首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Upon starvation Bacillus subtilis undergoes a developmental process involving creation of two cell types, the mother cell and forespore. A signal in the form of a serine protease, SpoIVB, is secreted from the forespore and leads to regulated intramembrane proteolysis (RIP) of pro-sigmaK, releasing active sigmaK into the mother cell. RIP of pro-sigmaK is carried out by a membrane-embedded metalloprotease, SpoIVFB, which is inactive when bound by BofA and SpoIVFA. We have investigated the mechanism by which this complex is activated. By expressing components of the signalling pathway in Escherichia coli, we reconstructed complete inhibition of pro-sigmaK RIP by BofA and SpoIVFA, and found that SpoIVB serine protease activity could partially restore RIP, apparently by targeting SpoIVFA. Pulse-chase experiments demonstrated that SpoIVFA synthesized early during B. subtilis sporulation is lost in a SpoIVB-dependent fashion, coincident with the onset of pro-sigmaK RIP, supporting the idea that SpoIVB targets SpoIVFA to trigger RIP of pro-sigmaK. Loss of BofA depended not only on SpoIVB, but also on CtpB, a serine protease secreted from the mother cell. CtpB appeared to cleave BofA near its C-terminus upon coexpression in E. coli, and purified CtpB degraded BofA. We propose that RIP of pro-sigmaK involves a three-step proteolytic cascade in which SpoIVB first cleaves SpoIVFA, CtpB then cleaves BofA and finally SpoIVFB cleaves pro-sigmaK.  相似文献   

2.
The sigmaK checkpoint coordinates gene expression in the mother cell with signaling from the forespore during Bacillus subtilis sporulation. The signaling pathway involves SpoIVB, a serine peptidase produced in the forespore, which is believed to cross the innermost membrane surrounding the forespore and activate a complex of proteins, including BofA, SpoIVFA, and SpoIVFB, located in the outermost membrane surrounding the forespore. Activation of the complex allows proteolytic processing of pro-sigmaK, and the resulting sigmaK RNA polymerase transcribes genes in the mother cell. To investigate activation of the pro-sigmaK processing complex, the level of SpoIVFA in extracts of sporulating cells was examined by Western blot analysis. The SpoIVFA level decreased when pro-sigmaK processing began during sporulation. In extracts of a spoIVB mutant defective in forespore signaling, the SpoIVFA level failed to decrease normally and no processing of pro-sigmaK was observed. Although these results are consistent with a model in which SpoIVFA inhibits processing until the SpoIVB-mediated signal is received from the forespore, we discovered that loss of SpoIVFA was insufficient to allow processing under certain conditions, including static incubation of the culture and continued shaking after the addition of inhibitors of oxidative phosphorylation or translation. Under these conditions, loss of SpoIVFA was independent of spoIVB. The inability to process pro-sigmaK under these conditions was not due to loss of SpoIVFB, the putative processing enzyme, or to a requirement for ongoing synthesis of pro-sigmaK. Rather, it was found that the requirements for shaking of the culture, for oxidative phosphorylation, and for translation could be bypassed by mutations that uncouple processing from dependence on forespore signaling. This suggests that ongoing translation is normally required for efficient pro-sigmaK processing because synthesis of the SpoIVB signal protein is needed to activate the processing complex. When translation is blocked, synthesis of SpoIVB ceases, and the processing complex remains inactive despite the loss of SpoIVFA. Taken together, the results suggest that SpoIVB signaling activates the processing complex by performing another function in addition to causing loss of SpoIVFA or by causing loss of SpoIVFA in a different way than when translation is blocked. The results also demonstrate that the processing machinery can function in the absence of translation or an electrochemical gradient across membranes.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
During the process of spore formation in Bacillus subtilis many membrane proteins localize to the sporulation septum where they play key roles in morphogenesis and cell-cell signalling. However, the mechanism by which these proteins are anchored at this site is not understood. In this report we have defined the localization requirements for the mother-cell membrane protein SpoIVFA, which anchors a signalling complex in the septal membrane on the mother cell side. We have identified five proteins (SpoIID, SpoIIP, SpoIIM, BofA and SpoIIIAH) synthesized in the mother cell under the control of sigma(E) and one protein (SpoIIQ) synthesized in the forespore under the control of sigma(F) that are all required for the proper localization of SpoIVFA. Surprisingly, these proteins appear to have complementary and overlapping anchoring roles suggesting that SpoIVFA is localized in the septal membrane through a web of protein interactions. Furthermore, we demonstrate a direct biochemical interaction between the extracellular domains of two of the proteins required to anchor SpoIVFA: the forespore protein SpoIIQ and the mother-cell protein SpoIIIAH. This result supports the idea that the web of interactions that anchors SpoIVFA is itself held in the septal membrane through a zipper-like interaction across the sporulation septum. Importantly, our results suggest that a second mechanism independent of forespore proteins participates in anchoring SpoIVFA. Finally, we show that the dynamic localization of SpoIIQ in the forespore is impaired in the absence of SpoIVFA but not SpoIIIAH. Thus, a complex web of interactions among mother cell and forespore proteins is responsible for static and dynamic protein localization in both compartments of the sporangium. We envision that this proposed network is involved in anchoring other sporulation proteins in the septum and that protein networks with overlapping anchoring capacity is a feature of protein localization in all bacteria.  相似文献   

