共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The catalytic, RNA-binding and oligomerization domains of the RNA-editing terminal uridylyl transferase 1 (RET1) from Leishmania tarentolae mitochondria were characterized by mutational analysis. Significant N- and C-terminal portions of the protein were found to be dispensable for UTP polymerization in vitro. Changes of conserved amino acids in the active site demonstrated a general similarity of sugar-phosphate moiety recognition of the incoming ribonucleotide triphosphate by RET1 and eukaryotic poly(A) polymerases. Overlapping RNA-binding and oligomerization regions were mapped to the C-terminal region, which is conserved only among trypanosomatid RET1 enzymes. In the absence of an RNA primer, RET1 can use UTP itself to initiate nucleotide transfer and produce poly(U) molecules of several hundred nucleotides. An N-terminal zinc finger motif is essential for enzyme activity; deletion of this motif or chelation of zinc inhibits activity. 相似文献
4.
It is well known that protein subcellular localizations are closely related to their functions. Although many computational methods and tools are available from Internet, it is still necessary to develop new algorithms in this filed to gain a better understanding of the complex mechanism of plant subcellular localization. Here, we provide a new web server named PSCL for plant protein subcellular localization prediction by employing optimized functional domains. After feature optimization, 848 optimal functional domains from InterPro were obtained to represent each protein. By calculating the distances to each of the seven categories, PSCL showing the possibilities of a protein located into each of those categories in ascending order. Toward our dataset, PSCL achieved a first-order predicted accuracy of 75.7% by jackknife test. Gene Ontology enrichment analysis showing that catalytic activity, cellular process and metabolic process are strongly correlated with the localization of plant proteins. Finally, PSCL, a Linux Operate System based web interface for the predictor was designed and is accessible for public use at http://pscl.biosino.org/. 相似文献
5.
Definition and identification of homology domains 总被引:3,自引:0,他引:3
A method is described for identifying and evaluating regionsof significant similarity between two sequences. The notionof a homology domain is employed which definesthe boundaries of a region of sequence homology containing noinsertions or deletions. The relative significance of differentpotential homology domains is evaluated using a non-linear similarityscore related to the probability of finding the observed levelof similarity in the region by chance. The sensitivity of themethod is demonstrated by simulating the evolution of homologydomains and applying the method to their detection. Severalexamples of the use of homology domain identification are given.
Received on July 29, 1987; accepted on November 15, 1987 相似文献
6.
Chunquan Li Xia Li Yingbo Miao Qianghu Wang Wei Jiang Chun Xu Jing Li Junwei Han Fan Zhang Binsheng Gong Liangde Xu 《Nucleic acids research》2009,37(19):e131
With the development of high-throughput experimental techniques such as microarray, mass spectrometry and large-scale mutagenesis, there is an increasing need to automatically annotate gene sets and identify the involved pathways. Although many pathway analysis tools are developed, new tools are still needed to meet the requirements for flexible or advanced analysis purpose. Here, we developed an R-based software package (SubpathwayMiner) for flexible pathway identification. SubpathwayMiner facilitates sub-pathway identification of metabolic pathways by using pathway structure information. Additionally, SubpathwayMiner also provides more flexibility in annotating gene sets and identifying the involved pathways (entire pathways and sub-pathways): (i) SubpathwayMiner is able to provide the most up-to-date pathway analysis results for users; (ii) SubpathwayMiner supports multiple species (∼100 eukaryotes, 714 bacteria and 52 Archaea) and different gene identifiers (Entrez Gene IDs, NCBI-gi IDs, UniProt IDs, PDB IDs, etc.) in the KEGG GENE database; (iii) the system is quite efficient in cooperating with other R-based tools in biology. SubpathwayMiner is freely available at http://cran.r-project.org/web/packages/SubpathwayMiner/. 相似文献
7.
