首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A new algorithm was developed for the estimation of the metabolic flux distribution based on GC-MS data of proteinogenic amino acids. By using a sensitive GC-MS protocol as well as by combining the global search algorithm such as the genetic algorithm with the local search algorithm such as the Levenberg-Marquardt algorithm, not only the distribution of the net fluxes in the entire network, but also certain exchange fluxes which contribute significantly to the isotopomer distribution could be quantified. This mass isotopomer analysis could identify the biochemical changes involved in the regulation where acetate or glucose was used as a main carbon source. The metabolic flux analysis clearly revealed that when the specific growth rate increased, only a slight change in flux distribution was observed for acetate metabolism, indicating that subtle regulation mechanism exists in certain key junctions of this network system. Different from acetate metabolism, when glucose was used as a carbon source, as the growth rate increased, a significant increase in relative pentose phosphate pathway (PPP) flux was observed for Escherichia coli K12 at the expense of the citric acid cycle, suggesting that when growing on glucose, the flux catalyzed by isocitrate dehydrogenase could not fully fulfill the NADPH demand for cell growth, causing the oxidative PPP to be utilized to a larger extent so as to complement the NADPH demand. The GC-MS protocol as well as the new algorithm demonstrated here proved to be a powerful tool for characterizing metabolic regulation and can be utilized for strain improvement and bioprocess optimization.  相似文献   

2.
3.
The field of metabolic engineering is primarily concerned with improving the biological production of value-added chemicals, fuels and pharmaceuticals through the design, construction and optimization of metabolic pathways, redirection of intracellular fluxes, and refinement of cellular properties relevant for industrial bioprocess implementation. Metabolic network models and metabolic fluxes are central concepts in metabolic engineering, as was emphasized in the first paper published in this journal, “Metabolic fluxes and metabolic engineering” (Metabolic Engineering, 1: 1–11, 1999). In the past two decades, a wide range of computational, analytical and experimental approaches have been developed to interrogate the capabilities of biological systems through analysis of metabolic network models using techniques such as flux balance analysis (FBA), and quantify metabolic fluxes using constrained-based modeling approaches such as metabolic flux analysis (MFA) and more advanced experimental techniques based on the use of stable-isotope tracers, i.e. 13C-metabolic flux analysis (13C-MFA). In this review, we describe the basic principles of metabolic flux analysis, discuss current best practices in flux quantification, highlight potential pitfalls and alternative approaches in the application of these tools, and give a broad overview of pragmatic applications of flux analysis in metabolic engineering practice.  相似文献   

4.
Modeling and simulation: tools for metabolic engineering.   总被引:7,自引:0,他引:7  
Mathematical modeling is one of the key methodologies of metabolic engineering. Based on a given metabolic model different computational tools for the simulation, data evaluation, systems analysis, prediction, design and optimization of metabolic systems have been developed. The currently used metabolic modeling approaches can be subdivided into structural models, stoichiometric models, carbon flux models, stationary and nonstationary mechanistic models and models with gene regulation. However, the power of a model strongly depends on its basic modeling assumptions, the simplifications made and the data sources used. Model validation turns out to be particularly difficult for metabolic systems. The different modeling approaches are critically reviewed with respect to their potential and benefits for the metabolic engineering cycle. Several tools that have emerged from the different modeling approaches including structural pathway synthesis, stoichiometric pathway analysis, metabolic flux analysis, metabolic control analysis, optimization of regulatory architectures and the evaluation of rapid sampling experiments are discussed.  相似文献   

5.
Rios-Estepa R  Lange BM 《Phytochemistry》2007,68(16-18):2351-2374
To support their sessile and autotrophic lifestyle higher plants have evolved elaborate networks of metabolic pathways. Dynamic changes in these metabolic networks are among the developmental forces underlying the functional differentiation of organs, tissues and specialized cell types. They are also important in the various interactions of a plant with its environment. Further complexity is added by the extensive compartmentation of the various interconnected metabolic pathways in plants. Thus, although being used widely for assessing the control of metabolic flux in microbes, mathematical modeling approaches that require steady-state approximations are of limited utility for understanding complex plant metabolic networks. However, considerable progress has been made when manageable metabolic subsystems were studied. In this article, we will explain in general terms and using simple examples the concepts underlying stoichiometric modeling (metabolic flux analysis and metabolic pathway analysis) and kinetic approaches to modeling (including metabolic control analysis as a special case). Selected studies demonstrating the prospects of these approaches, or combinations of them, for understanding the control of flux through particular plant pathways are discussed. We argue that iterative cycles of (dry) mathematical modeling and (wet) laboratory testing will become increasingly important for simulating the distribution of flux in plant metabolic networks and deriving rational experimental designs for metabolic engineering efforts.  相似文献   

