首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of DNA methylation on gene expression and chromatin structure suggest the existence of a mechanism in the nucleus capable of distinguishing methylated and non-methylated sequences. We report the finding of a nuclear protein in several vertebrate tissues and cell lines that binds preferentially to methylated DNA in vitro. Its lack of sequence-specific requirements makes it potentially capable of binding to any methylated sequence in mammalian nuclei. An in vivo counterpart of these results is that methylated CpGs are inaccessible to nucleases within nuclei. In contrast, non-methylated CpG sites, located mainly at CpG islands, and restriction sites not containing this dinucleotide, are relatively accessible. The possibility that DNA methylation acts through binding to specific proteins that could alter chromatin structure is discussed.  相似文献   

2.
P B Becker  S Ruppert  G Schütz 《Cell》1987,51(3):435-443
Using in vivo dimethylsulfate footprinting, we have analyzed protein-DNA interactions within two regions upstream of the tyrosine aminotransferase (TAT) gene that are characterized by an altered chromatin structure in TAT-expressing as compared to nonexpressing cells. All the identified protein contacts to DNA are found exclusively in the TAT-expressing hepatoma cells. In vitro analyses of specific DNA-binding factors in crude nuclear extracts yield DNAase I footprints that correlate well with the binding sites in vivo. Surprisingly, all DNA-binding activities are present in nuclei of TAT-expressing and nonexpressing cells, indicating that the mere presence of factors is not sufficient for their interaction with a binding site in vivo. Genomic sequencing reveals methylation of CpG dinucleotides in the regions analyzed in nonexpressing cells, whereas no methylation is found in TAT-expressing cells. In vitro methylation at a cytosine residue within a footprint region prevents the interaction of a factor with its binding site.  相似文献   

3.
4.
5.
6.
7.
Positioned nucleosomes limit the access of proteins to DNA. However, the impact of nucleosomes on DNA methylation in vitro and in vivo is poorly understood. Here, we performed a detailed analysis of nucleosome binding and nucleosomal DNA methylation by the de novo methyltransferases. We show that compared to linker DNA, nucleosomal DNA is largely devoid of CpG methylation. ATP-dependent chromatin remodelling frees nucleosomal CpG dinucleotides and renders the remodelled nucleosome a 2-fold better substrate for Dnmt3a methyltransferase compared to free DNA. These results reflect the situation in vivo, as quantification of nucleosomal DNA methylation levels in HeLa cells shows a 2-fold decrease of nucleosomal DNA methylation levels compared to linker DNA. Our findings suggest that nucleosomal positions are stably maintained in vivo and nucleosomal occupancy is a major determinant of global DNA methylation patterns in vivo.  相似文献   

8.
9.
10.
11.
12.
DNA methylation affects the formation of active chromatin   总被引:88,自引:0,他引:88  
I Keshet  J Lieman-Hurwitz  H Cedar 《Cell》1986,44(4):535-543
  相似文献   

13.
The methylation status of CpG islands is highly correlated with gene expression. Current methods for computational prediction of DNA methylation only utilize DNA sequence features. In this study, besides 35 DNA sequence features, we added four histone methylation marks to predict the methylation status of CpG islands, and improved the accuracy to 89.94%. Also we applied our model to predict the methylation pattern of all the CpG islands in the human genome, and the results are consistent with the previous reports. Our results imply the important roles of histone methylation marks in affecting the methylation status of CpG islands. H3K4me enriched in the methylation-resistant CpG islands could disrupt the contacts between nucleosomes, unravel chromatin and make DNA sequences accessible. And the established open environment may be a prerequisite for or a consequence of the function implementation of zinc finger proteins that could protect CpG islands from DNA methylation.  相似文献   

14.
15.
16.
17.
Alterations in DNA methylation patterns are one of the earliest and most common events in tumorigenesis. Overall levels of genomic methylation often decrease during transformation, but localized regions of increased methylation have been observed in the same tumors. We have examined changes in the methylation status of the muscle determination gene myoD, which contains a CpG island, as a function of oncogenic transformation. This CpG island underwent de novo methylation during immortalization of 10T1/2 cells, and progressively more sites became methylated during the subsequent transformation of the cells to oncogenicity. The greatest increase in methylation occurred in the middle of the CpG island in exon 1 during transformation. Interestingly, no methylation was apparent in the putative promoter of myoD in either the 10T1/2 cell line or its transformed derivative. The large number of sites in the CpG island that became methylated during transformation was correlated with heterochromatinization of myoD as evidenced by a decreased sensitivity to cleavage of DNA in nuclei by MspI. A site in the putative promoter also became insensitive to MspI digestion in nuclei, suggesting that the chromatin structural changes extended beyond the areas of de novo methylation. Unlike Lyonized genes on the inactive X chromosome, whose timing of replication is shifted to late S phase, myoD replicated early in S phase in the transformed cell line. Methylation analysis of myoD in DNAs from several human tumors, which presumably do not express the gene, showed that hypermethylation also frequently occurs during carcinogenesis in vivo. Thus, the progressive increase in methylation of myoD during immortalization and transformation coinciding with a change in chromatin structure, as illustrated by the in vitro tumorigenic model, may represent a common mechanism in carcinogenesis for permanently silencing the expression of genes which can influence cell growth and differentiation.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号