Structure-activity relationships in flexible protein domains: regulation of rho GTPases by RhoGDI and D4 GDI 总被引:1,自引:0,他引:1
Golovanov AP Chuang TH DerMardirossian C Barsukov I Hawkins D Badii R Bokoch GM Lian LY Roberts GC 《Journal of molecular biology》2001,305(1):121-135
The guanine dissociation inhibitors RhoGDI and D4GDI inhibit guanosine 5'-diphosphate dissociation from Rho GTPases, keeping these small GTPases in an inactive state. The GDIs are made up of two domains: a flexible N-terminal domain of about 70 amino acid residues and a folded 134-residue C-terminal domain. Here, we characterize the conformation of the N-terminal regions of both RhoGDI and D4GDI using a series of NMR experiments which include (15)N relaxation and amide solvent accessibility measurements. In each protein, two regions with tendencies to form helices are identified: residues 36 to 58 and 9 to 20 in RhoGDI, and residues 36 to 57 and 20 to 25 in D4GDI. To examine the functional roles of the N-terminal domain of RhoGDI, in vitro and in vivo functional assays have been carried out with N-terminally truncated proteins. These studies show that the first 30 amino acid residues are not required for inhibition of GDP dissociation but appear to be important for GTP hydrolysis, whilst removal of the first 41 residues completely abolish the ability of RhoGDI to inhibit GDP dissociation. The combination of structural and functional studies allows us to explain why RhoGDI and D4GDI are able to interact in similar ways with the guanosine 5'-diphosphate-bound GTPase, but differ in their ability to regulate GTP-bound forms; these functional differences are attributed to the conformational differences of the N-terminal domains of the guanosine 5'-diphosphate dissociation inhibitors. Therefore, the two transient helices, appear to be associated with different biological effects of RhoGDI, providing a clear example of structure-activity relationships in a flexible protein domain. 相似文献
8.
9.
Protein aggregates are usually formed by interactions between unfolded or partially unfolded species, and often occur when a protein is denatured by, for example, heat or low pH. In earlier work, we used a Darwinian selection strategy to create human antibody variable domains that resisted heat aggregation. The repertoires of domains were displayed on filamentous phage and denatured (at 80 °C in pH 7.4), and folded domains were selected by binding to a generic ligand after cooling. This process appeared to select for domains with denatured states that resisted aggregation, but the domains only had low free energies of folding (ΔGN-Do = 15-20 kJ/mol at 25 °C in pH 7.4). Here, using the same phage repertoire, we have extended the method to the selection of domains resistant to acid aggregation. In this case, however, the thermodynamic stabilities of selected domains were higher than those selected by thermal denaturation (under both neutral and acidic conditions; ΔGN-Do = 26-47 kJ/mol at 25 °C in pH 7.4, or ΔGN-Do = 27-34 kJ/mol in pH 3.2). Furthermore, we identified a key determinant (Arg28) that increased the aggregation resistance of the denatured states of the domains at low pH without compromising their thermodynamic stabilities. Thus, the selection process yielded domains that combined thermodynamic stability and aggregation-resistant unfolded states. We suggest that changes to these properties are controlled by the extent to which the folding equilibrium is displaced during the process of selection. 相似文献
10.
The study of ion channel function is constrained by the availability of structures for only a small number of channels. A commonly used bioinformatics technique is to assert, based on sequence similarity, that a domain within a channel of interest has the same structure as a reference domain for which the structure is known. This technique, while useful, is often employed when there is only a slight similarity between the channel of interest and the domain of known structure. In this study, we exploit recent advances in structural genomics to calculate the sequence-based probability of the presence of putative domains in a number of ion channels. We find strong support for the presence of many domains that have been proposed in the literature. For example, eukaryotic and prokaryotic CLC proteins almost certainly share a common structure. A number of proposed domains, however, are not as well supported. In particular, for the COOH terminus of the BK channel we find a number of literature proposed domains for which the assertion of common structure based on common sequence has a nontrivial probability of error. 相似文献
11.
