of independent colony founding (diploid-male-producingqueens) in order to estimate the frequency of colonies thatare headed by queens that initiated reproduction within establishednests (adopted queens). Using the frequency of diploid-male-producingqueens among the recently mated queens in this population, weestimated that the overall rate of queen replacement by adoptedqueens is about 0.7% per colony per year. Although theory suggeststhat a change to a novel queen reproductive tactic could beassociated with a fundamental change in social organization(queen number), this does not appear to be the case in monogyneS. invicta. However, the evolution of nest-infiltrating reproductivetactics by queens in a monogyne population and the evolutionof multiple-queen societies may result from similar ecologicalpressures facing newly mated queens. We therefore incorporatethis strategy into an existing theoretical framework that wasdeveloped to explain the evolution of alternative social organizationsin ants, providing testable predictions regarding the distributionand frequency of queen adoption in other single-queen ant societies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号