6.
The growing prevalence of metabolic diseases including fatty liver disease and Type 2 diabetes has increased the emphasis on understanding metabolism at the mechanistic level and how it is perturbed in disease. Metabolomics is a continually expanding field that seeks to measure metabolites in biological systems during a physiological stimulus or a genetic alteration. Typically, metabolomics studies provide total pool sizes of metabolites rather than dynamic flux measurements. More recently there has been a resurgence in approaches that use stable isotopes (e.g. 2H and 13C) for the unambiguous tracking of individual atoms through compartmentalised metabolic networks in humans to determine underlying mechanisms. This is known as metabolic flux analysis and enables the capture of a dynamic picture of the metabolome and its interactions with the genome and proteome. In this review, we describe current approaches using stable isotope labelling in the field of metabolomics and provide examples of studies that led to an improved understanding of glucose, fatty acid and amino acid metabolism in humans, particularly in relation to metabolic disease. Examples include the use of stable isotopes of glucose to study tumour bioenergetics as well as brain metabolism during traumatic brain injury. Lipid tracers have also been used to measure non-esterified fatty acid production whilst amino acid tracers have been used to study the rate of protein digestion on whole body postprandial protein metabolism. In addition, we illustrate the use of stable isotopes for measuring flux in human physiology by providing examples of breath tests to measure insulin resistance and gastric emptying rates.  相似文献   

7.
8.
The recent progress on metabolic systems engineering was reviewed based on our recent research results in terms of (1) metabolic signal flow diagram approach, (2) metabolic flux analysis (MFA) in particular with intracellular isotopomer distribution using NMR and/or GC-MS, (3) synthesis and optimization of metabolic flux distribution (MFD), (4) modification of MFD by gene manipulation and by controlling culture environment, (5) metabolic control analysis (MCA), (6) design of metabolic regulation structure, and (7) identification of unknown pathways with isotope tracing by NMR. The main characteristics of metabolic engineering is to treat metabolism as a network or entirety instead of individual reactions. The applications were made for poly-3-hydroxybutyrate (PHB) production usingRalstonia eutropha and recombinantEscherichia coli, lactate production by recombinantSaccharomyces cerevisiae, pyruvate production by vitamin auxotrophic yeastToluropsis glabrata, lysine production usingCorynebacterium glutamicum, and energetic analysis of photosynthesic microorganisms such as Cyanobateria. The characteristics of each approach were reviewed with their applications. The approach based on isotope labeling experiments gives reliable and quantitative results for metabolic flux analysis. It should be recognized that the next stage should be toward the investigation of metabolic flux analysis with gene and protein expressions to uncover the metabolic regulation in relation to genetic modification and/or the change in the culture condition.  相似文献   

9.
Gas chromatography-mass spectrometry (GC-MS) is a rapid method that provides rich information on isotopomer distributions for metabolic flux analysis. First, we established a fast and reliable experimental protocol for GC-MS analysis of amino acids from total biomass hydrolyzates, and common experimental pitfalls are discussed. Second, a suitable interface for the use of mass isotopomer data is presented. For this purpose, a general, matrix-based correction procedure that accounts for naturally occurring isotopes is introduced. Simulated and experimentally determined mass distributions of unlabeled amino acids showed a deviation of less than 3% for 89% of the analyzed fragments. Third, to investigate general properties of GC-MS-based isotopomer balancing, altered flux ratios through glycolysis and pentose phosphate pathway and/or exchange fluxes were simulated. Different fluxes were found to exert specific and significant influence on the mass isotopomer distributions, thus indicating that GC-MS data contain valuable information for metabolic flux analysis. Fourth, comparison of different methods revealed that GC-MS analysis provides the largest number of independent constraints on amino acid isotopomer abundance, followed by correlation spectroscopy and fractional enrichment analysis by nuclear magnetic resonance.  相似文献   

10.
Microbial pathway engineering has made significant progress in multiple areas. Many examples of successful pathway engineering for specialty and fine chemicals have been reported in the past two years. Novel carotenoids and polyketides have been synthesized using molecular evolution and combinatorial strategies. In addition, rational design approaches based on metabolic control have been reported to increase metabolic flux to specific products. Experimental and computational tools have been developed to aid in design, reconstruction and analysis of non-native pathways. It is expected that a hybrid of evolutionary, combinatorial and rational design approaches will yield significant advances in the near future.  相似文献   