Many proteins utilize segmental motions to catalyze a specific reaction. The Omega loop of triosephosphate isomerase (TIM) is important for preventing the loss of the reactive enediol(ate) intermediate. The loop opens and closes even in the absence of the ligand, and the loop itself does not change conformation during movement. The conformational changes are localized to two hinges at the loop termini. Glycine is never observed in native TIM hinge sequences. In this paper, the hypothesis that limited access to conformational space is a requirement for protein hinges involved in catalysis was tested. The N-terminal hinge was mutated to P166/V167G/W168G (PGG), and the C-terminal hinge was mutated to K174G/T175G/A176G (GGG) in chicken TIM. The single-hinge mutants PGG and GGG had k(cat) values 200-fold lower than that of the wild type and K(m) values 10-fold higher. The k(cat) of double-hinge mutant P166/V167G/W168G/K174G/T175G/A176G was reduced 2500-fold; the K(m) was 10-fold higher. A combination of primary kinetic isotope effect measurements, isothermal calorimetric measurements, and (31)P NMR spectroscopic titration with the inhibitor 2-phosphoglycolate revealed that the mutants have a different ligand-binding mode than that of the wild-type enzyme. The predominant conformations of the mutants even in the presence of the inhibitor are loop-open conformations. In conclusion, mutation of the hinge residues to glycine resulted in the sampling of many more hinge conformations with the consequence that the population of the active-closed conformation is reduced. This reduced population results in a reduced catalytic activity. 相似文献
12.
Existing methods of domain identification in proteins usually provide no information about the degree of domain independence and stability. However, this information is vital for many areas of protein research. The recently developed hierarchical clustering of correlation patterns (HCCP) technique provides machine-based domain identification in a computationally simple and physically consistent way. Here we present the modification of this technique, which not only allows determination of the most plausible number of dynamic domains but also makes it possible to estimate the degree of their independence (the extent of correlated motion) and stability (the range of environmental conditions, where domains remain intact). With this technique we provided domain assignments and calculated intra- and interdomain correlations and interdomain energies for >2500 test proteins. It is shown that mean intradomain correlation of motions can serve as a quantitative criterion of domain independence, and the HCCP stability gap is a measure of their stability. Our data show that the motions of domains with high stability are usually independent. In contrast, the domains with moderate stability usually exhibit a substantial degree of correlated motions. It is shown that in multidomain proteins the domains are most stable if they are of similar size, and this correlates with the observed abundance of such proteins. 相似文献
13.
Jan G Delorme V David V Revenu C Rebollo A Cayla X Tardieux I 《The Biochemical journal》2007,401(3):711-719
Toxofilin is a 27 kDa protein isolated from the human protozoan parasite Toxoplasma gondii, which causes toxoplasmosis. Toxofilin binds to G-actin, and in vitro studies have shown that it controls elongation of actin filaments by sequestering actin monomers. Toxofilin affinity for G-actin is controlled by the phosphorylation status of its Ser53, which depends on the activities of a casein kinase II and a type 2C serine/threonine phosphatase (PP2C). To get insights into the functional properties of toxofilin, we undertook a structure-function analysis of the protein using a combination of biochemical techniques. We identified a domain that was sufficient to sequester G-actin and that contains three peptide sequences selectively binding to G-actin. Two of these sequences are similar to sequences present in several G- and F-actin-binding proteins, while the third appears to be specific to toxofilin. Additionally, we identified two toxofilin domains that interact with PP2C, one of which contains the Ser53 substrate. In addition to characterizing the interacting domains of toxofilin with its partners, the present study also provides information on an in vivo-based approach to selectively and competitively disrupt the protein-protein interactions that are important to parasite motility. 相似文献
14.
Lutz W Frank EM Craig TA Thompson R Venters RA Kojetin D Cavanagh J Kumar R 《Biochemical and biophysical research communications》2003,303(4):1186-1192
Calbindin D(28K) is an EF-hand containing protein that plays a vital role in neurological function. We now show that calcium-loaded calbindin D(28K) interacts with Ran-binding protein M, a protein known to play a role in microtubule function. Using NMR methods, we show that a peptide, LASIKNR, derived from Ran-binding protein M, interacts with several regions of the calcium-loaded protein including the amino terminus and two other regions that exhibit conformational exchange on the NMR timescale. We suggest that the interaction between calbindin D(28K) and Ran-binding protein M may be important in calbindin D(28K) function. 相似文献
15.