11.
12.
The BofC protein acts negatively on intercompartmental signalling of pro-sigma(K) processing in the sigma(K)-checkpoint of Bacillus subtilis. Signalling is brought about by the SpoIVB protein, which is synthesized in the forespore and initiates proteolytic processing of pro-sigmaK to its mature and active form in the opposed mother cell chamber of the developing cell. We have shown here that BofC, like SpoIVB, is secreted across the inner forespore membrane and, from the analysis of a bofC deletion and insertion mutant, is likely to interact with SpoIVB. In the absence of BofC, the amount of SpoIVB found in sporulating cells is substantially reduced, although SpoIVB is still able to activate proteolysis of pro-sigma(K). Conversely, in the absence of SpoIVB, the levels of BofC accumulate suggesting that the fate of each molecule is dependent upon their mutual interaction. Our results suggest that BofC could maintain SpoIVB in a stable but inactive form. Supporting this, we have shown that overproduction of BofC inhibits SpoIVB autoproteolysis and leads to a delay in proteolytic cleavage of pro-sigma(K). Based on our work here, we have proposed a model for BofC's functional role in intercompartmental signalling.  相似文献   

13.
During sporulation of Bacillus subtilis, pro-sigmaK is activated by regulated intramembrane proteolysis (RIP) in response to a signal from the forespore. RIP of pro-sigmaK removes its prosequence (amino acids 1 to 20), releasing sigmaK from the outer forespore membrane into the mother cell cytoplasm, in a reaction catalyzed by SpoIVFB, a metalloprotease in the S2P family of intramembrane-cleaving proteases. The requirements for pro-sigmaK to serve as a substrate for RIP were investigated by producing C-terminally truncated pro-sigmaK fused at different points to the green fluorescent protein (GFP) or hexahistidine in sporulating B. subtilis or in Escherichia coli engineered to coexpress SpoIVFB. Nearly half of pro-sigmaK (amino acids 1 to 117), including part of sigma factor region 2.4, was required for RIP of pro-sigmaK-GFP chimeras in sporulating B. subtilis. Likewise, pro-sigmaK-hexahistidine chimeras demonstrated that the N-terminal 117 amino acids of pro-sigma(K) are sufficient for RIP, although the N-terminal 126 amino acids, which includes all of region 2.4, allowed much better accumulation of the chimeric protein in sporulating B. subtilis and more efficient processing by SpoIVFB in E. coli. In contrast to the requirements for RIP, a much smaller N-terminal segment (amino acids 1 to 27) was sufficient for membrane localization of a pro-sigmaK-GFP chimera. Addition or deletion of five amino acids near the N terminus allowed accurate processing of pro-sigmaK, ruling out a mechanism in which SpoIVFB measures the distance from the N terminus to the cleavage site. A charge reversal at position 13 (substituting glutamate for lysine) reduced accumulation of pro-sigmaK and prevented detectable RIP by SpoIVFB. These results elucidate substrate requirements for RIP of pro-sigmaK by SpoIVFB and may have implications for substrate recognition by other S2P family members.  相似文献   