11.
Plant lipids have versatile applications and provide essential fatty acids in human diet. Therefore, there has been a growing interest to better characterize the genetic basis, regulatory networks, and metabolic pathways that shape lipid quantity and composition. Addressing these issues is challenging due to context-specificity of lipid metabolism integrating environmental, developmental, and tissue-specific cues. Here we systematically review the known metabolic pathways and regulatory interactions that modulate the levels of storage lipids in oilseeds. We argue that the current understanding of lipid metabolism provides the basis for its study in the context of genome-wide plant metabolic networks with the help of approaches from constraint-based modeling and metabolic flux analysis. The focus is on providing a comprehensive summary of the state-of-the-art of modeling plant lipid metabolic pathways, which we then contrast with the existing modeling efforts in yeast and microalgae. We then point out the gaps in knowledge of lipid metabolism, and enumerate the recent advances of using genome-wide association and quantitative trait loci mapping studies to unravel the genetic regulations of lipid metabolism. Finally, we offer a perspective on how advances in the constraint-based modeling framework can propel further characterization of plant lipid metabolism and its rational manipulation.  相似文献   

12.
13.
For the past decade, flux maps have provided researchers with an in-depth perspective on plant metabolism. As a rapidly developing field, significant headway has been made recently in computation, experimentation, and overall understanding of metabolic flux analysis. These advances are particularly applicable to the study of plant metabolism. New dynamic computational methods such as non-stationary metabolic flux analysis are finding their place in the toolbox of metabolic engineering, allowing more organisms to be studied and decreasing the time necessary for experimentation, thereby opening new avenues by which to explore the vast diversity of plant metabolism. Also, improved methods of metabolite detection and measurement have been developed, enabling increasingly greater resolution of flux measurements and the analysis of a greater number of the multitude of plant metabolic pathways. Methods to deconvolute organelle-specific metabolism are employed with increasing effectiveness, elucidating the compartmental specificity inherent in plant metabolism. Advances in metabolite measurements have also enabled new types of experiments, such as the calculation of metabolic fluxes based on (13)CO(2) dynamic labelling data, and will continue to direct plant metabolic engineering. Newly calculated metabolic flux maps reveal surprising and useful information about plant metabolism, guiding future genetic engineering of crops to higher yields. Due to the significant level of complexity in plants, these methods in combination with other systems biology measurements are necessary to guide plant metabolic engineering in the future.  相似文献   

14.
Rational engineering of metabolism is important for bio-production using microorganisms. Metabolic design based on in silico simulations and experimental validation of the metabolic state in the engineered strain helps in accomplishing systematic metabolic engineering. Flux balance analysis (FBA) is a method for the prediction of metabolic phenotype, and many applications have been developed using FBA to design metabolic networks. Elementary mode analysis (EMA) and ensemble modeling techniques are also useful tools for in silico strain design. The metabolome and flux distribution of the metabolic pathways enable us to evaluate the metabolic state and provide useful clues to improve target productivity. Here, we reviewed several computational applications for metabolic engineering by using genome-scale metabolic models of microorganisms. We also discussed the recent progress made in the field of metabolomics and 13C-metabolic flux analysis techniques, and reviewed these applications pertaining to bio-production development. Because these in silico or experimental approaches have their respective advantages and disadvantages, the combined usage of these methods is complementary and effective for metabolic engineering.  相似文献   

15.
One of the well-established approaches for the quantitative characterization of large-scale underdetermined metabolic network is constraint-based flux analysis, which quantifies intracellular metabolic fluxes to characterize the metabolic status. The system is typically underdetermined, and thus usually is solved by linear programming with the measured external fluxes as constraints. Thus, the intracellular flux distribution calculated may not represent the true values. (13)C-constrained flux analysis allows more accurate determination of internal fluxes, but is currently limited to relatively small metabolic networks due to the requirement of complicated mathematical formulation and limited parameters available. Here, we report a strategy of employing such partial information obtained from the (13)C-labeling experiments as additional constraints during the constraint-based flux analysis. A new methodology employing artificial metabolites and converging ratio determinants (CRDs) was developed for improving constraint-based flux analysis. The CRDs were determined based on the metabolic flux ratios obtained from (13)C-labeling experiments, and were incorporated into the mass balance equations for the artificial metabolites. These new mass balance equations were used as additional constraints during the constraint-based flux analysis with genome-scale E. coli metabolic model, which allowed more accurate determination of intracellular metabolic fluxes.  相似文献   

16.
Several new methodologies have enabled recent studies on the microbial biodegradation mechanisms of organic pollutants. Culture-independent techniques for analysis of the genetic and metabolic potential of natural and model microbial communities that degrade organic pollutants have identified new metabolic pathways and enzymes for aerobic and anaerobic degradation. Furthermore, structural studies of the enzymes involved have revealed the specificities and activities of key catabolic enzymes, such as dioxygenases. Genome sequencing of several biodegradation-relevant microorganisms have provided the first whole-genome insights into the genetic background of the metabolic capability and biodegradation versatility of these organisms. Systems biology approaches are still in their infancy, but are becoming increasingly helpful to unravel, predict and quantify metabolic abilities within particular organisms or microbial consortia.  相似文献   