Vinayagam A Shi J Pugalenthi G Meenakshi B Blundell TL Sowdhamini R 《Bioinformatics (Oxford, England)》2003,19(14):1760-1764
MOTIVATION: Although many methods are available for the identification of structural domains from protein three-dimensional structures, accurate definition of protein domains and the curation of such data for a large number of proteins are often possible only after manual intervention. The availability of domain definitions for protein structural entries is useful for the sequence analysis of aligned domains, structure comparison, fold recognition procedures and understanding protein folding, domain stability and flexibility. RESULTS: We have improved our method of domain identification starting from the concept of clustering secondary structural elements, but with an intention of reducing the number of discontinuous segments in identified domains. The results of our modified and automatic approach have been compared with the domain definitions from other databases. On a test data set of 55 proteins, this method acquires high agreement (88%) in the number of domains with the crystallographers' definition and resources such as SCOP, CATH, DALI, 3Dee and PDP databases. This method also obtains 98% overlap score with the other resources in the definition of domain boundaries of the 55 proteins. We have examined the domain arrangements of 4592 non-redundant protein chains using the improved method to include 5409 domains leading to an update of the structural domain database. AVAILABILITY: The latest version of the domain database and online domain identification methods are available from http://www.ncbs.res.in/~faculty/mini/ddbase/ddbase.html Supplementary information: http://www.ncbs.res.in/~faculty/mini/ddbase/supplementary/supplementary.html 相似文献
16.
A rigid domain, defined here as a tertiary structure common to two or more different protein conformations, can be identified numerically from atomic coordinates by finding sets of residues, one in each conformation, such that the distance between any two residues within the set belonging to one conformation is the same as the distance between the two structurally equivalent residues within the set belonging to any other conformation. The distance between two residues is taken to be the distance between their respective α carbon atoms. With the methods of this paper we have found in the deoxy and oxy conformations of the human hemoglobin α1β1 dimer a rigid domain closely related to that previously identified by Baldwin and Chothia (J. Mol. Biol. 129:175–220,1979). We provide two algorithms, both using the difference-distance matrix, with which to search for rigid domains directly from atomic coordinates. The first finds all rigid domains in a protein but has storage and processing demands that become prohibitively large with increasing protein size. The second, although not necessarily finding every rigid domain, is computationally tractable for proteins of any size. Because of its efficiency we are able to search protein conformations recursively for groups of non-intersecting domains. Different protein conformations, when aligned by superimposing their respective domain structures; can be examined for structural differences in regions complementing a rigid domain. © 1995 Wiley-Liss, Inc. 相似文献
17.
A stable interaction between syntaxin 1a and synaptobrevin 2 mediated by their transmembrane domains
The proteins synaptobrevin (VAMP), SNAP-25 and syntaxin 1 are essential for neuronal exocytosis. They assemble into a stable ternary complex which is thought to initiate membrane fusion. In vitro, the transmembrane domains of syntaxin and synaptobrevin are not required for association. Here we report a novel interaction between synaptobrevin and syntaxin that requires the presence of the transmembrane domains. When co-reconstituted into liposomes, the proteins form a stable binary complex that cannot be disassembled by NSF and that is resistant to denaturation by SDS. Cleavage of synaptobrevin with tetanus toxin does not affect the interaction. Furthermore, the complex is formed when a truncated version of syntaxin is used that contains only 12 additional amino acid residues outside the membrane anchor. We conclude that the interaction is mediated by the transmembrane domains. 相似文献
18.
19.
Background
Proteins are comprised of one or several building blocks, known as domains. Such domains can be classified into families according to their evolutionary origin. Whereas sequencing technologies have advanced immensely in recent years, there are no matching computational methodologies for large-scale determination of protein domains and their boundaries. We provide and rigorously evaluate a novel set of domain families that is automatically generated from sequence data. Our domain family identification process, called EVEREST (EVolutionary Ensembles of REcurrent SegmenTs), begins by constructing a library of protein segments that emerge in an all vs. all pairwise sequence comparison. It then proceeds to cluster these segments into putative domain families. The selection of the best putative families is done using machine learning techniques. A statistical model is then created for each of the chosen families. This procedure is then iterated: the aforementioned statistical models are used to scan all protein sequences, to recreate a library of segments and to cluster them again. 相似文献20.
HTP: a neural network-based method for predicting the topology of helical transmembrane domains in proteins 总被引:2,自引:0,他引:2
In this paper we describe a microcomputer program (HTP) forpredicting the location and orientation of -helical transmemhranesegments in integral membrane proteins. HTP is a neural network-basedtool which gives as output the protein membrane topology basedon the statistical propensity of residues to be located in externaland internal loops. This method, which uses single protein sequencesas input to the network system, correctly predicts the topologyof 71 out of 92 membrane proteins of putative membrane orientation,independently of the protein source. 相似文献