14.
Sporulation in Bacillus subtilis begins with an asymmetric cell division giving rise to smaller forespore and larger mother cell compartments. Different programs of gene expression are subsequently directed by compartment-specific RNA polymerase sigma-factors. In the final stages, spore coat proteins are synthesized in the mother cell under the control of RNA polymerase containing sigma(K), (Esigma(K)). sigma(K) is synthesized as an inactive zymogen, pro-sigma(K), which is activated by proteolytic cleavage. Processing of pro-sigma(K) is performed by SpoIVFB, a metalloprotease that resides in a complex with SpoIVFA and bypass of forespore (Bof)A in the outer forespore membrane. Ensuring coordination of events taking place in the two compartments, pro-sigma(K) processing in the mother cell is delayed until appropriate signals are received from the forespore. Cell-cell signaling is mediated by SpoIVB and BofC, which are expressed in the forespore and secreted to the intercompartmental space where they regulate pro-sigma(K) processing by mechanisms that are not yet fully understood. Here we present the three-dimensional structure of BofC determined by solution state NMR. BofC is a monomer made up of two domains. The N-terminal domain, containing a four-stranded beta-sheet onto one face of which an alpha-helix is packed, closely resembles the third immunoglobulin-binding domain of protein G from Streptococcus. The C-terminal domain contains a three-stranded beta-sheet and three alpha-helices in a novel domain topology. The sequence connecting the domains contains a conserved DISP motif to which mutations that affect BofC activity map. Possible roles for BofC in the sigma(K) checkpoint are discussed in the light of sequence and structure comparisons.  相似文献   

15.
The Bacillus subtilis SpoIVB protein is a critical component of the intercompartmental signal-transduction pathway that activates the sigma factor, σK, in the mother cell of the sporulating cell. SpoIVB, synthesized in the forespore chamber, must act across two layers of phospholipid membrane to facilitate proteolytic processing of inactive pro-σK to active σK. We have used a genetic approach to dissect SpoIVB function and found that this protein has two distinct developmental functions. One function is that of intercompartmental signalling of pro-σK processing. The other role is essential to spore formation and is illustrated by mutations of SpoIVB which allow cell–cell signalling of pro-σK processing but prevent the formation of viable spores. Using localized and site-specific mutagenesis we have identified a functional domain of SpoIVB that is involved in its non-signalling role.  相似文献   

16.
Yu YT  Kroos L 《Journal of bacteriology》2000,182(11):3305-3309
Processing of pro-sigma(K) in the mother cell compartment of sporulating Bacillus subtilis involves SpoIVFB and is governed by a signal from the forespore. SpoIVFB has an HEXXH motif characteristic of metalloproteases embedded in one of its transmembrane segments. Several conservative single amino acid changes in the HEXXH motif abolished function. However, changing the glutamic acid residue to aspartic acid, or changing the isoleucine residue that precedes the motif to proline, permitted SpoIVFB function. Only one other putative metalloprotease, site 2 protease has been shown to tolerate aspartic acid rather than glutamic acid in its HEXXH sequence. Site 2 protease and SpoIVFB share a second region of similarity with a family of putative membrane metalloproteases. A conservative change in this region of SpoIVFB abolished function. Interestingly, SpoIVFA increased the accumulation of certain mutant SpoIVFB proteins but was unnecessary for accumulation of wild-type SpoIVFB.  相似文献   

17.
During sporulation in Bacillus subtilis, the mother cell membranes migrate around the forespore in a phagocytic-like process called engulfment. Developmental gene expression requires the successful completion of this key morphological event. Here we show that perturbations to engulfment block the accumulation of proteins secreted into the space between the mother cell and forespore membranes. Our data support a model in which engulfment defects cause the proteolytic clearance of these secreted proteins. Importantly, we show that this degradative response is reversible; once proper engulfment is restored, secreted proteins again accumulate. In particular, we have found that the forespore signalling protein SpoIVB fails to accumulate when engulfment is impaired and, as a result, late mother cell gene expression under the control of sigma(K) is blocked. If engulfment is restored, SpoIVB accumulates and cell-cell signalling resumes. Thus, this degradative pathway functions like a developmental checkpoint ensuring that mother cell gene expression does not commence unless morphogenesis proceeds normally.  相似文献   

18.
19.
SpoIVB is essential for intercompartmental signalling in the sigma(K)-checkpoint of Bacillus subtilis. SpoIVB is synthesized in the spore chamber and is the signal which activates proteolytic processing of pro-sigma(K) to its mature and active form sigma(K). We show here that SpoIVB is a serine peptidase of the SA clan. Expression of SpoIVB in Escherichia coli has shown that SpoIVB is able to self-cleave into at least three discrete products, and in vitro studies have shown cleavage in trans. Autoproteolysis of SpoIVB is tightly linked to the initiation of the two developmental functions of this protein, signalling of pro-sigma(K) processing and a yet, uncharacterized, second function which is essential for the formation of heat-resistant spores. In B. subtilis, SpoIVB is synthesized as a zymogen and is subject to two levels of proteolysis. First, autoproteolysis generating intermediate products, at least one of which is proposed to be the active form, followed by processing by one or more enzymes to smaller species. This could provide a mechanism for switching off the active SpoIVB intermediate(s) and suggests a similarity to other proteolytic cascades such as those found in blood coagulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号