17.
The central metabolic fluxes of Shewanella oneidensis MR-1 were examined under carbon-limited (aerobic) and oxygen-limited (microaerobic) chemostat conditions, using 13C-labeled lactate as the sole carbon source. The carbon labeling patterns of key amino acids in biomass were probed using both gas chromatography-mass spectrometry (GC-MS) and 13C nuclear magnetic resonance (NMR). Based on the genome annotation, a metabolic pathway model was constructed to quantify the central metabolic flux distributions. The model showed that the tricarboxylic acid (TCA) cycle is the major carbon metabolism route under both conditions. The Entner-Doudoroff and pentose phosphate pathways were utilized primarily for biomass synthesis (with a flux below 5% of the lactate uptake rate). The anaplerotic reactions (pyruvate to malate and oxaloacetate to phosphoenolpyruvate) and the glyoxylate shunt were active. Under carbon-limited conditions, a substantial amount (9% of the lactate uptake rate) of carbon entered the highly reversible serine metabolic pathway. Under microaerobic conditions, fluxes through the TCA cycle decreased and acetate production increased compared to what was found for carbon-limited conditions, and the flux from glyoxylate to glycine (serine-glyoxylate aminotransferase) became measurable. Although the flux distributions under aerobic, microaerobic, and shake flask culture conditions were different, the relative flux ratios for some central metabolic reactions did not differ significantly (in particular, between the shake flask and aerobic-chemostat groups). Hence, the central metabolism of S. oneidensis appears to be robust to environmental changes. Our study also demonstrates the merit of coupling GC-MS with 13C NMR for metabolic flux analysis to reduce the use of 13C-labeled substrates and to obtain more-accurate flux values.  相似文献   

18.
Metabolic engineering of plants with enhanced crop yield and value-added compositional traits is particularly challenging as they probably exhibit the highest metabolic network complexity of all living organisms. Therefore, approaches of plant metabolic network analysis, which can provide systems-level understanding of plant physiology, appear valuable as guidance for plant metabolic engineers. Strongly supported by the sequencing of plant genomes, a number of different experimental and computational methods have emerged in recent years to study plant systems at various levels: from heterotrophic cell cultures to autotrophic entire plants. The present review presents a state-of-the-art toolbox for plant metabolic network analysis. Among the described approaches are different in silico modeling techniques, including flux balance analysis, elementary flux mode analysis and kinetic flux profiling, as well as different variants of experiments with plant systems which use radioactive and stable isotopes to determine in vivo plant metabolic fluxes. The fundamental principles of these techniques, the required data input and the obtained flux information are enriched by technical advices, specific to plants. In addition, pioneering and high-impacting findings of plant metabolic network analysis highlight the potential of the field.  相似文献   

19.
Inborn errors of metabolism are characterized by dysregulation of the metabolic networks that underlie development and homeostasis, and constitute an important and expanding group of genetic disorders in humans. Diagnostic methods that are based on molecular genetic tools have a limited ability to correlate phenotypes with subtle changes in metabolic fluxes. We argue that the direct and dynamic measurement of metabolite flux will facilitate the integration of environmental, genetic and biochemical factors with phenotypic information. Ultimately, this integration will lead to new diagnostic and therapeutic approaches that are focused on the manipulation of these pathways.  相似文献   

20.
Kim J  Reed JL  Maravelias CT 《PloS one》2011,6(9):e24162
The use of computational models in metabolic engineering has been increasing as more genome-scale metabolic models and computational approaches become available. Various computational approaches have been developed to predict how genetic perturbations affect metabolic behavior at a systems level, and have been successfully used to engineer microbial strains with improved primary or secondary metabolite production. However, identification of metabolic engineering strategies involving a large number of perturbations is currently limited by computational resources due to the size of genome-scale models and the combinatorial nature of the problem. In this study, we present (i) two new bi-level strain design approaches using mixed-integer programming (MIP), and (ii) general solution techniques that improve the performance of MIP-based bi-level approaches. The first approach (SimOptStrain) simultaneously considers gene deletion and non-native reaction addition, while the second approach (BiMOMA) uses minimization of metabolic adjustment to predict knockout behavior in a MIP-based bi-level problem for the first time. Our general MIP solution techniques significantly reduced the CPU times needed to find optimal strategies when applied to an existing strain design approach (OptORF) (e.g., from ~10 days to ~5 minutes for metabolic engineering strategies with 4 gene deletions), and identified strategies for producing compounds where previous studies could not (e.g., malate and serine). Additionally, we found novel strategies using SimOptStrain with higher predicted production levels (for succinate and glycerol) than could have been found using an existing approach that considers network additions and deletions in sequential steps rather than simultaneously. Finally, using BiMOMA we found novel strategies involving large numbers of modifications (for pyruvate and glutamate), which sequential search and genetic algorithms were unable to find. The approaches and solution techniques developed here will facilitate the strain design process and extend the scope of its application to metabolic engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号